ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-12
    Description: The final report contains a description of the results obtained within a research contract between IRE RAS and GFZ Potsdam during the period April-November 2004. The objectives of investigation included (1) the radio-holographic methods for obtaining vertical profiles of the vertical gradients of physical parameters in the atmosphere, (2) radio holographic methods for atmospheric, ionospheric and stratospheric waves, and (3) validation of the software with GPS/MET (GPS/METeorology, e.g., Rocken et al. 1997) and CHAMP (CHAllenging Minisatellite Payload, e.g., Reigber et al. 2005) data and final report with recommendations.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2020-02-12
    Description: Late Miocene to Quaternary volcanic rocks from the frontal arc to the back-arc region of the Central Volcanic Zone in the Andes show a wide range of delta 11B values (+4 to -7 ‰) and boron concentrations (6 to 60 ppm). Positive delta 11B values of samples from the volcanic front indicate involvement of a 11B-enriched slab component, most likely derived from altered oceanic crust, despite the thick Andean continental lithosphere, and rule out a pure crust-mantle origin for these lavas. The delta 11B values and B concentrations in the lavas decrease systematically with increasing depth of the Wadati-Benioff Zone. This across-arc variation in delta 11B values and decreasing B/Nb ratios from the arc to the back-arc samples are attributed to the combined effects of B-isotope fractionation during progressive dehydration in the slab and a steady decrease in slab-fluid flux towards the back arc, coupled with a relatively constant degree of crustal contamination as indicated by similar Sr, Nd and Pb isotope ratios in all samples. Modelling of fluid-mineral B-isotope fractionation as a function of temperature fits the across-arc variation in delta 11B and we conclude that the B-isotope composition of arc volcanics is dominated by changing delta 11B composition of B-rich slab-fluids during progressive dehydration. Crustal contamination becomes more important towards the back-arc due to the decrease in slab-derived fluid flux. Because of this isotope fractionation effect, high delta 11B signatures in volcanic arcs need not necessarily reflect differences in the initial composition of the subducting slab. Three-component mixing calculations for slab-derived fluid, the mantle wedge and the continental crust based on B, Sr and Nd isotope data indicate that the slab-fluid component dominates the B composition of the fertile mantle and that the primary arc magmas were contaminated by an average addition of 15 to 30 % crustal material.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-07-25
    Description: This manual outlines the characteristics and structure of the software and describes how to use the software. The principles and new features are outlined systematically and referred partly to existing references. Numerical examples of multi-functions and internal tests as well as external comparisons are given.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-28
    Description: We review the historical, geological, tide-gauge, GPS and gravimetric evidence advanced in favour of or against continuing land uplift around Hudson Bay, Canada. After this, we reanalyse the tide-gauge and GPS data for Churchill using longer time series than those available to previous investigators. The dependence of the mean rate of relative sea-level change obtained on the length and mid-epoch of the observation interval considered is investigated by means of the newly developed linear-trend analysis diagram. For studying the shorter-period variability of the tide-gauge record, the continuous-wavelet transform is used. The mean rate of land uplift obtained from GPS is based on a new analysis using IGS solutions of GFZ. Furthermore, sea-level indicators from the Churchill region representing the relative sea-level history during the past 8000 a are included. Finally, the four types of observable are jointly inverted in terms of mantle viscosity. The optimum values are 3×10^20 Pa s and 1.6 × 10^22 Pa s for the upper- and lower-mantle viscosities, respectively.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-07-25
    Description: This report is also published as Scientific Report No. 04-9 of the Danish Meteorological Institute.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-08
    Description: In this thesis the subduction zone of the Central Andes is studied. The Andes have formed in a complex interplay of subduction related and tectonic processes. The Central Andes with the associated Altiplano-Puna high plateau constitute the second largest continental land-mass on earth, rivaled only by the Tibetan highland. Whereas in the case of the Himalayas , where two buoyant continental plates collide, crustal thickening and uplift is quite intuitive, processes leading to formation of a plateau above a subduction zone are puzzling.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2020-02-12
    Description: As observed on the Earth's surface, the magnetic field can be separated into three components: The "Main Field", the "Crustal Field" and the "External Magnetic Field". This work concentrates on the magnetospheric current systems, in order to correct the effect of large-scale magnetospheric current systems. Their exact knowledge is vital to improve the main field and secular variation models. Spherical harmonic analysis (SHA) is commonly used to describe the magnetic field. In SHA it is possible to distinguish between internal and external contributions to the Earth's magnetic field. The spherical harmonic coefficients describe dipolar, quadrupolar and higher parts in spherical coordinates. Here, CHAMP (CHAllenging Minisatellite Payload) measurements are used. Due to the inclination CHAMP is changing the orbit in local time. From time to time CHAMP is flying in resonance with the Earth's rotation, i.e. the satellite is flying over the same ground track after a couple of days. To model changes during a period of a few days these so called "repeat tracks" are very helpful for an improved main field/external field model. On the Earth's surface the magnetic effect of magnetospheric currents is often characterised by the DST-indix. In this study, it is explained how a possible constitution of the external sources of the geomagnetic field can look like and how the effect of these magnetospheric currents can be corrected in main field modelling.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2020-02-12
    Description: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki. The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data is available from the GEOFON data centre.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2020-02-12
    Description: Die vorliegende Arbeit beschäftigt sich mit der kombinierten strukturgeologischen und magnetotellurischen Untersuchung eines Segmentes der ’West Fault’-Störung in den nordchilenischen Anden. Die West Fault ist ein Abschnitt des über 2000 km langen Präkordilleren-Störungssystem, welches im Zusammenhang mit der Subduktion vor der südamerikanischenWestküste entstanden ist. Die Aktivität dieses Störungssystems reichte vom Eozän bis in das Quartär. Der Verlauf der West Fault ist im Untersuchungsgebiet (22° 04’ S, 68° 53’W) an der Oberfläche klar definiert und weist über viele zehner Kilometer eine konstante Streichrichtung auf. Die Aufschlussbedingungen und die Morphologie des Arbeitsgebietes sind ideal für kombinierte Untersuchungen der störungsbezogenen Deformation und der elektrischen Leitfähigkeit des Untergrundes mit Hilfe magnetotellurischer Experimente (MT) und der erdmagnetischen Tiefensondierung (GDS). Ziel der Untersuchungen war es, eine mögliche Korrelation der beiden Meßmethoden herauszuarbeiten, und die interne Störungsarchitektur der West Fault umfassend zu beschreiben.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-18
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-19
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-19
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-20
    Description: The report describes the main results of investigations performed in 2001 year in framework of a research contract between GeoForschungsZentrum Potsdam (GFZ) and the Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Moscow (IRE).
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-20
    Description: After a gap of nearly two decades since the Magsat mission in 1980, the dedicated low-orbit potential field mission CHAMP is now in the third of its seven year mission. Already, the new magnetic total intensity and vector data have yielded maps of the global crustal field of unprecedented accuracy and resolution. Here, we assess the value of these maps to infer deep crustal structure of regions overlain by younger cover. A GIS based modelling technique has been developed to model the various geological units of the continents starting from the geological map of the world. Depending upon the known rock types of the region, they are assigned a standard susceptibility value and using the global seismic crustal structure, a vertically integrated susceptibility (VIS) model is computed at each point of the region. Starting with this initial VIS model, the vertical field anomaly is computed at a satellite altitude of 400 km and compared with the corresponding CHAMP vertical field anomaly map. The first comparison is carried out against a model using the lateral extent of a cratonic region as given by published tectonic maps. In the subsequent modelling step, depending upon the extent of the observed anomaly pattern of that region, the surface geology is extended beneath the sediments until the recomputed map fits the observed magnetic anomaly map. Here, we focus on modelling results for the selected few provinces of the world where the initial model does not agree with the observed anomaly map. Similar modelling of CHAMP satellite magnetic anomalies can constrain the subsurface structure hidden by Phanerozoic cover in many parts of the world.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-20
    Description: The Dead Sea Transform (DST) is a prominent shear zone in the Middle East. It separates the Arabian plate from the Sinai microplate and stretches from the Red Sea rift in the south via the Dead Sea to the Taurus-Zagros collision zone in the north. Formed in the Miocene »17 Ma ago and related to the breakup of the Afro-Arabian continent, the DST accommodates the left-lateral movement between the two plates. The study area is located in the Arava Valley between the Dead Sea and the Red Sea, centered across the Arava Fault (AF), which constitutes the major branch of the transform in this region. A set of seismic experiments comprising controlled sources, linear profiles across the fault, and specifically designed receiver arrays reveals the subsurface structure in the vicinity of the AF and of the fault zone itself down to about 3–4 km depth. A tomographically determined seismic P velocity model shows a pronounced velocity contrast near the fault with lower velocities on the western side than east of it. Additionally, S waves from local earthquakes provide an average P -to-S velocity ratio in the study area, and there are indications for a variations across the fault. High-resolution tomographic velocity sections and seismic reflection profiles confirm the surface trace of the AF, and observed features correlate well with fault-related geological observations. Coincident electrical resistivity sections from magnetotelluric measurements across the AF show a conductive layer west of the fault, resistive regions east of it, and a marked contrast near the trace of the AF, which seems to act as an impermeable barrier for fluid flow. The correlation of seismic velocities and electrical resistivities lead to a characterisation of subsurface lithologies from their physical properties. Whereas the western side of the fault is characterised by a layered structure, the eastern side is rather uniform. The vertical boundary between the western and the eastern units seems to be offset to the east of the AF surface trace. A modelling of fault-zone reflected waves indicates that the boundary between low and high velocities is possibly rather sharp but exhibits a rough surface on the length scale a few hundreds of metres. This gives rise to scattering of seismic waves at this boundary. The imaging (migration) method used is based on array beamforming and coherency analysis of P -to-P scattered seismic phases. Careful assessment of the resolution ensures reliable imaging results. The western low velocities correspond to the young sedimentary fill in the Arava Valley, and the high velocities in the east reflect mainly Precambrian igneous rocks. A 7 km long subvertical scattering zone (reflector) is offset about 1 km east of the AF surface trace and can be imaged from 1 km to about 4 km depth. The reflector marks the boundary between two lithological blocks juxtaposed most probably by displacement along the DST. This interpretation as a lithological boundary is supported by the combined seismic and magnetotelluric analysis. The boundary may be a strand of the AF, which is offset from the current, recently active surface trace. The total slip of the DST may be distributed spatially and in time over these two strands and possibly other faults in the area.
    Description: Ein transversales Störungssystem im Nahen Osten, die Dead Sea Transform (DST), trennt die Arabische Platte von der Sinai-Mikroplatte und erstreckt sich von Süden nach Norden vom Extensionsgebiet im Roten Meer über das Tote Meer bis zur Taurus-Zagros Kollisionszone. Die sinistrale DST bildete sich im Miozän vor »17 Ma und steht mit dem Aufbrechen des Afro-Arabischen Kontinents in Verbindung. Das Untersuchungsgebiet liegt im Arava Tal zwischen Totem und Rotem Meer, mittig über der Arava Störung (Arava Fault, AF), die hier den Hauptast der DST bildet. Eine Reihe seismischer Experimente, aufgebaut aus künstlichen Quellen, linearen Profilen über die Störung und entsprechend entworfenen Empfänger-Arrays, zeigt die Untergrundstruktur in der Umgebung der AF und der Verwerfungszone selbst bis in eine Tiefe von 3–4 km. Ein tomographisch bestimmtes Modell der seismischen Geschwindigkeiten von P-Wellen zeigt einen starken Kontrast nahe der AF mit niedrigeren Geschwindigkeiten auf der westlichen Seite als im Osten. Scherwellen lokaler Erdbeben liefern ein mittleres P -zu-S Geschwindigkeitsverhältnis und es gibt Anzeichen für Änderungen über die Störung hinweg. Hoch aufgelöste tomographische Geschwindigkeitsmodelle bestätigen der Verlauf der AF und stimmen gut mit der Oberflächengeologie überein. Modelle des elektrischen Widerstands aus magnetotellurischen Messungen im selben Gebiet zeigen eine leitfähige Schicht westlich der AF, schlecht leitendes Material östlich davon und einen starken Kontrast nahe der AF, die den Fluss von Fluiden von einer Seite zur anderen zu verhindern scheint. Die Korrelation seismischer Geschwindigkeiten und elektrischer Widerstände erlaubt eine Charakterisierung verschiedener Lithologien im Untergrund aus deren physikalischen Eigenschaften. Die westliche Seite lässt sich durch eine geschichtete Struktur beschreiben, wogegen die östliche Seite eher einheitlich erscheint. Die senkrechte Grenze zwischen den westlichen Einheiten und der östlichen scheint gegenüber der Oberflächenausprägung der AF nach Osten verschoben zu sein. Eine Modellierung von seismischen Reflexionen an einer Störung deutet an, dass die Grenze zwischen niedrigen und hohen Geschwindigkeiten eher scharf ist, sich aber durch eine raue Oberfläche auf der Längenskala einiger hundert Meter auszeichnen kann, was die Streuung seismischer Wellen begünstigte. Das verwendete Abbildungsverfahren (Migrationsverfahren) für seismische Streukörper basiert auf Array Beamforming und der Kohärenzanalyse P -zu-P gestreuter seismischer Phasen. Eine sorgfältige Bestimmung der Auflösung sichert zuverlässige Abbildungsergebnisse. Die niedrigen Geschwindigkeiten im Westen entsprechen der jungen sedimentären Füllung im Arava Tal, und die hohen Geschwindigkeiten stehen mit den dortigen präkambrischen Magmatiten in Verbindung. Eine 7 km lange Zone seismischer Streuung (Reflektor) ist gegenüber der an der Oberfläche sichtbaren AF um 1 km nach Osten verschoben und lässt sich im Tiefenbereich von 1 km bis 4 km abbilden. Dieser Reflektor markiert die Grenze zwischen zwei lithologischen Blöcken, die vermutlich wegen des horizontalen Versatzes entlang der DST nebeneinander zu liegen kamen. Diese Interpretation als lithologische Grenze wird durch die gemeinsame Auswertung der seismischen und magnetotellurischen Modelle gestützt. Die Grenze ist möglicherweise ein Ast der AF, der versetzt gegenüber des heutigen, aktiven Asts verläuft. Der Gesamtversatz der DST könnte räumlich und zeitlich auf diese beiden Äste und möglicherweise auch auf andere Störungen in dem Gebiet verteilt sein.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-08-08
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR | Geothermie Report
    Publication Date: 2021-02-04
    Description: Der vorliegende Bericht fasst die Ergebnisse der in den Jahren 2000 und 2001 durchgeführten Arbeiten zur Aufwältigung, zum primären Test- und Messprogramm sowie zum Monitoring in der Geothermiebohrung Groß Schönebeck 3/90 zusammen. Mit Mitteln aus der Grundfinanzierung des GeoForschungsZentrums Potsdam wurde die Bohrung aufgewältigt und bis in eine Endteufe von 4294 m vertieft. Sie erschließt geothermisch interessante Horizonte des Norddeutschen Beckens in Tiefen zwischen ca. 3900 m und 4300 m bei einem Temperaturniveau von ca. 150°C. Dabei gewonnene Ergebnisse lassen sich auf ähnliche geologische Randbedingungen im Norddeutschen Becken übertragen. Dieses Sedimentbecken zieht sich von den Niederlanden über Norddeutschland bis nach Polen hin.
    Language: German , English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-24
    Description: A Databank was created using data from 25 local catalogues and 30 special studies of earthquakes in central, northern and northwestern Europe. Event types were discriminated, fake events and duplets eliminated, and different magnitudes and intensities converted to Mw. The conversions require the establishment of regression equations. The Catalogue contains tectonic events from the Databank within the area 44°N-72°N, 25°W-32°E and the time period 1300-1993 which have Mw magnitudes of 3.50 and larger. The area is covered by different polygons. Within each polygon only data from one or a small number of the local catalogues, supplemented by data from special studies, enter the Catalogue. If there are two or more such catalogues or studies providing a solution for an event, a priority algorithm selects one entry for the Catalogue. Then Mw is calculated from one of the magnitude types, or from macroseismic data, given by the selected entry according to another priority scheme. The origin time, location, Mw magnitude and reference are specified for each entry of the Catalogue. So is the epicentral intensity, I0, if provided by the original source. Following these criteria, a total of about 5,000 earthquakes constitute the Catalogue. Although originally derived for the purpose of seismic hazard calculation within GSHAP, the Catalogue provides a data base for many types of seismicity and seismic hazard studies.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-12-14
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-12-14
    Description: In this report we describe the new repeat station network, the measurements and some tests regarding the use of the variometer recordings for data processing, and we present the results of this latest German magnetic survey.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-07-28
    Description: Recently released global gravity field models generated solely from CHAMP and GRACE satellite observations allow with an unprecedented accuracy and resolution the recovery of the mean sea surface topography from the difference between an altimetry-based mean sea surface height model and the gravity model's derived geoid. Here the CHAMP EIGEN-2 gravity field model, and the first GFZ GRACE gravity model, EIGEN-GRACE01S, are used. The mean sea surface height model has been compiled from four years'; worth of TOPEX altimeter data. To evaluate the accuracy and resolution limits of the CHAMP and GRACE geoids for the envisaged application, a low pass filter in the spatial domain with different cut-off wavelengths has been applied to the geoid and sea surface data before subtraction. The minimum wavelength, where noisy and erroneous features in the recovered sea surface topography are minimised, can be interpreted as an indicator for the best suited common spatial resolution. The EIGEN-2 model's geoid has been tested to have a resolution of 1800 km, which corresponds to a truncation degree of l = 22 in terms of spherical harmonics. Using the EIGEN-GRACE01S model, the resolution could be extended to 1000 km (l = 40). These boundaries can be attributed to the geoid's error, exceeding 2 cm in case of the CHAMP model, and in case of the GRACE model to spurious systematic signals increasing with increasing spherical harmonic degree. The calculated sea surface topography models have been used to derive absolute geostrophic sea surface velocities. An error propagation shows that the requirement of 1 cm/s for geoid induced velocity errors is fulfilled at the given resolutions for all latitudes excluding a narrow equatorial band. Maximum geostrophic velocities are derived in the 1000 km-resolution model for the Kuroshio region with 40 cm/s, and for the Gulf Stream east off Cape Hatteras with 25 cm/s.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-07-25
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-08
    Description: Polar motion data is available from the mid-19th century to the present. Based on time series with a variety of sampling intervals (monthly, 0.05-year, 5-day and daily), we have separated the low-frequency terms by low-pass filtering and the Chandler and annual terms by recursive band-pass filtering of the pole coordinates. Using a simple unweighted least-squares fit to the filtered low-frequency terms, the linear trends of the rotation pole were estimated. Assessing the estimates based on intercomparisons, the most reliable trend estimate was found. Using a Fast Fourier Transform, we have computed the prograde, retrograde and total amplitude spectra of the low-frequency part of polar motion in order to reveal the long-periodic signals. The characteristics and time evolution of the Chandler and annual wobbles are described by changes in their parameters (radii, directions and period lengths) over one century.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-07
    Description: This report describes the set-up, logistics and results of the CHICAGO (Chilean Coastal AeroGeophysical Observations) survey. It gives a short overview about the scientific intentions, detailed documentation of all technical aspects starting from the survey equipment via the aircraft installation to the GPS stations set-up and the experiences in flight. All processing results for the individual profiles are discussed in detail. Finally, the data is compared and combined with available recent marine gravity data and altimetry derived solutions.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-08
    Description: The LaCoste & Romberg gravity meter S124b and its associated system environment were installed and tested in conjunction with a strap-down gravity meter system (SAGS) of the Bayerische Akademie der Wissenschaften in Munich on a Cessna Grand Caravan of the DLR in Oberpfaffenhofen. This report describes the design and instrumentation of the aerogravimetry system, it documents the installation on the aircraft and it discusses some of the results of the test flights performed within AGFA (Airborne Gravity Flight Approach). Beyond the documentation of the system this report gives a short introduction to the basics of the instruments including a short theory of their operation and data processing. The intention is to give readers from disciplines other than aero-gravimetry and aero-altimetry a technical insight into how the system works and what it is capable of. This should help the reader to evaluate the systems usefulness in other geo-scientific projects. The experiences from the test flights are briefly summarized and an update of the current status and future plans for the individual instruments is given. The aerogravimetry system consists of two major instrument blocks: the gravimetry sensing system and the positioning system. The gravimetry sensors are the LaCoste & Romberg S124b and the SAGS-2.2 systems. The navigation block holds GPS receivers, an inertial navigation system and a laser altimeter. The aircraft used for the primary tests was a Cessna Grand Caravan of the DLR in Oberpfaffenhofen. It offers superb conditions for scientific installations and is widely used in geophysical exploration all over the world. The test flights were flown from Oberpfaffenhofen airport. One profile covers the Bavarian Alps to map short wavelength, topography induced gravity disturbances, and another flight crosses the Rhine Graben to map long wavelength structures of the deeper crust. The software for data processing for navigation, gravimetry and geoid calculations is briefly summarized.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-08-08
    Description: This study attemps to identify and quantify the parameters that control mass-transfer modes in brittle tectonically erosive and accretive forearc settings. Scaled analogue simulations, which are specifically designed for this task, are compared with the convergent Chilean Margin that demonstrates both of these mass-transfer modes. Analogue simulation of geodynamic processes requires granular materials (e. g. sand) that deforms similarly to typical crustal rocks. Accordingly, a parameter study is performed, which yields general insight in the basic mechanics of highly-idealised convergent sand wedges.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-08
    Description: Compared to the Chandler and annual wobbles, the higher-frequency components of polar motion (PM) have substantially smaller amplitudes. Therefore, their study had to wait until higher-quality time series with high temporal resolution, as measured by space geodetic techniques, became available. Based on the combined Earth orientation series SPACE99 computed by the Jet Propulsion Laboratory (JPL) from 1976 to 2000 at daily intervals, we have separated the periodic PM terms by band-pass filtering and found that the persistence of oscillations becomes less with increasing frequency (H¨opfner 2001a, b). In order to quantify and better describe the parameter variability of these PM components over time, particularly of eight oscillations with periods ranging between about 650 and 45 days, we computed the radii, direction angles and period lengths from the periodic terms filtered out from the time series. The results clearly show the characteristics and time evolution of the periodic PM components that are important for geophysical interpretations.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-08
    Description: The Effect of the Geocentric Gravitational Constant on Scale: It is well known that the geocentric gravitational constant (GM) is a scaling factor for the reference frame realized by satellite techniques. One must be aware that its effects on the orbit and on the terrestrial reference frame (station positions) are different. The scale effect on restituted orbits is 1/3* (dGM/GM) (relative error of GM) for all kinds of satellites. But the effect on the terrestrial frame depends on the height of the satellites, on tracking techniques and on the solved for parameters. For ranging techniques such as SLR, the scale variation of the terrestrial frame is 1/3*(dGM/GM)*(rSat) / (rEarth), if the range biases are not solved for. For GPS the GM error is mostly absorbed by the clock estimates (or eliminated by the double differences), only the remaining few percents go into the scale of terrestrial reference frame. For instance if one is using a GM value of 3.986004418 1014 m3/s2 instead of 3.986004415 1014 m3/s2 (relative variation is 7.5 10-10) the scale variation of the terrestrial frame is only about 6 10-11. Physically, the error in the z-direction of the antenna phase center offsets on board GPS has nothing to do with GM. But its effect on the terrestrial reference frame is practically equivalent to an error in GM. For instance, if all GPS satellites have a 7.1 cm error in dz, the effect on the station position is equivalent to a relative error of 8 10-9 in GM (e.g. changing GM from 3.986004418 to 3.986004386 1014 m3/s2). Satellite Antenna Phase Center Offsets and Scale Errors in GPS Solutions: ITRF2000 solutions (see Lareg, 2001) have shown that there are ppb level scale differences between GPS and other techniques and among various GPS Analysis Centers. The trends of the scale differences reach 0.2 ppb per year. The uncertainties of the current available Earth’s gravitational constant could only cause less than 0.1 ppb scale error for GPS technique. On the other hand, the uncertainties in the satellite antenna phase center offsets could produce ppb level scale error. Various BLOCK types of GPS satellites have different phase center errors. The number of BLOCK IIR satellites increases from year to year. This could cause trend-like variations in the scale error. Beside station positions, satellite antenna phase center errors affect also the clock, Zenith Path Delay, and other solved for parameters perceptibly.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-08-08
    Description: Chandler and annual wobbles based on space-geodetic measurements: In this study, we examine the major components of polar motion, focusing on quantifying their temporal variability. In particular, by using the combined Earth orientation series SPACE99 computed by the Jet Propulsion Laboratory (JPL) from 1976 to 2000 at daily intervals, the Chandler and annual wobbles are separated by recursive band-pass filtering of the χ1- and χ2 -components. Then, for the trigonometric, exponential, and elliptic forms of representation, the parameters including their uncertainties are computed at epochs using quarterly sampling. The characteristics and temporal evolution of the wobbles are presented, as well as a summary of estimates of different parameters for four epochs.
    Description: Polar motions with a half-Chandler period and less in their temporal variability: Our study focuses on the observed higher-frequency polar motions that are substantially smaller than the Chandler and annual wobbles. Here, the combined Earth orientation series SPACE99 from 1976 to 2000 with one-day sampling is used as input data, after removing the low-frequency, the Chandler and annual terms. We applied a data processing procedure including four steps, each computing the amplitude spectrum by a Fast Fourier Transform in order to reveal the periodic signals in the residual motions, and then separating their components from the residual time series by band-pass filtering. In particular, the oscillations have the following periods: Semi-Chandler and semi-annual periods and those of order four, three, two, and one and a half months, as well as quasi-biennial and 300-day periods. We show to what extent the observed polar motions are irregularly occurring. A very small polar motion signal with the period of one month is still found in the remaining motions.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-08
    Description: The Altiplano represents a key region of the Central Andes, where the interplay between faults and syn-tectonic sediments allow the reconstruction of the kinematic evolution of the Central Andean high plateau. This study aims, by the use of incrementally-balanced crosssections, interpretation of reflection-seismic profiles, 3D strain analysis, gravity data interpretation, isotopic-age dating, and surface observations, to reconstruct the geological and tectonic history of the Southern Altiplano at 21o S between the Eastern and the Western Cordillera. The Southern Altiplano is a complex intramontane basin with 6-8km Cenozoic fill. It can be structurally divided in three domains; the Eastern, Central, and Western Altiplano. 2D balanced cross-sections based on seismic-reflector analysis and field observations show that the Eastern Altiplano is the buried, thin-skinned deformation front of the western part of the Eastern Cordillera's bivergent thrust system. The 20-40° dipping, blind faults merge into a shallow, eastward-dipping detachment at 7-9km depth that continues into the Eastern Cordillera. The Central Altiplano forms a bivergent system with 30-90° dipping, basement-involving thrusts in the east, and fault-propagation folds in the west. The shallow, westward-dipping detachment lies at 9-10km depth and possibly continues into the Western Altiplano, which forms a separate bivergent thrust-system.The computer-aided (GeoSec and 2DMove), incremental restoration of the balanced crosssections of the Eastern and Central Altiplano, and preliminary line-length balancing of the Western Altiplano, yields 38km shortening due to folding and thrusting. 3D strain analysis of sandstone grain shapes reveals that an additional 7.7% of shortening was accumulated as ductile, micro-scale strain. This increases the total shortening in the entire cross-section of the Southern Altiplano at 21° S to 60km or 21%. In addition, I suggest that the contribution of outcrop-scale structures possibly accounts for another 20 km. 3D strain analysis further shows that the 7.7% of microscale strain were accompanied by 13% orogen-parallel extension. These shortening estimates more than double the published shortening values from the Altiplano. Crustal thickening and plateau uplift in the arc-backarc domain of the South American convergent margin took place during the Cenozoic. K-Ar and Ar-Ar age-dating on syn-tectonic sediments, together with seismic-sequence analysis, demonstrates that the Southern Altiplano structure formed during two independent compressional increments (Early Oligocene [〉27 Ma] and Middle/Late Miocene [17-8 Ma]), which were preceded by an Eocene/Oligocene extensional event that led to the formation of a half graben in the Central, and possibly a second in the Eastern Altiplano. Horizontal contraction of the Altiplano ended between 11-8 Ma, was indicated by the age of undeformed volcanic rocks. Detailed seismic analysis of single syn-tectonic basins combined with isotopic ages of syntectonic sediments, reveal a complex deformation history characterised by spatially and temporally irregular fault activation, which excludes the existence of large-scale eastward or westward propagating deformation during plateau formation. This diffuse pattern of deformation was characteristic for the entire plateau domain, i.e. from the western flank to the eastern edge of the Eastern Cordillera, during a first stage of plateau formation between 30 and 10 Ma. This possibly indicates that the plateau has remained flat since its formation and did not evolve from an initially doubly-vergent orogen. The syn-tectonic stratigraphic units of the Southern Altiplano domain overlie shallow marine, Late Cretaceous sediments that still form a sub-horizontal regional near sea level. This indicates that plateau surface-uplift in this part of the plateau was mainly achieved by sedimentary in fill of tectonically-controlled, internally-drained basins, and not by tectonic uplift. The tectonic evolution of the Southern Altiplano was largely accompanied by magmatic activity. An episode of strong volcanic activity affected the entire width of the Altiplano and adjacent parts of the Eastern Cordillera between 25-8 Ma. However, a causal relationship between magmatism and deformation could not be shown for the Southern Altiplano. Strong Oligocene/Miocene volcanic activity, together with the diffuse pattern of deformation, suggests that the formation of the Altiplano Plateau was initiated by magmatically-controlled thermal weakening of the crust, possibly as the result of the removal of the mantle lithosphere. At present, the Altiplano has a flat topography, high heat-flow, and is spatially related to a variety of geophysical anomalies that are interpreted as partial melting of the middle crust (20-40km depth). From this evidence, I propose that the process of plateau formation is still active.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...