ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,067)
  • Copernicus Publications (EGU)  (1,067)
  • 1
    Publication Date: 2024-01-12
    Description: Ice calved from the Antarctic and Greenland Ice Sheets or tidewater glaciers ultimately melts in the ocean contributing to sea-level rise. Icebergs have also been described as biological hotspots due to their potential roles as platforms for marine mammals and birds, and as micronutrient fertilizing agents. Icebergs may be especially important in the Southern Ocean where availability of the micronutrients iron and manganese extensively limits marine primary production. Whilst icebergs have long been described as a source of iron to the ocean, their nutrient signature is poorly constrained and it is unclear if there are regional differences. Here we show that 589 ice fragments collected from floating ice in contrasting regions spanning the Antarctic Peninsula, Greenland, and smaller tidewater systems in Svalbard, Patagonia and Iceland have similar characteristic (micro)nutrient signatures with limited or no significant differences between regions. Icebergs are a minor or negligible source of macronutrients to the ocean with low concentrations of NOx (NO3 + NO2, median 0.51 µM), PO4 (median 0.04 µM), and dissolved Si (dSi, median 0.02 µM). In contrast, icebergs deliver elevated concentrations of dissolved Fe (dFe; mean 82 nM, median 12 nM) and Mn (dMn; mean 26 nM, median 2.6 nM). A tight correlation between total dissolvable Fe and Mn (R2 = 0.95) and a Mn:Fe ratio of 0.024 suggested a lithogenic origin for the majority of sediment present in ice. Total dissolvable Fe and Mn retained a strong relationship with sediment load (both R2 = 0.43, p〈0.001), whereas weaker relationships were observed for dFe, dMn and dSi. Sediment load for Antarctic ice (median 9 mg L-1, n=144) was low compared to prior reported values for the Arctic. A particularly curious incidental finding was that melting samples of ice were observed to rapidly lose their sediment load, even when sediment layers were embedded within the ice and stored in the dark. Our results demonstrated that the nutrient signature of icebergs is consistent with an atmospheric source of NOx and PO4. Conversely, high Fe and Mn, and modest dSi concentrations, are associated with englacial sediment, which experiences limited biogeochemical processing prior to release into the ocean.
    Type: Article , NonPeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-08
    Description: Riverine nutrient export is an important process in marine coastal biogeochemistry and also impacts global marine biology. The nitrogen cycle is a key player here. Internal feedbacks regulate not only nitrogen distribution, but also primary production and thereby oxygen concentrations. Phosphorus is another essential nutrient and interacts with the nitrogen cycle via different feedback mechanisms. After a previous study of the marine nitrogen cycle response to riverine nitrogen supply, we here additionally include phosphorus from river export with different phosphorus burial scenarios and study the impact of phosphorus alone and in combination with nitrogen in a global 3-D ocean biogeochemistry model. Again, we analyse the effects on near coastal and open ocean biogeochemistry. We find that the addition of bio-available riverine phosphorus alone or together with nitrogen affects marine biology on millennial timescales more than riverine nitrogen alone. Biogeochemical feedbacks in the marine nitrogen cycle are strongly influenced by the additional phosphorus. Where bio-available phosphorus is increased by river input, nitrogen concentrations increase as well, except for regions with high denitrification rates. High phosphorus burial rates decrease biological production significantly. Globally, riverine phosphorus leads to elevated primary production rates in the coastal and open oceans.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-27
    Description: Ocean alkalinity enhancement (OAE) stands as a promising carbon dioxide removal technology. Yet, this solution to climate change entails shifts in water chemistry with unknown consequences for marine fish that are critical to ecosystem health and food security. With a laboratory and mesocosm experiment, we show that early life stages of fish can be resistant to OAE. We examined metabolic rate, swimming behavior, growth and survival in Atlantic herring (Clupea harengus) and other temperate coastal fish species. Neither direct physiological nor indirect food web-mediated impacts of OAE were apparent. This was despite non-CO2-equilibrated OAE (ΔTA = +600 µmol kg-1) that induces strong perturbations (ΔpH = +0.7, pCO2 = 75 µatm) compared to alternative deployment scenarios. Whilst our results give cause for optimism regarding the large-scale application of OAE, other life history stages (embryos) and habitats (open ocean) may prove more vulnerable. Still, our study across ecological scales (organism to community) and exposure times (short- to long-term) suggests that some fish populations, including key fisheries species, may be resilient to the carbonate chemistry changes under OAE.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-05
    Description: Ocean alkalinity enhancement (OAE) is considered for the long-term removal of gigatons of carbon dioxide (CO2) from the atmosphere to achieve our climate goals. Little is known, however, about the ecosystem-level changes in biogeochemical functioning that may result from the chemical sequestration of CO2 in seawater, and how stable the sequestration is. We studied these two aspects in natural plankton communities under carbonate-based, CO2-equilibrated OAE in the nutrient-poor North Atlantic. During a month-long mesocosm experiment, the majority of biogeochemical pools, including inorganic nutrients, particulate organic carbon and phosphorus as well as biogenic silica, remained unaltered across all OAE levels of up to a doubling of ambient alkalinity (+2400 µeq kg-1). Noticeable exceptions were a minor decrease in particulate organic nitrogen and an increase in the carbon to nitrogen ratio (C:N) of particulate organic matter in response to OAE. Thus, in our nitrogen limited system, nitrogen turnover processes appear more susceptible than those of other elements leading to decreased food quality and increased organic carbon storage. However, alkalinity and chemical CO2 sequestration were not stable at all levels of OAE. Two weeks after alkalinity addition, we measured a loss of added alkalinity and of the initially stored CO2 in the mesocosm where alkalinity was highest (+2400 µeq kg-1, Ωaragonite ~10). The loss rate accelerated over time. Additional tests showed that such secondary precipitation can be initiated by particles acting as precipitation nuclei and that this process can occur even at lower levels of OAE. In conclusion, on the one hand, our study under carbonate-based OAE where the carbon is already sequestered, the risk of major and sustained impacts on biogeochemical functioning may be low in the nutrient-poor ocean. On the other hand, the durability of carbon sequestration using OAE could be constrained by alkalinity loss in supersaturated waters with precipitation nuclei present. Our study provides evaluation of ecosystem impacts of an idealised OAE deployment for monitoring, reporting and verification (MRV) in an oligotrophic system. Whether biogeochemical functioning is resilient to more technically simple and economically more viable approaches that induce stronger water chemistry perturbations remains to be seen.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-04
    Description: Here we present a confocal Fe K-edge μ-XANES method (where XANES stands for X-ray absorption near-edge spectroscopy) for the analysis of Fe oxidation state in heterogeneous and one-side-polished samples. The new technique allows for an analysis of small volumes with high spatial 3D resolution of 〈100 µm3. The probed volume is restricted to that just beneath the surface of the exposed object. This protocol avoids contamination of the signal by the host material and minimizes self-absorption effects. This technique has been tested on a set of experimental glasses with a wide range of Fe3+  ΣFe ratios. The method was applied to the analysis of natural melt inclusions trapped in forsteritic to fayalitic olivine crystals of the Hekla volcano, Iceland. Our measurements reveal changes in Fe3+  ΣFe from 0.17 in basaltic up to 0.45 in dacitic melts, whereas the magnetite–ilmenite equilibrium shows redox conditions with Fe3+  ΣFe ≤0.20 (close to FMQ, fayalite–magnetite–quartz redox equilibrium) along the entire range of Hekla melt compositions. This discrepancy indicates that the oxidized nature of glasses in the melt inclusions could be related to the post-entrapment process of diffusive hydrogen loss from inclusions and associated oxidation of Fe in the melt. The Fe3+  ΣFe ratio in silicic melts is particularly susceptible to this process due to their low FeO content, and it should be critically evaluated before petrological interpretation.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-08
    Description: Circulation anomalies accompanying Sudden Stratospheric Warmings (SSWs) can have a significant impact on the troposphere. This surface response is observed for some but not all SSWs, and their downward coupling is not fully understood. We use an existing classification method to separate downward- and non-propagating SSWs (d/nSSWs) in ERA5 reanalysis data for the years 1979–2019. The differences in SSW downward propagation in composites of spatial patterns clearly show that dSSWs dominate the surface regional impacts following SSWs. During dSSWs, the upper-tropospheric jet stream is significantly displaced equatorward. Wave activity analysis shows remarkable differences between d/nSSWs for planetary and synoptic-scale waves. Enhanced stratospheric planetary eddy kinetic energy (EKE) and heat fluxes around the central date of dSSWs are followed by increased synoptic-scale wave activity and even surface coupling for synoptic-scale EKE. An observed significant reduction in upper-tropospheric synoptic-scale momentum fluxes following dSSWs confirms the important role of tropospheric eddy feedbacks for coupling to the surface. Our findings emphasize the role of the lower stratosphere and synoptic-scale waves in coupling the SSW signal to the surface and agree with mechanisms suggested in earlier modeling studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-11
    Description: Ocean alkalinity enhancement (OAE) is considered one of the most promising approaches to actively remove carbon dioxide (CO2) from the atmosphere by accelerating the natural process of rock weathering. This approach involves introducing alkaline substances sourced from natural mineral deposits such as olivine, basalt, and carbonates or obtained from industrial waste products such as steel slags, into seawater and dispersing them over coastal areas. Some of these natural and industrial substances contain trace metals, which would be released into the oceans along with the alkalinity enhancement. The trace metals could serve as micronutrients for marine organisms at low concentrations, but could potentially become toxic at high concentrations, adversely affecting marine biota. To comprehensively assess the feasibility of OAE, it is crucial to understand how the phytoplankton, which forms the base of marine food webs, responds to ocean alkalinization and associated trace metal perturbations. In this study, we investigated the toxicity of nickel on three representative phytoplankton species across a range of Ni concentrations (from 0 to 100 µmol L-1 with 12 µmol L-1 synthetic organic ligand). The results showed that the growth of the tested species was impacted differently. The low growth inhibition and high IC50 (concentration to inhibit growth rate by 50 %) revealed that both the coccolithophore Emiliania huxleyi and the dinoflagellate Amphidinium carterae were mildly impacted by the increase in Ni concentrations while the rapid response to exposure of Ni, high growth rate inhibition, and low IC50 of Thalassiosira weissflogii indicate low tolerance to Ni in this species. In conclusion, the variability in phytoplankton sensitivity to Ni suggests that for OAE applications with Ni-rich materials caution is required and critical toxic thresholds for Ni must be avoided.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-11
    Description: The central Arctic Ocean (CAO) plays an important role in the global carbon cycle, but the current and future exchange of the climate-forcing trace gases methane (CH4) and carbon dioxide (CO2) between the CAO and the atmosphere is highly uncertain. In particular, there are very few observations of near-surface gas concentrations or direct air–sea CO2 flux estimates and no previously reported direct air–sea CH4 flux estimates from the CAO. Furthermore, the effect of sea ice on the exchange is not well understood. We present direct measurements of the air–sea flux of CH4 and CO2, as well as air–snow fluxes of CO2 in the summertime CAO north of 82.5∘ N from the Synoptic Arctic Survey (SAS) expedition carried out on the Swedish icebreaker Oden in 2021. Measurements of air–sea CH4 and CO2 flux were made using floating chambers deployed in leads accessed from sea ice and from the side of Oden, and air–snow fluxes were determined from chambers deployed on sea ice. Gas transfer velocities determined from fluxes and surface-water-dissolved gas concentrations exhibited a weaker wind speed dependence than existing parameterisations, with a median sea-ice lead gas transfer rate of 2.5 cm h−1 applicable over the observed 10 m wind speed range (1–11 m s−1). The average observed air–sea CO2 flux was −7.6 ..., and the average air–snow CO2 flux was −1.1 . Extrapolating these fluxes and the corresponding sea-ice concentrations gives an August and September flux for the CAO of −1.75 ... , within the range of previous indirect estimates. The average observed air–sea CH4 flux of 3.5 ..., accounting for sea-ice concentration, equates to an August and September CAO flux of 0.35 , lower than previous estimates and implying that the CAO is a very small (≪ 1 %) contributor to the Arctic flux of CH4 to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-12
    Description: Identification of seismically active fault zones and the definition of sufficiently large respect distances from these faults which enable avoiding the damaged rock zone surrounding the ruptured ground commonly are amongst the first steps to take in the geoscientific evaluation of sites suitable for nuclear waste disposal. In this work we present a GIS-based approach, using the earthquake-epicentre locations from the instrumental earthquake record of South-Korea to identify potentially active fault zones in the country, and compare different strategies for fault zone buffer creation as originally developed for site search in the high seismicity country Japan, and the low-to-moderate seismicity countries Germany and Sweden. In order to characterize the hazard potential of the Korean fault zones, we moreover conducted slip tendency analysis, here for the first time covering the fault zones of the entire Korean Peninsula. For our analyses we used the geo-spatial information from a new version of the Geological map of South-Korea, containing the outlines of 11 rock units, which we simplified to distinguish between 4 different rock types (granites, metamorphic rocks, sedimentary rocks and igneous rocks) and the surface traces of 1,528 fault zones and 6,654 lineaments identified through years of field work and data processing, a rich geo-dataset which we will publish along with this manuscript. Our approach for identification of active fault zones was developed without prior knowledge of already known seismically active fault zones, and as a proof of concept the results later were compared to a map containing already identified active fault zones. The comparison revealed that our approach identified 16 of the 21 known seismically active faults and added 472 previously unknown potentially active faults. The 5 seismically active fault zones which were not identified by our approach are located in the NE- and SW-sectors of the Korean Peninsula, which haven’t seen much recent seismic activity, and thus are not sufficiently well covered by the seismic record. The strike directions of fault zones identified as active are in good agreement with the orientation of the current stress field of the peninsula and slip tendency analysis provided first insights into subsurface geometry such as the dip angles of both active and inactive fault zones. The results of our work are of major importance for the early-stage seismic hazard assessment that has to be conducted in support of the nuclear waste disposal siting in South-Korea. Moreover, the GIS-based methods for identification of active fault zones and buffering of respect areas around fault zone traces presented here, are applicable also elsewhere.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-18
    Description: We examine the impact of horizontal resolution and model time step on the climate of the OpenIFS version 43r3 atmospheric general circulation model. A series of simulations for the period 1979–2019 are conducted with various horizontal resolutions (i.e. ∼100, ∼50, and ∼25 km) while maintaining the same time step (i.e. 15 min) and using different time steps (i.e. 60, 30, and 15 min) at 100 km horizontal resolution. We find that the surface zonal wind bias is significantly reduced over certain regions such as the Southern Ocean and the Northern Hemisphere mid-latitudes and in tropical and subtropical regions at a high horizontal resolution (i.e. ∼25 km). Similar improvement is evident too when using a coarse-resolution model (∼100 km) with a smaller time step (i.e. 30 and 15 min). We also find improvements in Rossby wave amplitude and phase speed, as well as in weather regime patterns, when a smaller time step or higher horizontal resolution is used. The improvement in the wind bias when using the shorter time step is mostly due to an increase in shallow and mid-level convection that enhances vertical mixing in the lower troposphere. The enhanced mixing allows frictional effects to influence a deeper layer and reduces wind and wind speed throughout the troposphere. However, precipitation biases generally increase with higher horizontal resolutions or smaller time steps, whereas the surface air temperature bias exhibits a small improvement over North America and the eastern Eurasian continent. We argue that the bias improvement in the highest-horizontal-resolution (i.e. ∼25 km) configuration benefits from a combination of both the enhanced horizontal resolution and the shorter time step. In summary, we demonstrate that, by reducing the time step in the coarse-resolution (∼100 km) OpenIFS model, one can alleviate some climate biases at a lower cost than by increasing the horizontal resolution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-03-25
    Description: Since a pH sensor has become available that is principally suitable for use on demanding autonomous measurement platforms, the marine CO2 system can be observed independently and continuously by Biogeochemical Argo floats. This opens the potential to detect variability and long-term changes in interior ocean inorganic carbon storage and quantify the ocean sink for atmospheric CO2. In combination with a second parameter of the marine CO2 system, pH can be a useful tool to derive the surface ocean CO2 partial pressure (pCO2). The large spatiotemporal variability in the marine CO2 system requires sustained observations to decipher trends and study the impacts of short-term events (e.g., eddies, storms, phytoplankton blooms) but also puts a high emphasis on the quality control of float-based pH measurements. In consequence, a consistent and rigorous quality control procedure is being established to correct sensor offsets or drifts as the interpretation of changes depends on accurate data. By applying current standardized routines of the Argo data management to pH measurements from a pH / O2 float pilot array in the subpolar North Atlantic Ocean, we assess the uncertainties and lack of objective criteria associated with the standardized routines, notably the choice of the reference method for the pH correction (CANYON-B, LIR-pH, ESPER-NN, and ESPER-LIR) and the reference depth for this adjustment. For the studied float array, significant differences ranging between ca. 0.003 pH units and ca. 0.04 pH units are observed between the four reference methods which have been proposed to correct float pH data. Through comparison against discrete and underway pH data from other platforms, an assessment of the adjusted float pH data quality is presented. The results point out noticeable discrepancies near the surface of 〉 0.004 pH units. In the context of converting surface ocean pH measurements into pCO2 data for the purpose of deriving air–sea CO2 fluxes, we conclude that an accuracy requirement of 0.01 pH units (equivalent to a pCO2 accuracy of 10 µatm as a minimum requirement for potential future inclusion in the Surface Ocean CO2 Atlas, SOCAT, database) is not systematically achieved in the upper ocean. While the limited dataset and regional focus of our study do not allow for firm conclusions, the evidence presented still calls for the inclusion of an additional independent pH reference in the surface ocean in the quality control routines. We therefore propose a way forward to enhance the float pH quality control procedure. In our analysis, the current philosophy of pH data correction against climatological reference data at one single depth in the deep ocean appears insufficient to assure adequate data quality in the surface ocean. Ideally, an additional reference point should be taken at or near the surface where the resulting pCO2 data are of the highest importance to monitor the air–sea exchange of CO2 and would have the potential to very significantly augment the impact of the current observation network.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-25
    Description: Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties with respect to understanding the ocean carbon cycle and its link to global change (ocean carbon sinks and sources, ocean acidification) and ultimately finding carbon-based solutions or mitigation procedures (marine carbon removal). We present a database of more than 44 400 AT and CT observations along with basic ancillary data (spatiotemporal location, depth, temperature and salinity) from various ocean regions obtained, mainly in the framework of French projects, since 1993. This includes both surface and water column data acquired in the open ocean, coastal zones and in the Mediterranean Sea and either from time series or dedicated one-off cruises. Most AT and CT data in this synthesis were measured from discrete samples using the same closed-cell potentiometric titration calibrated with Certified Reference Material, with an overall accuracy of ±4 µmol kg−1 for both AT and CT. The data are provided in two separate datasets – for the Global Ocean and the Mediterranean Sea (https://doi.org/10.17882/95414, Metzl et al., 2023), respectively – that offer a direct use for regional or global purposes, e.g., AT–salinity relationships, long-term CT estimates, and constraint and validation of diagnostic CT and AT reconstructed fields or ocean carbon and coupled climate–carbon models simulations as well as data derived from Biogeochemical-Argo (BGC-Argo) floats. When associated with other properties, these data can also be used to calculate pH, the fugacity of CO2 (fCO2) and other carbon system properties to derive ocean acidification rates or air–sea CO2 fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-03-25
    Description: The upper wind-driven circulation in the tropical Atlantic Ocean plays a key role in the basin-wide distribution of water mass properties and affects the transport of heat, freshwater, and biogeochemical tracers such as oxygen or nutrients. It is crucial to improve our understanding of its long-term behaviour, which largely relies on model simulations and applied forcing due to sparse observational data coverage, especially before the mid-2000s. Here, we apply two different forcing products, the Coordinated Ocean-ice Reference Experiments (CORE) v2 and the Japanese 55-year Reanalysis (JRA55-do) surface dataset, to a high-resolution ocean model. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current field. In the CORE simulation, strong, large-scale wind stress curl amplitudes above the upwelling regions of the eastern tropical North Atlantic seem to cause an overestimation of the mean and seasonal variability in the eastward subsurface current just north of the Equator. The wind stress curl of JRA55-do forcing shows much finer structures, and the JRA55-do simulation is in better agreement with the mean and intraseasonal fluctuations in the subsurface current found in observations. The northern branch of the South Equatorial Current flows westward at the surface just north of the Equator. On interannual to decadal timescales, it shows a high correlation of R=0.9 with the zonal wind stress in the CORE simulation but only a weak correlation of R=0.35 in the JRA55-do simulation. We also identify similarities between the two simulations. The strength of the eastward-flowing North Equatorial Counter Current located between 3 and 10° N covaries with the strength of the meridional wind stress just north of the Equator on interannual to decadal timescales in the two simulations. Both simulations present a comparable mean, seasonal cycle and trend of the eastward off-equatorial subsurface current south of the Equator but underestimate the current strength by half compared to observations. In both simulations, the eastward-flowing Equatorial Undercurrent weakened between 1990 and 2009. In the JRA simulation, which covers the modern period of observations, the Equatorial Undercurrent strengthened again between 2008 to 2018, which agrees with observations, although the simulation underestimates the strengthening by over a third. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations. This study presents one step in this direction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-03-25
    Description: The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood and diversity in climate model experiments persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article synthesizes current challenges and emphasizes opportunities for advancing our understanding of climate change and model diversity. The perspective of this article is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol and Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specialisms across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of Earth System Models of varying complexity. It specifically facilitated contributions to the research field through sharing knowledge on best practices for the design of model diagnostics and experimental strategies across MIP boundaries, e.g., for estimating effective radiative forcing. We discuss the challenges of gaining insights from highly complex models that have specific biases and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible, and machine learning approaches for faster and better sub-grid scale parameterizations where they are needed. Both would improve our ability to adopt a smart experimental design with an optimal tradeoff between resolution, complexity and simulation length. Future experiments can be evaluated and improved with sophisticated methods that leverage multiple observational datasets, and thereby, help to advance the understanding of climate change and its impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-03-27
    Description: We conducted extensive sediment trap experiments in the Benguela Upwelling System (BUS) in the south-eastern Atlantic Ocean to study the influence of zooplankton on the flux of particulate organic carbon (POC) through the water column and its sedimentation. Two long term moored and sixteen short term free-floating sediment trap systems were deployed. The mooring experiments were conducted for several years and the sixteen drifters were deployed on three different research cruises between 2019 and 2021. Zooplankton was separated from the trapped material and divided into 8 different zooplankton groups. In contrast to zooplankton which actively carries POC into the traps in the form of biomass (active POC flux), the remaining fraction of the trapped material was assumed to fall passively into the traps along with sinking particles (passive POC flux). The results show, in line with other studies, that copepods dominate the active POC flux, with the active POC flux in the southern BUS (sBUS) being about three times higher than in the northern BUS (nBUS). In contrast, the differences between the passive POC fluxes in the nBUS and sBUS were small. Despite large variations, which reflected the variability within the two subsystems, the mean passive POC fluxes from the drifters and the moored traps could be described using a common POC flux attenuation equation. However, the almost equal passive POC flux, on the one hand, and large variations in the POC concentration in the surface sediments between the nBUS and sBUS, on the other hand, imply that factors others than the POC supply exert the main control on POC sedimentation in the BUS. The varying intensity of the near-bottom oxygen minimum zone (OMZ), which is more pronounced in the nBUS than in the sBUS, could in turn explain the differences in the sediments, as the lack of oxygen reduces the POC degradation. Hence, globally expanding OMZs might favour POC sedimentation in regions formerly exposed to oxygenated bottom water but bear the risk of increasing the frequency of anoxic events in the oxygen-poor upwelling systems. Apart from associated release of CH4, which is a much more potent greenhouse gas than CO2, such events pose a major threat to the pelagic ecosystem and fisheries.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-06-14
    Description: We compare Holocene tree-cover changes in Europe derived from a transient MPI-ESM1.2 simulation with high spatial resolution LPJ-GUESS time-slice simulations and pollen-based quantitative reconstructions of tree cover based on the REVEALS model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models indicating much earlier anthropogenic deforestation than the prescribed land-use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in Central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model-data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are – like most of the parameters in the vegetation models – static and calibrated to modern conditions. However, these parameter values may not be valid during climate and vegetation states totally different from todays. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for palaeo-simulations and complicate model-data comparisons with additional challenges. Moreover, our study suggests that land-use is the main driver of forest decline in Europe during the mid- and late-Holocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-10-04
    Description: Phytoplankton forms the base of the marine food web by transforming CO2 into organic carbon via photosynthesis. Some of the organic carbon is then transferred through the food web and exported into the deep ocean, a process known as the biological carbon pump. Despite the importance of phytoplankton for marine ecosystems and the global carbon cycle, projections of phytoplankton biomass in response to climate change differ strongly across Earth system models, illustrating uncertainty in our understanding of the underlying processes. Differences are especially large in the Southern Ocean, a region that is notoriously difficult to represent in models. Here, we argue that water column-integrated phytoplankton biomass in the Southern Ocean is projected to largely remain unchanged under climate change by the CMIP6 multi-model ensemble because of a shifting balance of bottom-up and top-down processes driven by a shoaling mixed layer depth. A shallower mixed layer is projected to improve growth conditions and consequently weaken bottom-up control. In addition to enhanced phytoplankton growth, the shoaling of the mixed layer also compresses phytoplankton closer to the surface and promotes zooplankton grazing efficiency, thus intensifying top-down control. Overall, our results suggest that while changes in bottom-up conditions stimulate enhanced growth, intensified top-down control opposes an increase in phytoplankton and becomes increasingly important for phytoplankton response under climate change in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-10-27
    Description: Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance, which has been accumulating in the atmosphere since the pre-industrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 parts per billion (ppb) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr-1 in both 2020 and 2021. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), we present a global N2O budget that incorporates both natural and anthropogenic sources and sinks, and accounts for the interactions between nitrogen additions and the biochemical processes that control N2O emissions. We use Bottom-Up (BU: inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and Top-Down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions increased 40 % (or 1.9 Tg N yr-1) in the past four decades (1980–2020). Direct agricultural emissions in 2020, 3.9 Tg N yr−1 (best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources (including ‘Fossil fuel and industry’, ‘Waste and wastewater’, and ‘Biomass burning’ (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1). For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.3 (lower-upper bounds: 10.5–27.0) Tg N yr-1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr-1. For the period 2010–2019, the annual BU decadal-average emissions for natural plus anthropogenic sources were 18.1 (10.4–25.9) Tg N yr-1 and TD emissions were 17.4 (15.8–19.20 Tg N yr-1. The once top emitter Europe has reduced its emissions since the 1980s by 31 % while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the urgency to reduce anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose establishing a global network for monitoring and modeling N2O from the surface through the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al. 2023).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-12-08
    Description: Black shale sediments from the Barremian to Aptian South Atlantic document intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in paleogeographic reconstructions limit the interpretation of available paleoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. Densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Paleogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties are up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. Progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance of ventilated high-latitude deep waters.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-12-21
    Description: Ocean alkalinity enhancement (OAE) has been proposed as a carbon dioxide removal technology (CDR) allowing for long term storage of carbon dioxide in the ocean. By changing the carbonate speciation in seawater, OAE may potentially alter marine ecosystems with implications for the biological carbon pump. Using mesocosmsthe subtropical North Atlantic, we provide first empirical insights into impacts of carbonate-based OAE on the vertical flux and attenuation of sinking particles in an oligotrophic plankton community. We enhanced total alkalinity (TA) in increments of 300 μmol kg-1, reaching up to ΔTA = 2400 µmol kg-1 compared to ambient TA. We applied a pCO2-equilibrated OAE approach, i.e. dissolved inorganic carbon (DIC) was raised simultaneously with TA to maintain seawater pCO2 in equilibrium with the atmosphere, thereby keeping perturbations of seawater carbonate chemistry moderate. The vertical flux of major elements including carbon, nitrogen, phosphorus and silicon, as well as their stoichiometric ratios (e.g. carbon-to-nitrogen) remained unaffected over 29 days of OAE. The particle properties controlling the flux attenuationinking velocities and remineralization rates also remained unaffected by OAE. However, we observed abiotic mineral precipitation at high OAE levels (ΔTA = 1800 μmol kg-1 and higher) that resulted in a substantial increase in PIC formation. The associated consumption of alkalinity reduces the efficiency of CO2 removal and emphasizes the importance of maintaining OAE within a carefully defined operating range. Our findings suggest that carbon export by oligotrophic plankton communities is insensitive to OAE perturbations using a CO2 pre-equilibrated approach. The integrity of ecosystem services is a prerequisite for large-scale application and should be further tested across a variety of nutrient-regimes and for less idealized OAE approaches.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-01-08
    Description: Nitric oxide (NO) is an intermediate of various microbial nitrogen cycle processes and the open ocean and coastal areas are generally a source of NO in the atmosphere. However, our knowledge about its distribution and the main production processes in coastal areas and estuaries is rudimentary at best. To this end, dissolved NO concentrations were measured for the first time in surface waters along the lower Elbe Estuary and Hamburg Port area in July 2021. The discrete surface water samples were analyzed using a chemiluminescence detection method. The NO concentrations ranged from below the limit of detection (9.1 × 10−12 mol L−1) to 17.7 × 10−12 mol L−1, averaging at 12.5 × 10−12 mol L−1 and were supersaturated in the surface layer of both the lower Elbe Estuary and the Hamburg Port area, indicating that the study site was a source of NO to the atmosphere during the study period. On the basis of a comprehensive comparison of NO concentrations with parallel nutrient, oxygen, and nitrous oxide concentration measurements, we conclude that the observed distribution of dissolved NO was most likely resulting from microbial nitrogen transformation processes, particularly nitrification in the coastal-brackish and limnic zones of the lower Elbe Estuary and nitrifier-denitrification in the Hamburg Port area.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-01-08
    Description: Ocean alkalinity enhancement (OAE) is an emerging strategy that aims to mitigate climate change by increasing the alkalinity of seawater. This approach involves increasing the alkalinity of the ocean to enhance its capacity to absorb and store carbon dioxide (CO2) from the atmosphere. This chapter presents an overview of the technical aspects associated with the full range of OAE methods being pursued and discusses implications for undertaking research on these approaches. Various methods have been developed to implement OAE, including the direct injection of alkaline liquid into the surface ocean; dispersal of alkaline particles from ships, platforms, or pipes; the addition of minerals to coastal environments; and the electrochemical removal of acid from seawater. Each method has its advantages and challenges, such as scalability, cost effectiveness, and potential environmental impacts. The choice of technique may depend on factors such as regional oceanographic conditions, alkalinity source availability, and engineering feasibility. This chapter considers electrochemical methods, the accelerated weathering of limestone, ocean liming, the creation of hydrated carbonates, and the addition of minerals to coastal environments. In each case, the technical aspects of the technologies are considered, and implications for best-practice research are drawn. The environmental and social impacts of OAE will likely depend on the specific technology and the local context in which it is deployed. Therefore, it is essential that the technical feasibility of OAE is undertaken in parallel with, and informed by, wider impact assessments. While OAE shows promise as a potential climate change mitigation strategy, it is essential to acknowledge its limitations and uncertainties. Further research and development are needed to understand the long-term effects, optimize techniques, and address potential unintended consequences. OAE should be viewed as complementary to extensive emission reductions, and its feasibility may be improved if it is operated using energy and supply chains with minimal CO2 emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-01-08
    Description: The Paris Agreement to limit global warming to well below 2 °C requires ambitious emission reduction and the balancing of remaining emissions through carbon sinks, i.e. the deployment of carbon dioxide removal (CDR). While ambitious climate protection scenarios until now consider primarily land-based CDR methods, there is growing concern about their potential to deliver sufficient CDR, and marine CDR options receive more and more interest. Based on idealized theoretical studies, Ocean Alkalinity Enhancement (OAE) appears as a promising marine CDR method. However, the knowledge base is insufficient for a robust assessment of its practical feasibility, of its side effects, social and governance aspects as well as monitoring, reporting and verification issues. A number of research efforts aim to improve this in a timely manner. We provide an overview on the current situation of developing OAE as marine CDR method, and describe the history that has led to the creation of the OAE research Best Practices Guide.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-01-08
    Description: Ocean alkalinity enhancement (OAE) is a proposed marine carbon dioxide removal (mCDR) approach that has the potential for large-scale uptake of significant amounts of atmospheric carbon dioxide (CO2). Removing anthropogenic legacy CO2 will be required to stabilise global surface temperatures below the 1.5–2 ∘C Paris Agreement target of 2015. In this chapter we describe the impacts of various OAE feedstocks on seawater carbonate chemistry, as well as pitfalls that need to be avoided during sampling, storage, and measurement of the four main carbonate chemistry parameters, i.e. dissolved inorganic carbon (DIC), total alkalinity (TA), pH, and CO2 fugacity (fCO2). Finally, we also discuss considerations in regard to calculating carbonate chemistry speciation from two measured parameters. Key findings are that (1) theoretical CO2 uptake potential (global mean of 0.84 mol of CO2 per mole of TA added) based on carbonate chemistry calculations is probably secondary in determining the oceanic region in which OAE would be best; (2) carbonate chemistry sampling is recommended to involve gentle pressure filtration to remove calcium carbonate (CaCO3) that might have been precipitated upon TA increase as it would otherwise interfere with a number of analyses; (3) samples for DIC and TA can be stabilised to avoid the risk of secondary CaCO3 precipitation during sample storage; and (4) some OAE feedstocks require additional adjustments to carbonate chemistry speciation calculations using available programs and routines, for instance if seawater magnesium or calcium concentrations are modified.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-01-08
    Description: The deliberate increase in ocean alkalinity (referred to as ocean alkalinity enhancement, or OAE) has been proposed as a method for removing CO2 from the atmosphere. Before OAE can be implemented safely, efficiently, and at scale several research questions have to be addressed, including (1) which alkaline feedstocks are best suited and the doses in which they can be added safely, (2) how net carbon uptake can be measured and verified, and (3) what the potential ecosystem impacts are. These research questions cannot be addressed by direct observation alone but will require skilful and fit-for-purpose models. This article provides an overview of the most relevant modelling tools, including turbulence-, regional-, and global-scale biogeochemical models and techniques including approaches for model validation, data assimilation, and uncertainty estimation. Typical bio- geochemical model assumptions and their limitations are discussed in the context of OAE research, which leads to an identification of further development needs to make models more applicable to OAE research questions. A description of typical steps in model validation is followed by proposed minimum criteria for what constitutes a model that is fit for its intended purpose. After providing an overview of approaches for sound integration of models and observations via data assimilation, the application of observing system simulation experiments (OSSEs) for observing system design is described within the context of OAE research. Criteria for model val- idation and intercomparison studies are presented. The article concludes with a summary of recommendations and potential pitfalls to be avoided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-01-08
    Description: An essential prerequisite for the implementation of ocean alkalinity enhancement (OAE) applications is their environmental safety. Only if it can be ensured that ecosystem health and ecosystem services are not at risk will the implementation of OAE move forward. Public opinion on OAEs will depend first and foremost on reliable evidence that no harm will be done to marine ecosystems and licensing authorities will demand measurable criteria against which environmental sustainability can be determined. In this context mesocosm experiments represent a highly valuable tool in determining the safe operating space of OAE applications. By combining realism and biological complexity with controllability and replication they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications. This chapter outlines strengths and weaknesses of mesocosm approaches, illustrates mesocosm facilities and suitable experimental designs presently employed in OAE research, describes critical steps in mesocosm operation, and discusses possible approaches for alkalinity manipulation and monitoring. Building on a general treatise on each of these aspects, the chapter describes pelagic and benthic mesocosm approaches separately, given their inherent differences. The chapter concludes with recommendations for best practices in OAE-related mesocosm research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-01-10
    Description: Carbon monoxide (CO) is an atmospheric trace gas that plays a crucial role in the oxidizing capacity of the Earth’s atmosphere. Moreover, it functions as an indirect greenhouse gas, influencing the lifetimes of potent greenhouse gases such as methane. Albeit being an overall source of atmospheric CO, the role of coastal regions in the marine cycling of CO and how its budget can be affected by anthropogenic activities, remain uncertain. Here, we present the first measurements of dissolved CO in the Ria Formosa Lagoon, an anthropogenically influenced system in southern Portugal. The dissolved CO concentrations in the surface layer ranged from 0.16 to 3.1 nmol L−1 with an average concentration of 0.75 ± 0.57 nmol L−1. The CO saturation ratio ranged from 1.7 to 32.2, indicating that the lagoon acted as a source of CO to the atmosphere in May 2021. The estimated average sea-to-air flux density was 1.53 μmol m−2 d−1, mainly fueled by CO photochemical production. Microbial consumption accounted for 83 % of the CO production, suggesting that the resulting CO emissions to the atmosphere were modulated by microbial consumption in the surface waters of the Ria Formosa Lagoon. The results from an irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-01-11
    Description: Ocean alkalinity enhancement (OAE) is a marine carbon dioxide removal (CDR) approach. Publicly funded research projects have begun, and philanthropic funding and start-ups are collectively pushing the field forward. This rapid progress in research activities has created an urgent need to learn if and how OAE can work at scale. The Best Practices Guide to OAE research contains 7 topics broken down into 13 chapters that compare and synthesise previously published methods and offer guidance for future research.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-02-07
    Description: As one of Earth's most productive marine ecosystems, the Peruvian upwelling system transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and O2-depletion, it has not yet been measured in this system. During a 50 d mesocosm experiment in the surface waters off the coast of Peru, we assessed particle sinking velocities and their biogeochemical and physical drivers. We further characterized the general properties of exported particles under different phytoplankton communities and nutritional states. Average sinking velocities varied between size classes and ranged from 12.8 ± 0.7 m d−1 (particles 40–100 µm) to 19.4 ± 0.7 m d−1 (particles 100–250 µm) and 34.2 ± 1.5 m d−1 (particles 250–1000 µm) (± 95 % CI). Despite a distinct plankton succession from diatoms to dinoflagellates with concomitant 5-fold drop in opal ballasting, substantial changes in sinking velocity were not observed. This illustrates the complexity of counteracting factors driving the settling behaviour of marine particles. In contrast, we found higher sinking velocities with increasing particle size and roundness and decreasing porosity. Size had by far the strongest influence among these physical particle properties, despite a high amount of unexplained variability. Our study provides a detailed analysis of the drivers of particle sinking velocity in the Peruvian upwelling system, which allows modellers to optimize local particle flux parameterization. This will help to better project oxygen concentrations and carbon sequestration in a region that is subject to substantial climate-driven changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-02-07
    Description: Global biogeochemical ocean models help to investigate the present and potential future state of the ocean, its productivity and cascading effects on higher trophic levels such as fish. They are often subjectively tuned against data sets of inorganic tracers and surface chlorophyll and only very rarely against organic components such as particulate organic carbon or zooplankton. The resulting uncertainty in biogeochemical model parameters (and parameterisations) associated with these components can explain some of the large spread of global model solutions with regard to the cycling of organic matter and its impacts on biogeochemical tracer distributions, such as oxygen minimum zones (OMZs). A second source of uncertainty arises from differences in the model spin-up length as, so far, there seems to be no agreement on the required simulation time that should elapse before a global model is assessed against observations. We investigated these two sources of uncertainty by optimising a global biogeochemical ocean model against the root-mean-squared error (RMSE) of six different combinations of data sets and different spin-up times. Besides nutrients and oxygen, the observational data sets also included phyto- and zooplankton, as well as dissolved and particulate organic phosphorus (DOP and POP, respectively). We further analysed the optimised model performance with regard to global biogeochemical fluxes, oxygen inventory and OMZ volume. Following the optimisation procedure, we evaluated the RMSE for all tracers located in the upper 100 m (except for POP, for which we considered the entire vertical domain), regardless of their consideration during optimisation. For the different optimal model solutions, we find a narrow range of the RMSE, between 14 % of the average RMSE after 10 years and 24 % after 3000 years of simulation. Global biogeochemical fluxes, global oxygen bias and OMZ volume showed a much stronger divergence among the models and over time than RMSE, indicating that even models that are similar with regard to local surface tracer concentrations can perform very differently when assessed against the global diagnostics for oxygen. Considering organic tracers in the optimisation had a strong impact on the particle flux exponent (Martin b) and may reduce much of the uncertainty in this parameter and the resulting deep particle flux. Independent of the optimisation setup, the OMZ volume showed a particularly sensitive response with strong trends over time, even after 3000 years of simulation time (despite the constant physical forcing); a high sensitivity to simulation time; and the highest sensitivity to model parameters arising from the tuning strategy setup (variation of almost 80 % of the ensemble mean). In conclusion, calibration against observations of organic tracers can help to improve global biogeochemical models even after short spin-up times; here especially, observations of deep particle flux could provide a powerful constraint. However, a large uncertainty remains with regard to global OMZ volume and its evolution over time, which can show very dynamic behaviour during the model spin-up, which renders temporal extrapolation to a final equilibrium state difficult if not impossible. Given that the real ocean shows variations on many timescales, the assumption of observations representing a steady-state ocean may require some reconsideration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-02-07
    Description: The Peruvian upwelling system is a highly productive ecosystem with a large oxygen minimum zone (OMZ) close to the surface. In this work, we carried out a mesocosm experiment off Callao, Peru, with the addition of water masses from the regional OMZ collected at two different sites simulating two different upwelling scenarios. Here, we focus on the pelagic remineralization of organic matter by the extracellular enzyme activity of leucine aminopeptidase (LAP) and alkaline phosphatase activity (APA). After the addition of the OMZ water, dissolved inorganic nitrogen (N) was depleted, but the standing stock of phytoplankton was relatively high, even after N depletion (mostly 〉 4 µg chlorophyll a L−1). During the initial phase of the experiment, APA was 0.6 nmol L−1 h−1 even though the PO concentration was 〉 0.5 µmol L−1. Initially, the dissolved organic phosphorus (DOP) decreased, coinciding with an increase in the PO concentration that was probably linked to the APA. The LAP activity was very high, with most of the measurements in the range of 200–800 nmol L−1 h−1. This enzyme hydrolyzes terminal amino acids from larger molecules (e.g., peptides or proteins), and these high values are probably linked to the highly productive but N-limited coastal ecosystem. Moreover, the experiment took place during a rare coastal El Niño event with higher than normal surface temperatures, which could have affected enzyme activity. Using a nonparametric multidimensional scaling analysis (NMDS) with a generalized additive model (GAM), we found that biogeochemical variables (e.g., nutrient and chlorophyll-a concentrations) and phytoplankton and bacterial communities explained up to 64 % of the variability in APA. The bacterial community best explained the variability (34 %) in LAP. The high hydrolysis rates for this enzyme suggest that pelagic N remineralization, likely driven by the bacterial community, supported the high standing stock of primary producers in the mesocosms after N depletion.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-02-07
    Description: As Earth's atmospheric temperatures and human populations increase, more people are becoming vulnerable to natural and human-induced disasters. This is particularly true in Central America, where the growing human population is experiencing climate extremes (droughts and floods), and the region is susceptible to geological hazards, such as earthquakes and volcanic eruptions, and environmental deterioration in many forms (soil erosion, lake eutrophication, heavy metal contamination, etc.). Instrumental and historical data from the region are insufficient to understand and document past hazards, a necessary first step for mitigating future risks. Long, continuous, well-resolved geological records can, however, provide a window into past climate and environmental changes that can be used to better predict future conditions in the region. The Lake Izabal Basin (LIB), in eastern Guatemala, contains the longest known continental records of tectonics, climate, and environmental change in the northern Neotropics. The basin is a pull-apart depression that developed along the North American and Caribbean plate boundary ∼ 12 Myr ago and contains 〉 4 km of sediment. The sedimentological archive in the LIB records the interplay among several Earth System processes. Consequently, exploration of sediments in the basin can provide key information concerning: (1) tectonic deformation and earthquake history along the plate boundary; (2) the timing and causes of volcanism from the Central American Volcanic Arc; and (3) hydroclimatic, ecologic, and geomicrobiological responses to different climate and environmental states. To evaluate the LIB as a potential site for scientific drilling, 65 scientists from 13 countries and 33 institutions met in Antigua, Guatemala, in August 2022 under the auspices of the International Continental Scientific Drilling Program (ICDP) and the US National Science Foundation (NSF). Several working groups developed scientific questions and overarching hypotheses that could be addressed by drilling the LIB and identified optimal coring sites and instrumentation needed to achieve the project goals. The group also discussed logistical challenges and outreach opportunities. The project is not only an outstanding opportunity to improve our scientific understanding of seismotectonic, volcanic, paleoclimatic, paleoecologic, and paleobiologic processes that operate in the tropics of Central America, but it is also an opportunity to improve understanding of multiple geological hazards and communicate that knowledge to help increase the resilience of at-risk Central American communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-02-07
    Description: For millennia, humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is, therefore, complicated by both natural and human-driven environmental changes at the land-sea interface. In particular, ongoing sea level rise, warming and deoxygenation might exacerbate such perturbations. In this context, an improved understanding of the nature and variability of groundwater fluxes across the land-sea continuum is timely, yet remains out of reach. The flow of terrestrial groundwater across the coastal transition zone as well as the extent of freshened groundwater below the present-day seafloor are receiving increased attention in marine and coastal sciences because they likely represent a significant, yet highly uncertain component of (bio)geochemical budgets, and because of the emerging interest in the potential use of offshore freshened groundwater as a resource. At the same time, “reverse” groundwater flux from offshore to onshore is of prevalent socio-economic interest as terrestrial groundwater resources are continuously pressured by overpumping and seawater intrusion in many coastal regions worldwide. An accurate assessment of the land-ocean connectivity through groundwater and its potential responses to future anthropogenic activities and climate change will require a multidisciplinary approach combining the expertise of geophysicists, hydrogeologists, (bio)geochemists and modellers. Such joint activities will lay the scientific basis for better understanding the role of groundwater in societal-relevant issues such as climate change, pollution and the environmental status of the coastal oceans within the framework of the United Nations Sustainable Development Goals. Here, we present our perspectives on future research directions to better understand land-ocean connectivity through groundwater, including the spatial distributions of the essential hydrogeological parameters, highlighting technical and scientific developments, and briefly discussing its societal relevance in rapidly changing coastal oceans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-02-07
    Description: The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (〈50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-02-07
    Description: When interpreting geophysical models, we need to establish a link between the models’ physical parameters and geological units. To define these connections, it is crucial to consider and compare geophysical models with multiple, independent parameters. Particularly in complex geological scenarios, such as the rifted passive margin offshore Namibia, multi-parameter analysis and joint inversion are key techniques for comprehensive geological inferences. The models resulting from joint inversion enable the definition of specific parameter combinations, which can then be ascribed to geological units. Here we perform a user-unbiased clustering analysis of the parameters electrical resistivity and density from two models derived in a joint inversion along the Namibian passive margin. We link the resulting parameter combinations to break-up related lithology, and infer the history of margin formation. This analysis enables us to clearly differentiate two types of sediment cover. Namely, one of near-shore, thick, clastic sediments, and a second one of further offshore located, more biogenic, marine sediments. Furthermore, we clearly identify areas of interlayered massive, and weathered volcanic flows, which are usually only identified in reflection seismic studies as seaward dipping reflectors. Lastly, we find a distinct difference in the signature of the transitional crust south of- and along the supposed hot-spot track Walvis Ridge. We ascribe this contrast to an increase in magmatic activity above the volcanic centre along Walvis Ridge, and potentially a change in melt sources or depth of melting. This characterizes a rift-related southern complex, and a plume-driven Walvis Ridge regime. All of these observations demonstrate the importance of multi-parameter geophysical analysis for large-scale geological interpretations. Furthermore, our results may improve future joint inversions using direct parameter coupling, by providing a guideline for the complex passive margins parameter correlations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-02-07
    Description: In this paper, we review observational and modelling results on the upwelling in the tropical Atlantic between 10∘ N and 20∘ S. We focus on the physical processes that drive the seasonal variability of surface cooling and the upward nutrient flux required to explain the seasonality of biological productivity. We separately consider the equatorial upwelling system, the coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system. All three tropical Atlantic upwelling systems have in common a strong seasonal cycle, with peak biological productivity during boreal summer. However, the physical processes driving the upwelling vary between the three systems. For the equatorial regime, we discuss the wind forcing of upwelling velocity and turbulent mixing, as well as the underlying dynamics responsible for thermocline movements and current structure. The coastal upwelling system in the Gulf of Guinea is located along its northern boundary and is driven by both local and remote forcing. Particular emphasis is placed on the Guinea Current, its separation from the coast and the shape of the coastline. For the tropical Angolan upwelling, we show that this system is not driven by local winds but instead results from the combined effect of coastally trapped waves, surface heat and freshwater fluxes, and turbulent mixing. Finally, we review recent changes in the upwelling systems associated with climate variability and global warming and address possible responses of upwelling systems in future scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-02-07
    Description: Increasing Greenland Ice Sheet–melting is anticipated to impact watermass transformation in the subpolar North Atlantic and ultimately the meridional overturning circulation. Complex ocean and climate models are widely applied to predict magnitude and timing of related impacts under projected future climate. We discuss the role of the ocean mean state, subpolar gyre circulation, mesoscale eddies and atmospheric coupling in shaping the response of the subpolar North Atlantic Ocean to enhanced Greenland runoff. In a suite of eight dedicated 60 to 100-year long model experiments with and without atmospheric coupling, with eddy processes parameterized and explicitly simulated, with regular and significantly enlarged Greenland runoff, we find (1) a major impact by the interactive atmosphere in enabling a compensating temperature feedback, (2) a non-negligible influence by the ocean mean state biased towards greater stability in the coupled simulations, both of which making the Atlantic Merdional Overturning Circulation less susceptible to the freshwater perturbation applied, and (3) a more even spreading of the runoff tracer in the subpolar North Atlantic and enhanced inter-gyre exchange with the subtropics in the strongly eddying simulations. Overall, our experiments demonstrate the important role of mesoscale ocean dynamics and atmosphere feedbacks in projections of the climate system response to enhanced Greenland Ice Sheet–melting and hence underline the necessity to advance scale-aware eddy parameterizations for next-generation climate models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-07
    Description: Carbon monoxide (CO) influences the radiative budget and oxidative capacity of the atmosphere over the Arctic Ocean, which is a source of atmospheric CO. Yet, oceanic CO cycling is understudied in this area, particu- larly in light of the ongoing rapid environmental changes. We present results from incubation experiments conducted in the Fram Strait in August–September 2019 under different environmental conditions: while lower pH did not affect CO production (GPCO) or consumption (kCO) rates, enhanced GPCO and kCO were positively correlated with coloured dis- solved organic matter (CDOM) and dissolved nitrate concen- trations, respectively, suggesting microbial CO uptake under oligotrophic conditions to be a driving factor for variability in CO surface concentrations. Both production and consump- tion of CO will likely increase in the future, but it is un- known which process will dominate. Our results will help to improve models predicting future CO concentrations and emissions and their effects on the radiative budget and the oxidative capacity of the Arctic atmosphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-02-07
    Description: The carbon cycle component of the newly developed Earth System Model of intermediate complexity CLIMBER-X is presented. The model represents the cycling of carbon through atmosphere, vegetation, soils, seawater and marine sediments. Exchanges of carbon with geological reservoirs occur through sediment burial, rock weathering and volcanic degassing. The state-of-the-art HAMOCC6 model is employed to simulate ocean biogeochemistry and marine sediments processes. The land model PALADYN simulates the processes related to vegetation and soil carbon dynamics, including permafrost and peatlands. The dust cycle in the model allows for an interactive determination of the input of the micro-nutrient iron into the ocean. A rock weathering scheme is implemented into the model, with the weathering rate depending on lithology, runoff and soil temperature. CLIMBER-X includes a simple representation of the methane cycle, with explicitly modelled natural emissions from land and the assumption of a constant residence time of CH4 in the atmosphere. Carbon isotopes 13C and 14C are tracked through all model compartments and provide a useful diagnostic for model-data comparison. A comprehensive evaluation of the model performance for present–day and the historical period shows that CLIMBER-X is capable of realistically reproducing the historical evolution of atmospheric CO2 and CH4, but also the spatial distribution of carbon on land and the 3D structure of biogeochemical ocean tracers. The analysis of model performance is complemented by an assessment of carbon cycle feedbacks and model sensitivities compared to state-of-the-art CMIP6 models. Enabling interactive carbon cycle in CLIMBER-X results in a relatively minor slow-down of model computational performance by ~20 %, compared to a throughput of ~10,000 simulation years per day on a single node with 16 CPUs on a high performance computer in a climate–only model setup. CLIMBER-X is therefore well suited to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to 〉100,000 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-02-07
    Description: Nitrous oxide (N2O) is a greenhouse gas, with a global warming potential 298 times that of carbon dioxide. Estuaries can be sources of N2O, but their emission estimates have significant uncertainties due to limited data availability and high spatiotemporal variability. We investigated the spatial and seasonal variability of dissolved N2O and its emissions along the Elbe Estuary (Germany), a well-mixed temperate estuary with high nutrient loading from agriculture. During nine research cruises performed between 2017 and 2022, we measured dissolved N2O concentrations, as well as dissolved nutrient and oxygen concentrations along the estuary, and calculated N2O saturations, flux densities, and emissions. We found that the estuary was a year-round source of N2O, with the highest emissions in winter when dissolved inorganic nitrogen (DIN) loads and wind speeds are high. However, in spring and summer, N2O saturations and emissions did not decrease alongside lower riverine nitrogen loads, suggesting that estuarine in situ N2O production is an important source of N2O. We identified two hotspot areas of N2O production: the Port of Hamburg, a major port region, and the mesohaline estuary near the maximum turbidity zone (MTZ). N2O production was fueled by the decomposition of riverine organic matter in the Hamburg Port and by marine organic matter in the MTZ. A comparison with previous measurements in the Elbe Estuary revealed that N2O saturation did not decrease alongside the decrease in DIN concentrations after a significant improvement of water quality in the 1990s that allowed for phytoplankton growth to re-establish in the river and estuary. The overarching control of phytoplankton growth on organic matter and, subsequently, on N2O production highlights the fact that eutrophication and elevated agricultural nutrient input can increase N2O emissions in estuaries.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-02-07
    Description: Heinrich-type ice-sheet surges are one of the prominent signals of glacial climate variability. They are characterised as abrupt, quasi-periodic episodes of ice-sheet instabilities during which large numbers of icebergs are released from the Laurentide ice sheet. The mechanisms controlling the timing and occurrence of Heinrich-type ice-sheet surges remain poorly constrained to this day. Here, we use a coupled ice sheet–solid Earth model to identify and quantify the importance of boundary forcing for the surge cycle length of Heinrich-type ice-sheet surges for two prominent ice streams of the Laurentide ice sheet – the land-terminating Mackenzie ice stream and the marine-terminating Hudson ice stream. Both ice streams show responses of similar magnitude to surface mass balance and geothermal heat flux perturbations, but Mackenzie ice stream is more sensitive to ice surface temperature perturbations, a fact likely caused by the warmer climate in this region. Ocean and sea-level forcing as well as different frequencies of the same forcing have a negligible effect on the surge cycle length. The simulations also highlight the fact that only a certain parameter space exists under which ice-sheet oscillations can be maintained. Transitioning from an oscillatory state to a persistent ice streaming state can result in an ice volume loss of up to 30 % for the respective ice stream drainage basin under otherwise constant climate conditions. We show that Mackenzie ice stream is susceptible to undergoing such a transition in response to all tested positive climate perturbations. This underlines the potential of the Mackenzie region to have contributed to prominent abrupt climate change events of the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-02-07
    Description: Understanding the relationship between surface marine ecosystems and the export of carbon to depth by sinking organic particles is key to representing the effect of ecosystem dynamics and diversity, and their evolution under multiple stressors, on the carbon cycle and climate in models. Recent observational technologies have greatly increased the amount of data available, both for the abundance of diverse plankton groups and for the concentration and properties of particulate organic carbon in the ocean interior. Here we use synthetic model data to test the potential of using machine learning (ML) to reproduce concentrations of particulate organic carbon within the ocean interior based on surface ecosystem and environmental data. We test two machine learning methods that differ in their approaches to data-fitting, the random forest and XGBoost methods. The synthetic data are sampled from the PlankTOM12 global biogeochemical model using the time and coordinates of existing observations. We test 27 different combinations of possible drivers to reconstruct small (POCS) and large (POCL) particulate organic carbon concentrations. We show that ML can successfully be used to reproduce modelled particulate organic carbon over most of the ocean based on ecosystem and modelled environmental drivers. XGBoost showed better results compared to random forest thanks to its gradient boosting trees' architecture. The inclusion of plankton functional types (PFTs) in driver sets improved the accuracy of the model reconstruction by 58 % on average for POCS and by 22 % for POCL. Results were less robust over the equatorial Pacific and some parts of the high latitudes. For POCS reconstruction, the most important drivers were the depth level, temperature, microzooplankton and PO4, while for POCL it was the depth level, temperature, mixed-layer depth, microzooplankton, phaeocystis, PO4 and chlorophyll a averaged over the mixed-layer depth. These results suggest that it will be possible to identify linkages between surface environmental and ecosystem structure and particulate organic carbon distribution within the ocean interior using real observations and to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-02-07
    Description: The southern African climate is strongly impacted by climate change. Precipitation is a key variable in this region, as it is linked to agriculture and water supply. Simulations with a regional atmospheric model over the past decades and the 21st century display a decrease in the past precipitation over some coastal areas of South Africa and an increase over the rest of southern Africa. However, precipitation is projected to decrease over the whole southern part of the domain in the future. This study shows that the Agulhas Current system, including the current and the leakage, which surrounds the continent in the east and south, impacts this precipitation trend. A reduction in the strength of the Agulhas Current is linked to a reduction in precipitation along the southeast coast. The Agulhas leakage, the part of the Agulhas Current that leaves the system and flows into the South Atlantic, impacts winter precipitation in the southwest of the continent. A more intense Agulhas leakage is linked to a reduction in precipitation in this region.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-02-07
    Description: Marine diazotrophs convert dinitrogen (N-2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N-2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N-2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N-2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43-57 versus 45-63 TgNyr (-1); ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223 +/- 30 TgNyr (-1) (mean +/- standard error; same hereafter) compared to version 1 (74 +/- 7 TgNyr (-1)). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88 +/- 23 versus 20 +/- 2 TgNyr 1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40 +/- 9 versus 10 +/- 2 TgNyr (-1)). Moreover, version 2 estimates the N-2 fixation rate in the Indian Ocean to be 35 +/- 14 TgNyr (-1), which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N-2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional N-15(2) bubble method yields lower rates in 69% cases compared to the new N-15(2) dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-02-07
    Description: Stable water isotopes in polar ice cores are widely used to reconstruct past temperature variations over several orbital climatic cycles. One way to calibrate the isotope–temperature relationship is to apply the present-day spatial relationship as a surrogate for the temporal one. However, this method leads to large uncertainties because several factors like the sea surface conditions or the origin and transport of water vapor influence the isotope–temperature temporal slope. In this study, we investigate how the sea surface temperature (SST), the sea ice extent, and the strength of the Atlantic Meridional Overturning Circulation (AMOC) affect these temporal slopes in Greenland and Antarctica for Last Glacial Maximum (LGM, ∼ 21 000 years ago) to preindustrial climate change. For that, we use the isotope-enabled atmosphere climate model ECHAM6-wiso, forced with a set of sea surface boundary condition datasets based on reconstructions (e.g., GLOMAP) or MIROC 4m simulation outputs. We found that the isotope–temperature temporal slopes in East Antarctic coastal areas are mainly controlled by the sea ice extent, while the sea surface temperature cooling affects the temporal slope values inland more. On the other hand, ECHAM6-wiso simulates the impact of sea ice extent on the EPICA Dome C (EDC) and Vostok sites through the contribution of water vapor from lower latitudes. Effects of sea surface boundary condition changes on modeled isotope–temperature temporal slopes are variable in West Antarctica. This is partly due to the transport of water vapor from the Southern Ocean to this area that can dampen the influence of local temperature on the changes in the isotopic composition of precipitation and snow. In the Greenland area, the isotope–temperature temporal slopes are influenced by the sea surface temperatures near the coasts of the continent. The greater the LGM cooling off the coast of southeastern Greenland, the greater the transport of water vapor from the North Atlantic, and the larger the temporal slopes. The presence or absence of sea ice very near the coast has a large influence in Baffin Bay and the Greenland Sea and influences the slopes at some inland ice core stations. The extent of the sea ice far south slightly influences the temporal slopes in Greenland through the transport of more depleted water vapor from lower latitudes to this area. The seasonal variations of sea ice distribution, especially its retreat in summer, influence the isotopic composition of the water vapor in this region and the modeled isotope–temperature temporal slopes in the eastern part of Greenland. A stronger LGM AMOC decreases LGM-to-preindustrial isotopic anomalies in precipitation in Greenland, degrading the isotopic model–data agreement. The AMOC strength modifies the temporal slopes over inner Greenland slightly and by a little on the coasts along the Greenland Sea where the changes in surface temperature and sea ice distribution due to the AMOC strength mainly occur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-02-07
    Description: An international, multidisciplinary research group is proposing the “NICA-BRIDGE” drilling project, within the framework of the International Continental Scientific Drilling Program (ICDP). The project goal is to conduct scientific drilling in Lake Nicaragua and Lake Managua (Nicaragua, Central America) to obtain long lacustrine sediment records to (a) extend the neotropical paleoclimate record back to the Pliocene, making it one of the longest continental tropical climate archives in the world, and to (b) provide geological data on the long-term complex interplay among tectonics, volcanism, sea-level dynamics, climate change, and biosphere. The lakes are the two largest in Central America, and they are located in a trench-parallel half graben that hosts the volcanic front, which developed during or prior to the Pliocene, as a consequence of subduction-related tectonic activity. The lakes are uniquely suited for multidisciplinary scientific investigation as their long, con- tinuous sediment records (several Myr) will facilitate the study of (1) terrestrial and marine basin development at the southern Central American margin, (2) alternating lacustrine and marine environments in response to tec- tonic and climatic changes, (3) the longest record of tropical climate proxies, (4) the evolution of (and transition between) the Miocene to Pliocene/Pleistocene and Pleistocene to present volcanic arcs, which were separated by slab rollback, (5) the significance of the lakes as hot spots for endemism, and (6) the Great American Biotic Interchange at this strategic location, i.e., the N–S and reverse migration of fauna after the land bridge between the Americas was established. The planned ICDP project offers an opportunity to explore these topics through continent-based seismolog- ical, volcanological, paleoclimatological, paleoecological, and paleoenvironmental studies, combined with an International Ocean Discovery Program (IODP) drill project to explore its oceanic continuation. In preparation of this drilling project, an ICDP workshop was held in Montelimar, Nicaragua, on 2–5 March 2020 to develop drilling strategies and refine scientific questions, objectives, and hypotheses. The workshop was organized and hosted by the principal investigators and the Instituto Nicaragüense de Estudios Territoriales (INETER), with funding from the ICDP. Forty-five researchers from 12 countries participated in the workshop, including representatives from ICDP. During the workshop, previous research data on the study lakes, including new recent surveys, were reviewed, and a three-phase strategy for the proposed research was developed. The aim of Phase 0 is to complement the pre-site surveys where we identified the need for further data. In Phase I, with ICDP support, we will obtain sediment cores ∼ 100 m long, which will allow us to investigate many of the scientific questions. Based on the data from those drill cores, coring locations will be identified for a future Phase II, which we envisage as a combined ICDP/IODP project to collect deep drill cores in the lakes and the offshore Sandino Basin in order to extend Phase I results to much deeper time. The Sandino Basin is the oceanic continuation of the depression in which the studied lakes are located, and complementary marine drilling will improve the understanding of the evolution of this complex margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-02-07
    Description: We use output from a freely-running NEMO model simulation for the equatorial Pacific to investigate the utility of linearly removing the local influence of vertical displacements of the thermocline from variations in sea surface height. We show that the resulting time series of residual sea surface height, denoted ηnlti, measures variations in near-surface heat content that are independent of the local vertical displacement of the thermocline and can arise from horizontal advection, surface heat flux and diapycnal mixing processes. We find that the variance of ηnlti and its correlation with sea surface temperature, are focused on the Niño4 region. Furthermore, ηnlti averaged over the Niño4 region is highly correlated with indices of Central Pacific El Niño Southern Oscillation (CP ENSO), and its variance in 21 year running windows shows a strong upward trend over the past 50 years, corresponding to the emergence of CP ENSO following the 1976/77 climate shift. We show that ηnlti can be estimated from observations, using satellite altimeter data and a linear multi-mode model. The time series of ηnlti, especially when estimated using the linear model, show pronounced westward propagation in the western equatorial Pacific, arguing an important role for zonal advective feedback in the dynamics of CP ENSO, in particular for cold events. We also present evidence that the role of the thermocline displacement in influencing sea surface height increased strongly after 2000 in the eastern part of the Niño4 region, at a time when CP ENSO was particularly active. Finally, the diagnostic is easy to compute and can be easily applied to mooring data or couple climate models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-02-07
    Description: Nitrogen (N) and phosphorus (P) biogeochemical dynamics are crucial for the regulation of the terrestrial carbon cycle. In Earth system models (ESMs) the implementation of nutrient limitations has been shown to improve the carbon cycle feedback representation and, hence, the fidelity of the response of land to simulated atmospheric CO2 rise. Here we aimed to implement a terrestrial N and P cycle in an Earth system model of intermediate complexity to improve projections of future CO2 fertilization feedbacks. The N cycle is an improved version of the Wania et al. (2012) N module, with enforcement of N mass conservation and the merger with a deep land-surface and wetland module that allows for the estimation of N2O and NO fluxes. The N cycle module estimates fluxes from three organic (litter, soil organic matter and vegetation) and two inorganic ( and ) pools and accounts for inputs from biological N fixation and N deposition. The P cycle module contains the same organic pools with one inorganic P pool; it estimates influx of P from rock weathering and losses from leaching and occlusion. Two historical simulations are carried out for the different nutrient limitation setups of the model: carbon and nitrogen (CN), as well as carbon, nitrogen and phosphorus (CNP), with a baseline carbon-only simulation. The improved N cycle module now conserves mass, and the added fluxes (NO and N2O), along with the N and P pools, are within the range of other studies and literature. For the years 2001–2015 the nutrient limitation resulted in a reduction of gross primary productivity (GPP) from the carbon-only value of 143 to 130 Pg C yr−1 in the CN version and 127 Pg C yr−1 in the CNP version. This implies that the model efficiently represents a nutrient limitation over the CO2 fertilization effect. CNP simulation resulted in a reduction of 11 % of the mean GPP and a reduction of 23 % of the vegetation biomass compared to the baseline C simulation. These results are in better agreement with observations, particularly in tropical regions where P limitation is known to be important. In summary, the implementation of the N and P cycle has successfully enforced a nutrient limitation in the terrestrial system, which has now reduced the primary productivity and the capacity of land to take up atmospheric carbon, better matching observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-02-07
    Description: Equatorial deep jets (EDJs) are vertically alternating, stacked zonal currents that flow along the Equator in all three ocean basins at intermediate depth. Their structure can be described quite well by the sum of high-baroclinic-mode equatorial Kelvin and Rossby waves. However, the EDJ meridional width is larger by a factor of 1.5 than inviscid theory predicts for such waves. Here, we use a set of idealised model configurations representing the Atlantic Ocean to investigate the contributions of different processes to the enhanced EDJ width. Corroborated by the analysis of shipboard velocity sections, we show that widening of the EDJs by momentum loss due to irreversible mixing or other processes contributes more to their enhanced time mean width than averaging over meandering of the jets. Most of the widening due to meandering can be attributed to the strength of intraseasonal variability in the jets' depth range, suggesting that the jets are meridionally advected by intraseasonal waves. A slightly weaker connection to intraseasonal variability is found for the EDJ widening by momentum loss. These results enhance our understanding of the dynamics of the EDJs and, more generally, of equatorial waves in the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-02-07
    Description: State-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-02-07
    Description: The northwestern Tropical Atlantic Ocean is a turbulent region, filled with mesoscale eddies and regional currents. In this intense dynamical context, several water masses with thermohaline characteristics of different origins are advected, mixed, and stirred at the surface and at depth. The EUREC4A-OA/ATOMIC experiment that took place in January and February 2020 was dedicated to assessing the processes at play in this region, especially the interaction between the ocean and the atmosphere. For that reason, four oceanographic vessels and different autonomous platforms measured properties near the air–sea interface and acquired thousands of upper-ocean (up to 400–2000 m depth) profiles. However, each device had its own observing capability, varying from deep measurements acquired during vessel stations to shipboard underway near-surface observations and measurements from autonomous and uncrewed systems (such as Saildrones). These observations were undertaken with a specific sampling strategy guided by near-real-time satellite maps and adapted every half day, based on the process that was investigated. These processes were characterized by different spatiotemporal scales, from mesoscale eddies, with diameters exceeding 100 km, to submesoscale filaments of 1 km width. This article describes the datasets gathered from the different devices and how the data were calibrated and validated. In order to ensure an overall consistency, the platforms' datasets are cross-validated using a hierarchy of instruments defined by their own specificity and calibration procedures. This has enabled the quantification of the uncertainty in the measured parameters when different datasets are used together, e.g., https://doi.org/10.17882/92071 (L'Hégaret et al., 2020a).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-02-07
    Description: The Angolan shelf system represents a highly productive ecosystem. Throughout the year sea surface temperatures (SSTs) are cooler near the coast than further offshore. Lowest SSTs, the strongest cross-shore temperature gradient and maximum productivity occur in austral winter when seasonally prevailing upwelling favourable winds are weakest. Here, we investigate the seasonal mixed layer heat budget to analyse atmospheric and oceanic causes for heat content variability. By using different satellite and in-situ data, we derive monthly estimates of surface heat fluxes, mean horizontal advection and local heat content change. We calculate the heat budgets for the near coastal and offshore regions separately to explore processes that lead to the observed differences. The results show that the net surface heat flux warms the coastal ocean stronger than further offshore thus acting to damp spatial SST differences. Mean horizontal heat advection is dominated by meridional advection of warm water along the Angolan coast. However, its contribution to the heat budget is small. Ocean turbulence data suggests that the heat flux due to turbulent mixing across the base of the mixed layer is an important cooling term. This turbulent cooling that is strongest in shallow shelf regions is capable of explaining the observed negative cross-shore temperature gradient. The residuum of the mixed layer heat budget and uncertainties of budget terms are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-02-07
    Description: Comparing temporal and spatial vegetation changes between reconstructions or between reconstructions and model simulations requires carefully selecting an appropriate evaluation metric. A common way of comparing reconstructed and simulated vegetation changes involves measuring the agreement between pollen- or model-derived unary vegetation estimates, such as the biome or plant functional type (PFT) with the highest affinity scores. While this approach based on summarising the vegetation signal into unary vegetation estimates performs well in general, it overlooks the details of the underlying vegetation structure. However, this underlying data structure can influence conclusions since minor variations in pollen percentages modify which biome or PFT has the highest affinity score (i.e. modify the unary vegetation estimate). To overcome this limitation, we propose using the Earth mover's distance (EMD) to quantify the mismatch between vegetation distributions such as biome or PFT affinity scores. The EMD circumvents the issue of summarising the data into unary biome or PFT estimates by considering the entire range of biome or PFT affinity scores to calculate a distance between the compared entities. In addition, each type of mismatch can be given a specific weight to account for case-specific ecological distances or, said differently, to account for the fact that reconstructing a temperate forest instead of a boreal forest is ecologically more coherent than reconstructing a temperate forest instead of a desert. We also introduce two EMD-based statistical tests that determine (1) if the similarity of two samples is significantly better than a random association given a particular context and (2) if the pairing between two datasets is better than might be expected by chance. To illustrate the potential and the advantages of the EMD as well as the tests in vegetation comparison studies, we reproduce different case studies based on previously published simulated and reconstructed biome changes for Europe and capitalise on the advantages of the EMD to refine the interpretations of past vegetation changes by highlighting that flickering unary estimates, which give an impression of high vegetation instability, can correspond to gradual vegetation changes with low EMD values between contiguous samples (case study 1). We also reproduce data–model comparisons for five specific time slices to identify those that are statistically more robust than a random agreement while accounting for the underlying vegetation structure of each pollen sample (case study 2). The EMD and the statistical tests are included in the paleotools R package (https://github.com/mchevalier2/paleotools, last access: 3 May 2023).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-02-07
    Description: In this study, we use a joint observation-model approachto investigate the mixed-layer heat and salt annual mean as well as seasonalbudgets in the eastern tropical Atlantic. The regional PREFCLIM (PREFACE Climatology)observational climatology provides the budget terms with a relatively lowspatial and temporal resolution compared to the online NEMO (Nucleus for European Modelingof the Ocean; Madec, G., 2014) model, and thisis later resampled as in PREFCLIM climatology. In addition, advectionterms are recomputed offline from the model as PREFCLIM gridded advectioncomputation. In the Senegal, Angola, and Benguela regions, the seasonal cycle ofmixed-layer temperature is mainly governed by surface heat fluxes; however,it is essentially driven by vertical heat diffusion in the equatorial region.The seasonal cycle of mixed-layer salinity is largely controlled byfreshwater flux in the Senegal and Benguela regions; however, it follows thevariability of zonal and meridional salt advection in the equatorial and Angolaregions, respectively. Our results show that the time-averaged spatialdistribution of NEMO offline heat and salt advection terms compares much betterto PREFCLIM horizontal advection terms than the online heat and salt advectionterms. However, the seasonal cycle of horizontal advection in selectedregions shows that NEMO offline terms do not always compare well withPREFCLIM, sometimes less than online terms. Despite this difference, theseresults suggest the important role of small-scale variability in mixed-layerheat and salt budgets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-02-07
    Description: The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m−2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-02-07
    Description: Atmospheric methane (CH4) has changed considerably in the time between the last glacial maximum (LGM) and the preindustrial (PI) periods. We investigate these changes in transient experiments with an Earth system model capable of simulating the global methane cycle interactively, focusing on the rapid changes during the deglaciation, especially pronounced in the Bølling–Allerød (BA) and Younger Dryas (YD) periods. We consider all relevant natural sources and sinks of methane and examine the drivers of changes in methane emissions as well as in the atmospheric lifetime of methane. We find that the evolution of atmospheric methane is largely driven by emissions from tropical wetlands, while variations in the methane atmospheric lifetime are small but not negligible. Our model reproduces most changes in atmospheric methane very well, with the exception of the mid-Holocene decrease in methane, although the timing of ice-sheet meltwater fluxes needs to be adjusted slightly in order to exactly reproduce the variations in the BA and YD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
  • 58
    Publication Date: 2024-02-07
    Description: In this study, we investigate the maximum physical and biogeochemical potential of macroalgae open-ocean mariculture and sinking (MOS) as an ocean-based carbon dioxide removal (CDR) method. Embedding a macroalgae model into an Earth system model, we simulate macroalgae mariculture in the open-ocean surface layer followed by fast sinking of the carbon-rich macroalgal biomass to the deep seafloor (depth〉3000 m), which assumes no remineralization of the harvested biomass during the quick sinking. We also test the combination of MOS with artificial upwelling (AU), which fertilizes the macroalgae by pumping nutrient-rich deeper water to the surface. The simulations are done under RCP 4.5, a moderate-emissions pathway. When deployed globally between years 2020 and 2100, the carbon captured and exported by MOS is 270 PgC, which is further boosted by AU of 447 PgC. Because of feedbacks in the Earth system, the oceanic carbon inventory only increases by 171.8 PgC (283.9 PgC with AU) in the idealized simulations. More than half of this carbon remains in the ocean after cessation at year 2100 until year 3000. The major side effect of MOS on pelagic ecosystems is the reduction of phytoplankton net primary production (PNPP) due to the competition for nutrients with macroalgae and due to canopy shading. MOS shrinks the mid-layer oxygen-minimum zones (OMZs) by reducing the organic matter export to, and remineralization in, subsurface and intermediate waters, while it creates new OMZs on the seafloor by oxygen consumption from remineralization of sunken biomass. MOS also impacts the global carbon cycle by reducing the atmospheric and terrestrial carbon reservoirs when enhancing the ocean carbon reservoir. MOS also enriches dissolved inorganic carbon in the deep ocean. Effects are mostly reversible after cessation of MOS, though recovery is not complete by year 3000. In a sensitivity experiment without remineralization of sunken MOS biomass, the whole of the MOS-captured carbon is permanently stored in the ocean, but the lack of remineralized nutrients causes a long-term nutrient decline in the surface layers and thus reduces PNPP. Our results suggest that MOS has, theoretically, considerable CDR potential as an ocean-based CDR method. However, our simulations also suggest that such large-scale deployment of MOS would have substantial side effects on marine ecosystems and biogeochemistry, up to a reorganization of food webs over large parts of the ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-02-07
    Description: Eastern boundary upwelling systems (EBUS) contribute a disproportionate fraction of the global fish catch relative to their size and are especially susceptible to global environmental change. Here we present the evolution of communities over 50 days in an in situ mesocosm 6 km offshore of Callao, Peru and in the nearby unenclosed coastal Pacific Ocean. The communities were monitored using multi-marker environmental DNA (eDNA) metabarcoding and flow cytometry. DNA extracted from weekly water samples were subjected to amplicon sequencing for four genetic loci: 1) the V1-V2 region of the 16S rRNA gene, for photosynthetic eukaryotes (via their chloroplasts) and bacteria; 2) the V9 region of the 18S rRNA gene for exploration of eukaryotes but targeting phytoplankton; 3) cytochrome oxidase I (COI), for exploration of eukaryotic taxa but targeting invertebrates, and 4) the 12S rRNA gene, targeting vertebrates. The multi-marker approach showed a divergence of communities (from microbes to fish) between the mesocosm and the unenclosed ocean. Together with the environmental information, the genetic data furthered our mechanistic understanding of the processes that are shaping EBUS communities in a changing ocean. The unenclosed ocean experienced significant variability over the course of the 50-day experiment with temporal shifts in community composition but remained dominated by organisms that are characteristic of high nutrient, upwelling conditions (e.g. diatoms, copepods, anchovies). A large directional change was found in the mesocosm community. The mesocosm community that developed was characteristic of upwelling regions when upwelling relaxes and waters stratify (e.g. dinoflagellates, nanoflagellates). The selection of dinoflagellates under the warm (coastal El Niño) and stratified conditions in the mesocosm may be an indication of how EBUS will respond under the global environmental changes (i.e. continued global warming) forecast by the IPCC.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-02-07
    Description: The acclimative response of phytoplankton, which adjusts their nutrient and pigment content in response to changes in ambient light, nutrient levels, and temperature, is an important determinant of observed chlorophyll distributions and biogeochemistry. Acclimative models typically capture this response and its impact on the C : nutrient : Chl ratios of phytoplankton by explicitly resolving the dynamics of these constituents of phytoplankton biomass. The instantaneous acclimation (IA) approach only requires resolving the dynamics of a single tracer and calculates the elemental composition assuming instantaneous local equilibrium. IA can capture the acclimative response without substantial loss of accuracy in both 0D box models and spatially explicit 1D models. A major drawback of IA so far has been its inability to maintain mass balance for the elements with unresolved dynamics. Here we extend the IA model to capture both C and N cycles in a 0D setup, which requires analytical derivation of additional flux terms to account for the temporal changes in cellular N quota, Q. We present extensive tests of this model, with regard to the conservation of total C an N and its behavior in comparison to an otherwise equivalent, fully explicit dynamic acclimation (DA) variant under idealized conditions with variable light and temperature. We also demonstrate a modular implementation of this model in the Framework for Aquatic Biogeochemical Modelling (FABM), which facilitates modeling competition between an arbitrary number of different acclimative phytoplankton types. In a 0D setup, we did not find evidence for computational advantages of the IA approach over the DA variant. In a spatially explicit setup, performance gains may be possible but would require modifying the physical-flux calculations to account for spatial differences in Q between model grid cells.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-02-07
    Description: Elevated dimethyl sulfide (DMS) concentrations in the sea surface microlayer (SML) have been previously related to DMS air–sea flux anomalies in the southwestern Pacific. To further address this, DMS, its precursor dimethylsulfoniopropionate (DMSP), and ancillary variables were sampled in the SML and also subsurface water at 0.5 m depth (SSW) in different water masses east of New Zealand. Despite high phytoplankton biomass at some stations, the SML chlorophyll a enrichment factor (EF) was low (〈 1.06), and DMSP was enriched at one station with DMSP EF ranging from 0.81 to 1.25. DMS in the SML was determined using a novel gas-permeable tube technique which measured consistently higher concentrations than with the traditional glass plate technique; however, significant DMS enrichment was present at only one station, with the EF ranging from 0.40 to 1.22. SML DMSP and DMS were influenced by phytoplankton community composition, with correlations with dinoflagellate and Gymnodinium biomass, respectively. DMSP and DMS concentrations were also correlated between the SML and SSW, with the difference in ratio attributable to greater DMS loss to the atmosphere from the SML. In the absence of significant enrichment, DMS in the SML did not influence DMS emissions, with the calculated air–sea DMS flux of 2.28 to 11.0 µmol m−2 d−1 consistent with climatological estimates for the region. These results confirm previous regional observations that DMS is associated with dinoflagellate abundance but indicate that additional factors are required to support significant enrichment in the SML.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-02-07
    Description: El Niño–Southern Oscillation (ENSO) is a major source for teleconnections, including towards the tropical North Atlantic (TNA) region, whereby TNA sea surface temperatures (SSTs) are positively correlated with ENSO in boreal spring following an ENSO event. However, the Pacific–Atlantic connection can be impacted by different ENSO characteristics, such as the amplitude, location, and timing of Pacific SST anomalies (SSTAs). Indeed, the TNA SSTAs may respond nonlinearly to strong and extreme El Niño events. However, observational data for the number of extreme ENSO events remain limited, restricting our ability to investigate the influence of observed extreme ENSO events. To overcome this issue and to further evaluate the nonlinearity of the TNA SSTA response, two coupled climate models are used, namely the Community Earth System Model version 1 – Whole Atmosphere Community Climate Model (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1 (FOCI). In both models the TNA SSTAs respond linearly to ENSO during extreme El Niño events but nonlinearly to extreme La Niña events for CESM-WACCM. We investigate differences by using indices for all major mechanisms that connect ENSO to the TNA and compare them with reanalysis. CESM-WACCM and FOCI overall represent the teleconnection well, including that the tropical and extratropical pathways are similar to observations. Our results also show that a large portion of the nonlinearity during La Niña is explained by the interaction between Pacific SSTAs and the overlying upper-level divergence.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-02-07
    Description: Land degradation is a cause of many social, economic, and environmental problems. Therefore identification and monitoring of high-risk areas for land degradation are necessary. Despite the importance of land degradation due to wind and water erosion in some areas of the world, the combined study of both types of erosion in the same area receives relatively little attention. The present study aims to create a land degradation map in terms of soil erosion caused by wind and water erosion of semi-dry land. We focus on the Lut watershed in Iran, encompassing the Lut Desert that is influenced by both monsoon rainfalls and dust storms. Dust sources are identified using MODIS satellite images with the help of four different indices to quantify uncertainty. The dust source maps are assessed with three machine learning algorithms encompassing the artificial neural network (ANN), random forest (RF), and flexible discriminant analysis (FDA) to map dust sources paired with soil erosion susceptibility due to water. We assess the accuracy of the maps from the machine learning results with the area under the curve (AUC) of the receiver operating characteristic (ROC) metric. The water and aeolian soil erosion maps are used to identify different classes of land degradation risks. The results show that 43 % of the watershed is prone to land degradation in terms of both aeolian and water erosion. Most regions (45 %) have a risk of water erosion and some regions (7 %) a risk of aeolian erosion. Only a small fraction (4 %) of the total area of the region had a low to very low susceptibility for land degradation. The results of this study underline the risk of land degradation for in an inhabited region in Iran. Future work should focus on land degradation associated with soil erosion from water and storms in larger regions to evaluate the risks also elsewhere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-02-07
    Description: According to modelling studies, ocean alkalinity enhancement (OAE) is one of the proposed carbon dioxide removal (CDR) approaches with large potential, with the beneficial side effect of counteracting ocean acidification. The real-world application of OAE, however, remains unclear as most basic assumptions are untested. Before large-scale deployment can be considered, safe and sustainable procedures for the addition of alkalinity to seawater must be identified and governance established. One of the concerns is the stability of alkalinity when added to seawater. The surface ocean is already supersaturated with respect to calcite and aragonite, and an increase in total alkalinity (TA) together with a corresponding shift in carbonate chemistry towards higher carbonate ion concentrations would result in a further increase in supersaturation, and potentially to solid carbonate precipitation. Precipitation of carbonate minerals consumes alkalinity and increases dissolved CO2 in seawater, thereby reducing the efficiency of OAE for CO2 removal. In order to address the application of alkaline solution as well as fine particulate alkaline solids, a set of six experiments was performed using natural seawater with alkalinity of around 2400 µmol kgsw−1. The application of CO2-equilibrated alkaline solution bears the lowest risk of losing alkalinity due to carbonate phase formation if added total alkalinity (ΔTA) is less than 2400 µmol kgsw−1. The addition of reactive alkaline solids can cause a net loss of alkalinity if added ΔTA 〉 600 µmol kgsw−1 (e.g. for Mg(OH)2). Commercially available (ultrafine) Ca(OH)2 causes, in general, a net loss in TA for the tested amounts of TA addition, which has consequences for suggested use of slurries with alkaline solids supplied from ships. The rapid application of excessive amounts of Ca(OH)2, exceeding a threshold for alkalinity loss, resulted in a massive increase in TA (〉 20 000 µmol kgsw−1) at the cost of lower efficiency and resultant high pH values 〉 9.5. Analysis of precipitates indicates formation of aragonite. However, unstable carbonate phases formed can partially redissolve, indicating that net loss of a fraction of alkalinity may not be permanent, which has important implications for real-world OAE application. Our results indicate that using an alkaline solution instead of reactive alkaline particles can avoid carbonate formation, unless alkalinity addition via solutions shifts the system beyond critical supersaturation levels. To avoid the loss of alkalinity and dissolved inorganic carbon (DIC) from seawater, the application of reactor techniques can be considered. These techniques produce an equilibrated solution from alkaline solids and CO2 prior to application. Differing behaviours of tested materials suggest that standardized engineered materials for OAE need to be developed to achieve safe and sustainable OAE with solids, if reactors technologies should be avoided.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-02-14
    Description: Geomorphic and sedimentologic data indicate that the climate of today's hyper-arid Atacama Desert (northern Chile) was more humid during the mid-Pliocene to Late Pliocene. The processes, however, leading to increased rainfall in this period are largely unknown. To uncover these processes we use both global and regional kilometre-scale model experiments for the mid-Pliocene (3.2 Ma). We found that the PMIP4–CMIP6 (Paleoclimate Modelling Intercomparison Project–Coupled Model Intercomparison Project) model CESM2 (Community Earth System Model 2) and the regional model WRF (Weather Research and Forecasting) used in our study simulate more rainfall in the Atacama Desert for the mid-Pliocene in accordance with proxy data, mainly due to stronger extreme rainfall events in winter. Case studies reveal that these extreme winter rainfall events during the mid-Pliocene are associated with strong moisture conveyor belts (MCBs) originating in the tropical eastern Pacific. For present-day conditions, in contrast, our simulations suggest that the moisture fluxes rather arise from the subtropical Pacific region and are much weaker. A clustering approach reveals systematic differences between the moisture fluxes in the present-day and mid-Pliocene climates, both in strength and origins. The two mid-Pliocene clusters representing tropical MCBs and occurring less than 1 d annually on average produce more rainfall in the hyper-arid core of the Atacama Desert south of 20∘ S than what is simulated for the entire present-day period. We thus conclude that MCBs are mainly responsible for enhanced rainfall during the mid-Pliocene. There is also a strong sea-surface temperature (SST) increase in the tropical eastern Pacific and along the Atacama coast for the mid-Pliocene. It suggests that a warmer ocean in combination with stronger mid-tropospheric troughs is beneficial for the development of MCBs leading to more extreme rainfall in a +3 ∘C warmer world like in the mid-Pliocene.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-03-01
    Description: Future change in sea surface temperature may influence climate via various air-sea feedbacks and pathways. In this study, we investigate the influence of surface seawater biogeochemical composition on the temperature dependence of sea spray number emission fluxes. Dependence of sea spray fluxes was investigated in different water masses (i.e. subantarctic, subtropical and frontal bloom) with contrasting biogeochemical properties across a temperature range from ambient (13–18 °C) to 2 °C, using seawater circulating in a plunging jet sea spray generator. We observed sea spray total concentration to increase significantly at temperatures below 8 °C, with an average 4-fold increase at 2 °C relative to initial concentration at ambient temperatures. This temperature dependence was more pronounced for smaller size sea spray particles (i.e. nucleation and Aitken modes). Moreover, temperature dependence varied with water mass type and so biogeochemical properties. While the sea spray flux at moderate temperatures (8–11 °C) was highest in frontal bloom waters, the effect of low temperature on the sea spray flux was highest with subtropical seawaters. The temperature dependence of sea spray flux was also inversely proportional to the seawater cell abundance of the cyanobacterium Synechococcus, which facilitated parameterization of temperature dependence of sea spray emission fluxes as a function of Synechococcus for future implementation in modelling exercises.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
  • 68
    Publication Date: 2024-03-08
    Description: Probability density functions (PDFs) provide information about the probability of a random variable taking on a specific value. In geoscience, data distributions are often expressed by a parametric estimation of their PDF, such as, for example, a Gaussian distribution. At present there is growing attention towards the analysis of non-parametric estimation of PDFs, where no prior assumptions about the type of PDF are required. A common tool for such non-parametric estimation is a kernel density estimator (KDE). Existing KDEs are valuable but problematic because of the difficulty of objectively specifying optimal bandwidths for the individual kernels. In this study, we designed and developed a new implementation of a diffusion-based KDE as an open source Python tool to make diffusion-based KDE accessible for general use. Our new diffusion-based KDE provides (1) consistency at the boundaries, (2) better resolution of multimodal data, and (3) a family of KDEs with different smoothing intensities. We demonstrate our tool on artificial data with multiple and boundary-close modes and on real marine biogeochemical data, and compare our results against other popular KDE methods. We also provide an example for how our approach can be efficiently utilized for the derivation of plankton size spectra in ecological research. Our estimator is able to detect relevant multiple modes and it resolves modes that are located closely to a boundary of the observed data interval. Furthermore, our approach produces a smooth graph that is robust to noise and outliers. The convergence rate is comparable to that of the Gaussian estimator, but with a generally smaller error. This is most notable for small data sets with up to around 5000 data points. We discuss the general applicability and advantages of such KDEs for data–model comparison in geoscience.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-03-08
    Description: Many benthic organisms show aggregated distribution patterns due to the spatial heterogeneity of niches or food availability. In particular, high-abundance patches of benthic foraminifera have been reported that extend from centimetres to metres in diameter in salt marshes or shallow waters. The dimensions of spatial variations of shelf or deep-sea foraminiferal abundances have not yet been identified. Therefore, we studied the distribution of Globobulimina turgida dwelling in the 0–3 cm surface sediment at 118 m water depth in the Alsbäck Deep, Gullmar Fjord, Sweden. Standing stock data from 58 randomly replicated samples depicted a log-normal distribution of G. turgida with weak evidence for an aggregated distribution on a decimetre scale. A model simulation with different patch sizes, outlines, and impedances yielded no significant correlation with the observed variability of G. turgida standing stocks. Instead, a perfect match with a random log-normal distribution of population densities was obtained. The data–model comparison revealed that foraminiferal populations in the Gullmar Fjord were not moulded by any underlying spatial structure beyond 10 cm diameter. Log-normal population densities also characterise data from contiguous, gridded, or random sample replicates reported in the literature. Here, a centimetre-scale heterogeneity was found and interpreted to be a result of asexual reproduction events and restricted mobility of juveniles. Standing stocks of G. turgida from the Alsbäck Deep temporal data series from 1994 to 2021 showed two distinct cohorts of samples of either high or low densities. These cohorts are considered to represent two distinct ecological settings: hypoxic and well-ventilated conditions in the Gullmar Fjord. Environmental forcing is therefore considered to impact the population structure of benthic foraminifera rather than their reproduction dynamics.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-03-08
    Description: Estuaries are an important contributor to the global carbon budget, facilitating carbon removal, transfer, and transformation between land and the coastal ocean. Estuaries are susceptible to global climate change and anthropogenic perturbations. We find that a long-term significant mid-estuary increase in dissolved inorganic carbon (DIC) of 6–21 µmol kg−1 yr−1 (1997–2020) in a temperate estuary in Germany (Elbe Estuary) was driven by an increase in upper-estuary particulate organic carbon (POC) content of 8–14 µmol kg−1 yr−1. The temporal POC increase was due to an overall improvement in water quality observed in the form of high rates of primary production and a significant drop in biological oxygen demand. The magnitude of mid-estuary DIC gain was equivalent to the increased POC production in the upper estuary, suggesting that POC is effectively remineralized and retained as DIC in the mid-estuary, with the estuary acting as an efficient natural filter for POC. In the context of this significant long-term DIC increase, a recent extended drought period (2014–2020) significantly lowered the annual mean river discharge (468 ± 234 m3 s−1) compared to the long-term mean (690 ± 441 m3 s−1, 1960–2020), while the late spring internal DIC load in the estuary doubled. The drought induced a longer dry season, starting in May (earlier than normal), increased the residence time in the estuary and allowed for a more complete remineralization period of POC. Annually, 77 %–94 % of the total DIC export was laterally transported to the coastal waters, reaching 89 ± 4.8 Gmol C yr−1, and thus, between 1997 and 2020, only an estimated maximum of 23 % (10 Gmol C yr−1) was released via carbon dioxide (CO2) evasion. Export of DIC to coastal waters decreased significantly during the drought, on average by 24 % (2014–2020: 38 ± 5.4 Gmol C yr−1), compared to the non-drought period. In contrast, there was no change in the water–air CO2 flux during the drought. We have identified that seasonal changes in DIC processing in an estuary require consideration when estimating both the long-term and future changes in water–air CO2 flux and DIC export to coastal waters. Regional and global carbon budgets should therefore take into account carbon cycling estimates in estuaries, as well as their changes over time in relation to impacts of water quality changes and extreme hydrological events.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-11-23
    Description: Different fault settings make the morphology of submarine canyon-fan systems on active margins complex and diverse. In this study we explore the continuum of erosion, transport and sedimentation processes taking place in fault-controlled canyon-fan systems by using physical experiments and a morphodynamic model. Based on morphometric analyses we show how Hack’s scaling relationships exist in submarine canyons and fans. The DEM of differences (DoDs) demonstrate the growth patterns and allow to establish relevant relationships between volumes of canyons and their corresponding fans. We reveal strong self-similarities on canyon-fan long profiles and, through a new morphodynamic model, we capture their evolution over time, including the trajectory of internal moving boundaries. We observe that fault slip rate controls the merging speed of coalescent submarine canyon-fan systems and, when coupling fault slip rate with inflow discharge, a competitive influence arises. In this study we also uncover scaling relationships spanned from laboratory to field-scale. Overall, our findings are inspiring and valuable for field investigators and modelers to better interpret and predict the morphological evolution and sedimentary processes of submarine canyon-fan systems in active fault settings.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-01-04
    Description: Glacial isostatic adjustment is largely governed by the rheological properties of the Earth's mantle. Large mass redistributions in the ocean–cryosphere system and the subsequent response of the viscoelastic Earth have led to dramatic sea level changes in the past. This process is ongoing, and in order to understand and predict current and future sea level changes, the knowledge of mantle properties such as viscosity is essential. In this study, we present a method to obtain estimates of mantle viscosities by the assimilation of relative sea level rates of change into a viscoelastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment, we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three-layer Earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. We investigate the ensemble behaviour on different parameters in the following three set-ups: (1) global observations data set since last glacial maximum with different ensemble initialisations and observation uncertainties, (2) regional observations from Fennoscandia or Laurentide/Greenland only, and (3) limiting the observation period to 10 ka until the present. We show that the recovery is successful in all cases if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. Experiments show that the method is successful if enough near-field observations are available. This makes it work best for a period after substantial deglaciation until the present when the number of sea level indicators is relatively high.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-01-24
    Description: Doppler wind lidars (DWLs) have increasingly been used over the last decade to derive the mean wind in the atmospheric boundary layer. DWLs allow the determination of wind vector profiles with high vertical resolution and provide an alternative to classic meteorological tower observations. They also receive signals from altitudes higher than a tower and can be set up flexibly in any power-supplied location. In this work, we address the question of whether and how wind gusts can be derived from DWL observations. The characterization of wind gusts is one central goal of the Field Experiment on Sub-Mesoscale Spatio-Temporal Variability in Lindenberg (FESSTVaL). Obtaining wind gusts from a DWL is not trivial because a monostatic DWL provides only a radial velocity per line of sight, i.e., only one component of a three-dimensional vector, and measurements in at least three linearly independent directions are required to derive the wind vector. Performing them sequentially limits the achievable time resolution, while wind gusts are short-lived phenomena. This study compares different DWL configurations in terms of their potential to derive wind gusts. For this purpose, we develop a new wind retrieval method that is applicable to different scanning configurations and various time resolutions. We test eight configurations with StreamLine DWL systems from HALO Photonics and evaluate gust peaks and mean wind over 10 min at 90 m a.g.l. against a sonic anemometer at the meteorological tower in Falkenberg, Germany. The best-performing configuration for retrieving wind gusts proves to be a fast continuous scanning mode (CSM) that completes a full observation cycle within 3.4 s. During this time interval, about 11 radial Doppler velocities are measured, which are then used to retrieve single gusts. The fast CSM configuration was successfully operated over a 3-month period in summer 2020. The CSM paired with our new retrieval technique provides gust peaks that compare well to classic sonic anemometer measurements from the meteorological tower.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-01-24
    Description: A challenge of an energy system that nowadays more strongly depends on wind power generation is the spatial and temporal variability in winds. Nocturnal low-level jets (NLLJs) are typical wind phenomena defined as a maximum in the vertical profile of the horizontal wind speed. A NLLJ has typical core heights of 50–500 m a.g.l. (above ground level), which is in the height range of most modern wind turbines. This study presents NLLJ analyses based on new observations from Doppler wind lidars. The aim is to characterize the temporal and spatial variability in NLLJs on the mesoscale and to quantify their impacts on wind power generation. The data were collected during the Field Experiment on Submesoscale Spatio-Temporal Variability (FESSTVaL) campaign from June to August 2020 in Lindenberg and Falkenberg (Germany), located at about 6 km from each other. Both sites have seen NLLJs in about 70 % of the nights with half of them lasting for more than 3 h. Events longer than 6 h occurred more often simultaneously at both sites than shorter events, indicating the mesoscale character of very long NLLJs. Very short NLLJs of less than 1 h occurred more often in Lindenberg than Falkenberg, indicating more local influences on the wind profile. We discussed different meteorological mechanisms for NLLJ formation and linked NLLJ occurrences to synoptic weather patterns. There were positive and negative impacts of NLLJs on wind power that we quantified based on the observational data. NLLJs increased the mean power production by up to 80 % and were responsible for about 25 % of the power potential during the campaign. However, the stronger shear in the rotor layer during NLLJs can also have negative impacts. The impacts of NLLJs on wind power production depended on the relative height between the wind turbine and the core of the NLLJ. For instance, the mean increase in the estimated power production during NLLJ events was about 30 % higher for a turbine at 135 m a.g.l. compared to one at 94 m a.g.l. Our results imply that long NLLJs have an overall stronger impact on the total power production, while short events are primarily relevant as drivers for power ramps.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-08-01
    Description: During the Late Pleistocene and Holocene retreat of paleo-ice sheets in North America and Europe, vast proglacial lakes existed along the land terminating margins. These proglacial lakes impacted ice sheet dynamics by imposing boundary conditions analogous to a marine terminating margin. Such lacustrine boundary conditions cause changes in the ice sheet geometry, stress balance and frontal ablation and therefore affect the mass balance of the entire ice sheet. Despite this, dynamically evolving proglacial lakes have rarely been considered in detail in ice sheet modeling endeavors. In this study, we describe the implementation of an adaptive lake boundary in the Parallel Ice Sheet Model (PISM), which we call PISM-LakeCC. We test our model with a simplified glacial retreat setup of the Laurentide Ice Sheet (LIS). By comparing the experiments with lakes to control runs with no lakes, we show that the presence of proglacial lakes locally enhances the ice flow, which leads to a lowering of the ice sheet surface. In some cases, this also results in an advance of the ice margin and the emergence of ice lobes. In the warming climate, increased melting on the lowered ice surface drives the glacial retreat. For the LIS, the presence of lakes triggers a process similar to marine ice sheet instability, which caused the collapse of the ice saddle over Hudson Bay. In the control experiments without lakes, Hudson Bay is still glaciated when the climate reaches present-day (PD) conditions. The results of our study demonstrate that glacio-lacustrine interactions play a significant role in the retreat of land terminating ice sheet margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-01-08
    Description: Ice rises and ice rumples are locally grounded features found in coastal Antarctica and are surrounded by otherwise freely floating ice shelves. An ice rise has an independent flow regime, whereas the flow regime of an ice rumple conforms to that of the ice shelf and merely slows the flow of ice. In both cases, local highs in the bathymetry are in contact with the ice shelf from below, thereby regulating the large-scale ice flow, with implications for the upstream continental grounding line position. This buttressing effect, paired with the suitability of ice rises as a climate archive, necessitates a better understanding of the transition between ice rise and ice rumple, their evolution in response to a change in sea level, and their dynamic interaction with the surrounding ice shelf. We investigate this behaviour using a three-dimensional full Stokes ice flow model with idealised ice rises and ice rumples. The simulations span end-member basal friction scenarios of almost stagnant and fully sliding ice at the ice–bed interface. We analyse the coupling with the surrounding ice shelf by comparing the deviations between the non-local full Stokes surface velocities and the local shallow ice approximation (SIA). Deviations are generally high at the ice divides and small on the lee sides. On the stoss side, where ice rise and ice shelf have opposing flow directions, deviations can be significant. Differences are negligible in the absence of basal sliding where the corresponding steady-state ice rise is larger and develops a fully independent flow regime that is well described by SIA. When sea level is increased, and a transition from ice rise to ice rumple is approached, the divide migration is more abrupt the higher the basal friction. In each scenario, the transition occurs after the stoss-side grounding line has moved over the bed high and is positioned on a retrograde slope. We identify a hysteretic response of ice rises and ice rumples to changes in sea level, with grounded area being larger in a sea-level-increase scenario than in a sea-level-decrease scenario. This hysteresis shows not only irreversibility following an equal increase and subsequent decrease in sea level but also that the perturbation history is important when the ice rise or ice rumple geometry is not known. The initial grounded area needs to be carefully considered, as this will determine the formation of either an ice rise or an ice rumple, thereby causing different buttressing effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-01-08
    Description: Ice shelves surrounding the Antarctic perimeter moderate ice discharge towards the ocean through buttressing. Ice-shelf evolution and integrity depend on the local surface accumulation, basal melting and on the spatially variable ice-shelf viscosity. These components of ice-shelf mass balance are often poorly constrained by observations and introduce uncertainties in ice-sheet projections. Isochronal radar stratigraphy is an observational archive for the atmospheric, oceanographic and ice-flow history of ice shelves. Here, we predict the stratigraphy of locally accumulated ice on ice shelves with a kinematic forward model for a given atmospheric and oceanographic scenario. This delineates the boundary between local meteoric ice (LMI) and continental meteoric ice (CMI). A large LMI to CMI ratio hereby marks ice shelves whose buttressing strength is more sensitive to changes in atmospheric precipitation patterns. A mismatch between the steady-state predictions of the kinematic forward model and observations from radar can highlight inconsistencies in the atmospheric and oceanographic input data or be an indicator for a transient ice-shelf history not accounted for in the model. We discuss pitfalls in numerical diffusion when calculating the age field and validate the kinematic model with the full Stokes ice-flow model Elmer/Ice. The Roi Baudouin Ice Shelf (East Antarctica) serves as a test case for this approach. There, we find a significant east–west gradient in the LMI / CMI ratio. The steady-state predictions concur with observations on larger spatial scales (〉10 km), but deviations on smaller scales are significant, e.g., because local surface accumulation patterns near the grounding zone are underestimated in Antarctic-wide estimates. Future studies can use these mismatches to optimize the input data or to pinpoint transient signatures in the ice-shelf history using the ever growing archive of radar observations of internal ice stratigraphy.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-02-07
    Description: Oceans play a major role on the exchange of carbon with the atmosphere and thereby on past climates with glacial/interglacial variations of the CO2 concentration. The melting of ice sheets during deglaciations lets the sea level rise which leads to the flooding of coastal land areas resulting in the transfer of terrestrial organic matter to the ocean. However, the consequences of such fluxes on the ocean biogeochemical cycle and uptake/release of CO2 are poorly constrained. Moreover, this potentially important exchange of carbon at the land-sea interface is not represented in most Earth System Models. We present here the implementation of terrestrial organic matter fluxes into the ocean at the transiently changing land-sea interface in the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) and investigate their effect on the biogeochemistry during the last deglaciation. Our results show that during the deglaciation, most of the terrestrial organic matter inputs to the ocean occurs during Meltwater Pulse 1a (between 15–14 ka) which leads to additional 21.2 GtC of terrestrial origin (mostly originating from wood and humus). Although this additional organic matter input is relatively small in comparison to the global ocean inventory (0.06 %) and thus doesn’t have an impact on the global CO2 flux, the terrestrial organic matter fluxes initiate oceanic outgassing at regional hotspots like in Indonesia for a few hundred years. Finally, sensitivity experiments highlight that terrestrial organic matter fluxes are the drivers of oceanic outgassing in flooded coastal regions during Meltwater Pulse 1a. Furthermore, the magnitude of outgassing is rather insensitive to higher carbon to nutrients ratios of the terrestrial organic matter. Our results provide a first estimate of the importance of terrestrial organic matter fluxes in a transient deglaciation simulation. Moreover, our model development is an important step towards a fully coupled carbon cycle in an Earth System Model applicable for simulations of glacial/interglacial cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-02-07
    Description: Accurate subsurface velocity models are crucial for geological interpretations based on seismic depth images. Seismic reflection tomography is an effective iterative method to update and refine a preliminary velocity model for depth imaging. Based on residual move-out analysis of reflectors in common image point gathers an update of the velocity is estimated by a ray-based tomography. To stabilize the tomography, several preconditioning strategies exist. Most critical is the estimation of the depth error to account for the residual move-out of the reflector in the common image point gathers. Because the depth errors for many closely spaced image gathers must be picked, manual picking is extremely time-consuming, human biased, and not reproducible. Data-driven picking algorithms based on coherence or semblance analysis are widely used for hyperbolic or linear events. However, for complex-shaped depth events, pure data-driven picking is difficult. To overcome this, the warping method named Non-Rigid Matching is used to estimate a depth error displacement field. Warping is used, e.g., to merge photographic images or to match two seismic images from time-lapse data. By calculating the displacements between an offset to its neighbouring offset in the common image point domain, a locally smooth-shaped displacement field is defined for each data sample. Depending on the complexity of the subsurface, sample tracking through the displacement field along predefined horizons or on a simple regular grid yields discrete depth error values for the tomography. The application to a multi-channel seismic line across the Sunda subduction zone offshore Lombok island, Indonesia, illustrates the approach and documents the advantages of the method to estimate a detailed velocity structure in a complex tectonic regime. By incorporating the warping scheme into the reflection tomography, we demonstrate an increase in the velocity resolution and precision by improving the data-driven accuracy of depth error picks with arbitrary shapes. This approach offers the possibility to use the full capacities of tomography and further leads to more accurate interpretations of complex geological structures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-02-07
    Description: Improved quantification techniques of natural sources is needed to explain variations in atmospheric methane. In polar regions, high uncertainties in current estimates of methane release from the seabed remain. We present two unique 10 and 3 months long time-series of bottom water measurements of physical and chemical parameters from two autonomous ocean observatories deployed at separate intense seabed methane seep sites (91 and 246 m depth) offshore Western Svalbard from 2015 to 2016. Results show high short term (100–1000 nmol L-1 within hours) and seasonal variation, as well as higher (2–7 times) methane concentrations compared to previous measurements. Rapid variability is explained by uneven distribution of seepage and changing ocean current directions. No overt influence of tidal hydrostatic pressure or water temperature variations on methane concentration was observed, but an observed negative correlation with temperature at the 246 site fits with hypothesized seasonal blocking of lateral methane pathways in the sediments. Negative correlation between bottom water methane concentration/variability and wind forcing, concomitant with signs of weaker water column stratification, indicates increased potential for methane release to the atmosphere in fall/winter. We highlight uncertainties in methane inventory estimates based on discrete water sampling and present new information about short- and long-term methane variability which can help constrain future estimates of seabed methane seepage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-02-07
    Description: The skill of global ocean biogeochemical models, and the earth system models in which they are embedded, can be improved by systematic calibration of the parameter values against observations. However, such tuning is seldom undertaken as these models are computationally very expensive. Here we investigate the performance of DFO-LS, a local, derivative-free optimisation algorithm which has been designed for computationally expensive models with irregular model–data misfit landscapes typical of biogeochemical models. We use DFO-LS to calibrate six parameters of a relatively complex global ocean biogeochemical model (MOPS) against synthetic dissolved oxygen, phosphate and nitrate “observations” from a reference run of the same model with a known parameter configuration. The performance of DFO-LS is compared with that of CMA-ES, another derivative-free algorithm that was applied in a previous study to the same model in one of the first successful attempts at calibrating a global model of this complexity. We find that DFO-LS successfully recovers five of the six parameters in approximately 40 evaluations of the misfit function (each one requiring a 3000-year run of MOPS to equilibrium), while CMA-ES needs over 1200 evaluations. Moreover, DFO-LS reached a “baseline” misfit, defined by observational noise, in just 11–14 evaluations, whereas CMA-ES required approximately 340 evaluations. We also find that the performance of DFO-LS is not significantly affected by observational sparsity, however fewer parameters were successfully optimised in the presence of observational uncertainty. The results presented here suggest that DFO-LS is sufficiently inexpensive and robust to apply to the calibration of complex, global ocean biogeochemical models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-02-07
    Description: Climate-relevant trace gas air-sea exchange exerts an important control on air quality and climate, especially in remote regions of the planet such as the Southern Ocean. It is clear that polar regions exhibit seasonal trends in productivity and biogeochemical cycling, but almost all of the measurements there are skewed to summer months. If we want to understand how the Southern Ocean effects the balance of climate through trace gas air-sea exchange, it is essential to expand our measurement database over greater temporal and spatial scales, including all seasons. Therefore, in this study, we report measured concentrations of dimethylsulphide (DMS, and related sulphur compounds) and isoprene in the Atlantic sector of the Southern Ocean during the winter to understand the spatial and temporal distribution in comparison to current knowledge and climatological calculations for the Southern Ocean. The observations of isoprene are the first in the winter season in the Southern Ocean. We find that concentrations and fluxes of DMS and isoprene in the investigated area are generally lower than those presented or calculated in currently used climatologies and models. More data is urgently needed to better interpolate climatological values and validate process-oriented models, as well as to explore how finer measurement resolution, both spatially and temporally, can influence air-sea flux calculations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-02-07
    Description: The Leeuwin Current flowing southward along West Australia is an important conduit for the poleward heat transport and interocean water exchange between the tropical and the subantarctic ocean areas. Its past development, and its relationship to Southern Ocean change and to Australian ecosystem response, however is largely unknown. We here reconstruct sea surface and thermocline temperatures and salinities from foraminiferal-based Mg/Ca and stable oxygen isotopes from offshore southwest and southeast Australia reflecting the Leeuwin Current dynamics over the last 60 kyrs. Its variability resembles the biomass burning development in Australasia from ~60–20 ka BP implying that climate-modulated changes related to the Leeuwin Current most likely affected Australian vegetational and fire regimes. In particular during ~60–43 ka BP, warmest thermocline temperatures point to a strongly developed Leeuwin Current during Antarctic cool periods when the Antarctic Circumpolar Current weakened. The pronounced centennial-scale variations in Leeuwin Current strength appear in line with the migrations of the Southern Hemisphere frontal system and are captured by prominent changes in the Australian megafauna biomass. We argue that the concerted action of a rapidly changing Leeuwin Current, the ecosystem response in Australia, and human interference since ~50 BP enhanced the ecological stress on the Australian megafauna until a tipping point was reached at ~43 ka BP, after which faunal recuperation no longer took place. While being weakest during the last glacial maximum, the deglacial Leeuwin Current intensified at times of poleward migrations of the Subtropical Front. During the Holocene, the thermocline off South Australia was considerably shallower compared to the short-term glacial and deglacial periods of Leeuwin Current intensification.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-02-07
    Description: We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 (Finite-volumE Sea ice-Ocean Model) has the multi-resolution functionality typical of unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of the latest developments in the numerical-weather-prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable-resolution (25-125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other ongoing research activities with AWI-CM3. This includes the exploration of high and variable resolution and the development of a full Earth system model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above-CMIP6-average skills (where CMIP6 denotes Coupled Model Intercomparison Project phase 6) in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-02-07
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-02-07
    Description: Large amounts of methane (CH4) could be released as a result of the gradual or abrupt thawing of Arctic permafrost due to global warming. Once available, this potent greenhouse gas is emitted into the atmosphere or transported laterally into aquatic ecosystems via hydrologic connectivity at the surface or via groundwaters. While high northern latitudes contribute up to 5 % of total global CH4 emissions, the specific contribution of Arctic rivers and streams is largely unknown. We analyzed high-resolution continuous CH4 concentrations measured between 15 and 17 June 2019 (late freshet) in a ∼120 km transect of the Kolyma River in northeast Siberia. The average partial pressure of CH4 (pCH4) in tributaries (66.8–206.8 µatm) was 2–7 times higher than in the main river channel (28.3 µatm). In the main channel, CH4 was up to 1600 % supersaturated with respect to atmospheric equilibrium. Key sites along the riverbank and at tributary confluences accounted for 10 % of the navigated transect and had the highest pCH4 (41 ± 7 µatm) and CH4 emissions (0.03 ± 0.004 ) compared to other sites in the main channel, contributing between 14 % to 17 % of the total CH4 flux in the transect. These key sites were characterized by warm waters (T〉14.5 ∘C) and low specific conductivities (κ〈88 µS cm−1). The distribution of CH4 in the river could be linked statistically to T and κ of the water and to their proximity to the shore z, and these parameters served as predictors of CH4 concentrations in unsampled river areas. The abundance of CH4-consuming bacteria and CH4-producing archaea in the river was similar to those previously detected in nearby soils and was also strongly correlated to T and κ. These findings imply that the source of riverine CH4 is closely related with sites near land. The average total CH4 flux density in the river section was 0.02 ± 0.006 , equivalent to an annual CH4 flux of 1.24×107 g CH4 yr−1 emitted during a 146 d open water season. Our study highlights the importance of high-resolution continuous CH4 measurements in Arctic rivers for identifying spatial and temporal variations, as well as providing a glimpse of the magnitude of riverine CH4 emissions in the Arctic and their potential relevance to regional CH4 budgets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-02-07
    Description: The Labrador Sea in the North Atlantic Ocean is one of the few regions globally where oxygen from the atmosphere can reach the deep ocean directly. This is the result of wintertime deep convection, which homogenizes the water column to a depth of up to 2000 m and brings deep water undersaturated in oxygen into contact with the atmosphere. In this study, we analyze how the intense oxygen uptake during Labrador Sea Water (LSW) formation affects the properties of the outflowing deep western boundary current, which ultimately feeds the upper part of the North Atlantic Deep Water layer in much of the Atlantic Ocean. Seasonal cycles of oxygen concentration, temperature, and salinity from a 2-year time series collected by sensors moored at 600 m nominal depth in the outflowing boundary current at 53∘ N show a cooling, freshening, and increase in oxygen content of the water flowing out of the basin between March and August. Analysis of Argo float data suggests that this is preceded by an increased input of LSW into the boundary current about 1 month earlier. This input is the result of newly ventilated LSW entering from the interior, as well as LSW formed directly within the boundary current. Together, these results imply that the southward export of newly formed LSW primarily occurs in the months following the onset of deep convection, from March to August, and that this direct LSW export route controls the seasonal oxygen increase in the outflow at 600 m depth. During the rest of the year, properties of the boundary current measured at 53∘ N resemble those of Irminger Water, which enters the basin with the boundary current from the Irminger Sea. The input of newly ventilated LSW increases the oxygen concentration from 298 µmol L−1 in January to a maximum of 306 µmol L−1 in April. As a result of this LSW input, an estimated (1.60 ± 0.42) × 1012 mol yr−1 of oxygen are added to the outflowing boundary current, mostly during spring and summer, equivalent to 50 % of the wintertime uptake from the atmosphere in the interior of the basin. The export of oxygen from the subpolar gyre associated with this direct southward pathway of LSW is estimated to supply 42 %–71 % of the oxygen consumed annually in the upper North Atlantic Deep Water layer in the Atlantic Ocean between the Equator and 50∘ N. Our results show that the formation of LSW is important for replenishing oxygen to the deep oceans, meaning that possible changes in its formation rate and ventilation due to climate change could have wide-reaching impacts on marine life.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-02-07
    Description: The consideration of marine biogeochemistry is essential for simulating the carbon cycle in an Earth system model. Here we present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, air-sea gas exchange of CO2 and O2, and simulations with prescribed atmospheric CO2 or CO2 emissions. A series of experiments covering the historical period (1850–2014) were performed following the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP6 (Coupled Model Intercomparison Project 6) protocols. Overall, modelled biogeochemical tracer distributions and fluxes, as well as transient evolution in surface air temperature, air-sea CO2 fluxes, and changes of ocean carbon and heat, are in good agreement with observations. Modelled inorganic and organic tracer distributions are quantitatively evaluated by statistically-derived metrics. Results of the FOCI-MOPS model, also including sea surface temperature, surface pH, oxygen (100–600 m), nitrate (0–100 m), and primary production, are within the range of other CMIP6 model results. Overall, the evaluation of FOCI-MOPS indicates its suitability for Earth climate system simulations
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-02-07
    Description: Upwelling of nutrient-rich waters into the sunlit surface layer of the ocean supports high primary productivity in eastern boundary upwelling systems (EBUSs). However, subsurface waters contain not only macronutrients (N, P, Si) but also micronutrients, organic matter and seed microbial communities that may modify the response to macronutrient inputs via upwelling. These additional factors are often neglected when investigating upwelling impacts on surface ocean productivity. Here, we investigated how different components of upwelled water (macronutrients, organic nutrients and seed communities) drive the response of surface plankton communities to upwelling in the Peruvian coastal zone. Results from our short-term (10 d) study show that the most influential drivers in upwelled deep water are (1) the ratio of inorganic nutrients (NOx : PO) and (2) the microbial community present that can seed heterogeneity in phytoplankton succession and modify the stoichiometry of residual inorganic nutrients after phytoplankton blooms. Hence, this study suggests that phytoplankton succession after upwelling is modified by factors other than the physical supply of inorganic nutrients. This would likely affect trophic transfer and overall productivity in these highly fertile marine ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-02-07
    Description: Mesoscale eddies modulate the ocean's physical, chemical, and biological properties. In cyclonic eddies (CEs), nutrient upwelling can stimulate primary production by phytoplankton. Yet, how this locally enhanced autotrophic production affects heterotrophy and consequently the metabolic balance between the synthesis and the consumption of dissolved organic matter (DOM) remains largely unknown. To fill this gap, we investigated the horizontal and vertical variability in auto- and heterotrophic microbial activity (biomass production and respiration) within a CE that formed off Mauritania and along the ∼ 900 km zonal corridor between Mauritania and the Cape Verde islands in the Eastern Tropical North Atlantic (ETNA). Our results show how the physical disturbances caused by the CE affected the biomass distribution of phyto- and bacterioplankton and their metabolic activities. The injection of nutrients into the sunlit surface resulted in enhanced autotrophic pico- and nanoplankton abundance and generally increased autotrophic activity as indicated by chlorophyll a (Chl a) concentration, primary production (PP), and extracellular release rates. However, the detailed eddy survey also revealed an uneven distribution of these variables with, for example, the highest Chl a concentrations and PP rates occurring near and just beyond the CE's periphery. The heterotrophic bacterial activity was similarly variable. Optode-based community respiration (CR), bacterial respiration (BR) estimates, and bacterial biomass production (BP) largely followed the trends of PP and Chl a. Thus, a submesoscale spatial mosaic of heterotrophic bacterial abundance and activities occurred within the CE that was closely related to variability in autotrophic production. Consistent with this, we found a significant positive correlation between concentrations of semi-labile dissolved organic carbon (SL-DOC; here the sum of dissolved hydrolysable amino acids and dissolved combined carbohydrates) and BR estimates. Extracellular release of carbon as indicated by primary production of dissolved organic carbon (PPDOC) was variable with depth and laterally and not always sufficient to compensate the bacterial carbon demand (BCD: BR + BP), with PPDOC accounting for between 28 % and 110 % of the BCD. Bacterial growth efficiency (BGE: BP / BCD) ranged between 1.7 % and 18.2 %. We estimated the metabolic state to establish whether the CE was a source or a sink of organic carbon. We showed that the CE carried a strong autotrophic signal in the core (PP  CR 〉 1). Our results suggest that submesoscale (0–10 km) processes lead to highly variable metabolic activities in both photoautotrophic and heterotrophic microorganisms. Overall, we revealed that the CEs not only trap and transport coastal nutrients and organic carbon to the open ocean but also stimulate phytoplankton growth, generating freshly produced organic matter during westward propagation. This drives heterotrophic processes and may contribute to the previously observed net heterotrophy in open Atlantic surface waters.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-02-07
    Description: Methane (CH4) is a climate-relevant atmospheric trace gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. The oceanic CH4 emission estimates are still associated with a high degree of uncertainty partly because the temporal and spatial variability in the CH4 distribution in the ocean surface layer is usually not known. In order to determine the small-scale variability in dissolved CH4 we set up a purge and trap system with a significantly improved precision for the CH4 concentration measurements compared to static headspace equilibration measurements. We measured the distribution of dissolved CH4 in the water column of the western Kiel Bight and Eckernförde Bay in June and September 2018. The top 1 m was sampled in high resolution to determine potential small-scale CH4 concentration gradients within the mixed layer. CH4 concentrations throughout the water column of the western Kiel Bight and Eckernförde Bay were generally higher in September than in June. The increase in the CH4 concentrations in the bottom water was accompanied by a strong decrease in O2 concentrations which led to anoxic conditions favourable for microbial CH4 production in September. In summer 2018, northwestern Europe experienced a pronounced heatwave. However, we found no relationship between the anomalies of water temperature and excess CH4 in both the surface and the bottom layer at the site of the Boknis Eck Time Series Station (Eckernförde Bay). Therefore, the 2018 European heatwave most likely did not affect the observed increase in the CH4 concentrations in the western Kiel Bight from June to September 2018. The high-resolution measurements of the CH4 concentrations in the upper 1 m of the water column were highly variable and showed no uniform decreasing or increasing gradients with water depth. Overall, our results show that the CH4 distribution in the water column of the western Kiel Bight and Eckernförde Bay is strongly affected by both large-scale temporal (i.e. seasonal) and small-scale spatial variabilities which need to be considered when quantifying the exchange of CH4 across the ocean–atmosphere interface.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-02-07
    Description: The Agulhas Current (AC) off the southern tip of Africa is one of the strongest western boundary currents and a crucial choke point of inter-ocean heat and salt exchange between the Indian Ocean and the southern Atlantic Ocean. However, large uncertainties remain concerning the sea surface temperature (SST) and salinity (SSS) variability in the AC region and their driving mechanisms over longer timescales, due to only short observational datasets being available and the highly dynamic nature of the region. Here, we present an annual coral skeletal Sr/Ca composite record paired with an established composite oxygen isotope record from Ifaty and Tulear reefs in southwestern Madagascar to obtain a 334-year (1661-1995) reconstruction of δ18Oseawater changes related to surface salinity variability in the wider Agulhas Current region. Our new annual δ18Oseawater composite record from Ifaty traces surface salinity of the southern Mozambique Channel and AC core region from the SODA reanalysis between 1958 and 1995. δ18Oseawater appears to be mainly driven by large-scale wind forcing in the southern Indian Ocean on interannual to decadal timescales. The δ18Oseawater and SST at Ifaty show characteristic interannual variability of between 2 and 4 years and interdecadal variability of 8 to 16 years, coherent with El Niño-Southern Oscillation (ENSO) records. Lagged correlations with the multivariate ENSO index reveals a 1-2-year lag of δ18Oseawater and salinity at Ifaty and the AC region, suggesting that propagation of anomalies by ocean Rossby waves may contribute to salinity changes in the wider southwestern Indian Ocean. The δ18Oseawater and SST reconstructions at Ifaty reveal the highest interannual variability during the Little Ice Age, especially around 1700 CE, which is in agreement with other Indo-Pacific coral studies. Our study demonstrates the huge potential to unlock past interannual and decadal changes in surface ocean hydrology and ocean transport dynamics from coral δ18Oseawater beyond the short instrumental record.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-02-07
    Description: Surfactants can hamper gas exchange by up to 50 % in coastal seas, however, their small-scale temporal and spatial dynamics are poorly constrained. This study investigated possible biogenic sources of surfactants in the sea surface microlayer (SML) and the underlying water at a coastal Baltic Sea site. To relate surfactant dynamics to biogenic production, we conducted two field studies (June and September 2018) and focused on amino acids and carbohydrates as the main components of organic matter derived from phytoplankton. The composition of the biochemicals provided furthermore insights into microbial degradation dynamics and was complemented by flow-cytometry-based community analysis. In total, 76 samples were collected within an area of approx. 50 km2 allowing for high spatial resolution. Moreover, morning and afternoon sampling enabled us to also investigate diel cycles. Our results reveal that surfactant concentrations were tightly coupled to the abundance of nano-phytoplankton and generally higher in September than in June, when cell abundance was three-times higher. Surfactant concentration in June was best explained by the combined effect of the particulate fraction of the non-essential amino acid serine, the concentration of particulate combined carbohydrates (PCHO), and dissolved organic carbon (DOC). Surfactant and PCHO concentrations were significantly enriched in the SML and followed a pronounced diel cycle, possibly linked to microbial- and/or photo-processing. In contrast to June, the surfactant pool in September correlated to a diverse mixture of semi-labile organic matter components, represented best by dissolved glucose and the essential amino acid isoleucine. We conclude that the surfactant pool in surface seawater is mainly composed of organic matter components that resist rapid microbial degradation. Elevated surfactant concentrations are triggered by the release of fresh organic matter. While the effect of the resistant but less surface-active stock is potentially longer-lasting, the additive effect of labile, highly surface-active agents on gas exchange may diminish on short timescales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-02-07
    Description: As the boundary interface between the atmosphere and ocean, the sea-surface microlayer (SML) plays a significant role in the biogeochemical cycles of dissolved organic matter (DOM) and macronutrients in marine environments. In our study, the optical properties of DOM were compared between the sub-surface water (SSW) and the SML during spring, summer and winter in the East China Sea (ECS) and the Yellow Sea (YS). In addition, photoexposure experiments were designed to compare photochemical degradation processes of DOM between the SML and the SSW. Chromophoric DOM (CDOM), fluorescent DOM, dissolved organic carbon, chlorophyll a (Chl a), picoplankton, nutrients and bacteria were frequently enriched in the SML. The enrichment factors (EFs) of tryptophan-like component 4 were significantly higher than other fluorescence components; the longer wavelength absorption values of CDOM showed higher EFs in the SML, and a more significant relationship between CDOM and Chl a in the SML, indicating that autochthonous DOM was more strongly enriched in the SML than the terrestrial DOM. Higher EFs were generally observed in the SML in the off-shore regions than in the coastal regions, and CDOM in the SML was photobleached more after relatively strong irradiation, as also indicated by the lower percentages of humic-like DOM and lower specific UV absorbance values (SUVA254) in the SML than the SSW. Compared to the SSW, the elevated nutrients may stimulate phytoplankton growth, biological activity and then production of abundant fresh autochthonous DOM in the SML. Our results revealed a new enrichment model for exploring the air–sea interface environment, which can explain the more autochthonous properties of DOM in the SML than the SSW.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-02-07
    Description: Temperature extremes not only directly affect the marine environment and ecosystems but also indirectly influence hydrodynamics and marine life. In this study, the role of heat wave events in the occurrence and persistence of thermal stratification was analysed by simulating the water temperature of the North Sea from 2011 to 2018 using a fully coupled hydrodynamic and wave model within the framework of the Geesthacht Coupled cOAstal model SysTem (GCOAST). The model results were assessed against reprocessed satellite data and in situ observations from field campaigns and fixed Marine Environmental Monitoring Network (MARNET) stations. To quantify the degree of stratification, the potential energy anomaly throughout the water column was calculated. The air temperatures and potential energy anomalies in the North Sea (excluding the Norwegian Trench and the area south of 54∘ N) were linearly correlated. Different from the northern North Sea, where the water column is stratified in the warm season each year, the southern North Sea is seasonally stratified in years when a heat wave occurs. The influences of heat waves on the occurrence of summer stratification in the southern North Sea are mainly in the form of two aspects, i.e. a rapid rise in sea surface temperature at the early stage of the heat wave period and a higher water temperature during summer than the multiyear mean. Another factor that enhances the thermal stratification in summer is the memory of the water column to cold spells earlier in the year. Differences between the seasonally stratified northern North Sea and the heat wave-induced stratified southern North Sea were ultimately attributed to changes in water depth.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-07
    Description: The Indian Ocean is coupled to atmospheric dynamics and chemical composition via several unique mechanisms, such as the seasonally varying monsoon circulation. During the winter monsoon season, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates the atmospheric composition, leading to distinct chemical regimes. The changing atmospheric composition over the Indian Ocean can interact with oceanic biogeochemical cycles and impact marine ecosystems, resulting in potential climate feedbacks. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its local and global impacts. The review considers results from recent Indian Ocean ship campaigns, satellite measurements, station data, and information on continental and oceanic trace gas emissions. The distribution of all major pollutants and greenhouse gases shows pronounced differences between the landmass source regions and the Indian Ocean, with strong gradients over the coastal areas. Surface pollution and ozone are highest during the winter monsoon over the Bay of Bengal and the Arabian Sea coastal waters due to air mass advection from the Indo-Gangetic Plain and continental outflow from Southeast Asia. We observe, however, that unusual types of wind patterns can lead to pronounced deviations of the typical trace gas distributions. For example, the ozone distribution maxima shift to different regions under wind scenarios that differ from the regular seasonal transport patterns. The distribution of greenhouse gases over the Indian Ocean shows many similarities when compared to the pollution fields, but also some differences of the latitudinal and seasonal variations resulting from their long lifetimes and biogenic sources. Mixing ratios of greenhouse gases such as methane show positive trends over the Indian Ocean, but long-term changes in pollution and ozone due to changing emissions and transport patterns require further investigation. Although we know that changing atmospheric composition and perturbations within the Indian Ocean affect each other, the impacts of atmospheric pollution on oceanic biogeochemistry and trace gas cycling are severely understudied. We highlight potential mechanisms, future research topics, and observational requirements that need to be explored in order to fully understand such interactions and feedbacks in the Indian Ocean region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-02-07
    Description: The North Atlantic Deep Water (NADW) is a crucial component of the Atlantic meridional overturning circulation and is therefore an important factor of the climate system. In order to estimate the mean relative contributions, sources, and pathways of the NADW at the southern exit of the Labrador Sea, a Lagrangian particle experiment is performed. The particles were seeded according to the strength of the velocity field along the 53∘ N section and traced 40 years backward in time in the three-dimensional velocity and hydrography field. The resulting transport pathways, their sources and corresponding transit timescales were inferred. Our experiment shows that, of the 30.1 Sv of NADW passing 53∘ N on average, the majority of this water is associated with a diapycnal mass flux without contact to the atmosphere, accounting for 14.3 Sv (48 %), where 6.2 Sv originate from the Labrador Sea, compared to 4.7 Sv from the Irminger Sea. The second-largest contribution originates from the mixed layer with 7.2 Sv (24 %), where the Labrador Sea contribution (5.9 Sv) dominates over the Irminger Sea contribution (1.0 Sv). Another 5.7 Sv (19 %) of NADW crosses the Greenland–Scotland Ridge within the NADW density class, where about two-thirds pass the Denmark Strait, while one-third crosses the Iceland–Scotland Ridge. The NADW exported at 53∘ N is hence dominated by entrainment through the diapycnal mass flux and mixed-layer origin in the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-02-07
    Description: Using observational data, satellite altimeters, and reanalysis model products, we have investigated eddy-induced seawater anomalies and heat and salt transport in the northeastern tropical Pacific Ocean. An eddy detection algorithm (EDA) was used to identify eddy formation at the Mexican Tehuantepec Gulf (TT) in July 2018 during an unusually strong summer wind event. The eddy separated from the coast with a mean translation velocity of 11 cm s−1 and a mean radius of 115 km and traveled 2050–2400 km westwards off the Central American coast, where it was followed at approx 114∘ W and 11∘ N for oceanographic observation between April and May 2019. The in situ observations show that the major eddy impacts are restricted to the upper 300 m of the water column and are traceable down to 1500 m water depth. In the eddy core at 92 m water depth an extreme positive temperature anomaly of 8.2 ∘C, a negative salinity anomaly of −0.78 psu, a positive fluorescence anomaly of +0.8 mg m−3, and a positive dissolved oxygen concentration anomaly of 137 µmol kg−1 are observed. Compared with annual climatological averages in 2018, the water trapped within the eddy is estimated to transport an average positive westward zonal heat anomaly of 85×1012 W and an average westward negative salt anomaly of  kg s−1. The heat transport is the equivalent of 1 % of the total annual zonal eddy-induced heat transport at this latitude in the Pacific Ocean. Understanding the dynamics of long-lived mesoscale eddies that may reach the seafloor in this region of the Pacific Ocean is especially important in light of potential deep-sea mining activities that are being targeted on this area.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-02-07
    Description: The availability of iron (Fe) and phosphorus (P) has been shown to be a key factor regulating rates of nitrogen fixation in the western subtropical Pacific. However, the relative importance of Fe and P at finer spatial scales between the northern South China Sea (NSCS) and the western boundary of the North Pacific is poorly constrained. Furthermore, nutrient limitation of specific diazotroph types has not yet been assessed. Here we investigated these unknowns by (i) carrying out measurements of finer-scale spatial variabilities in N2 fixation rates and diazotroph nifH gene abundances throughout these regions and (ii) conducting eight additional Fe and phosphate addition bioassay experiments where both changes in N2 fixation rates and the nifH gene abundances of specific diazotrophs were measured. Overall, nitrogen fixation rates and nifH gene abundances were lower in the NSCS than around the Luzon Strait and the western North Pacific. The nutrient addition bioassay experiments demonstrated that N2 fixation rates in the central NSCS were co-limited by Fe and P, whereas at the western boundary of the North Pacific they were P-limited. Changes in the abundances of nifH in response to nutrient addition varied in how well they correlated with changes in N2 fixation rates, and in six out of eight experiments the largest responses in nifH gene abundances were dominated by either Trichodesmium or UCYN-B (unicellular diazotrophic cyanobacteria group B). In general, nutrient addition had a relatively restricted impact on the composition of the six phylotypes that we surveyed apart from on UCYN-B. This unicellular cyanobacterium group showed increased contribution to the total nifH gene abundance following P addition at sites where N2 fixation rates were P-limited. Our study provides comprehensive evidence of nutrient controls on N2 fixation biogeography in the margin of the western North Pacific. Future research that more accurately constrains nutrient supply rates to this region would be beneficial for resolving what controls diazotroph community structure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-02-07
    Description: Changes in stratospheric ozone concentrations and increasing concentrations of greenhouse gases (GHGs) alter the temperature structure of the atmosphere and drive changes in the atmospheric and oceanic circulation. We systematically investigate the impacts of ozone recovery and increasing GHGs on the atmospheric and oceanic circulation in the Southern Hemisphere during the twenty-first century using a unique coupled ocean–atmosphere climate model with interactive ozone chemistry and enhanced oceanic resolution. We use the high-emission scenario SSP5-8.5 for GHGs under which the springtime Antarctic total column ozone returns to 1980s levels by 2048 in our model, warming the lower stratosphere and strengthening the stratospheric westerly winds. We perform a spatial analysis and show for the first time that the austral spring stratospheric response to GHGs exhibits a marked planetary wavenumber 1 (PW1) pattern, which reinforces the response to ozone recovery over the Western Hemisphere and weakens it over the Eastern Hemisphere. These changes, which imply an eastward phase shift in the PW1, largely cancel out in the zonal mean. The Southern Hemisphere residual circulation strengthens during most of the year due to the increase in GHGs and weakens in spring due to ozone recovery. However, we find that in November the GHGs also drive a weakening of the residual circulation, reinforcing the effect of ozone recovery, which represents another novel result. At the surface, the westerly winds weaken and shift equatorward due to ozone recovery, driving a weak decrease in the transport of the Antarctic Circumpolar Current and in the Agulhas leakage and a cooling of the upper ocean, which is most pronounced in the latitudinal band 35–45∘ S. The increasing GHGs drive changes in the opposite direction that overwhelm the ozone effect. The total changes at the surface and in the oceanic circulation are nevertheless weaker in the presence of ozone recovery than those induced by GHGs alone, highlighting the importance of the Montreal Protocol in mitigating some of the impacts of climate change. We additionally compare the combined effect of interactively calculated ozone recovery and increasing GHGs with their combined effect in an ensemble in which we prescribe the CMIP6 ozone field. This second ensemble simulates a weaker ozone effect in all the examined fields, consistent with its weaker increase in ozone. The magnitude of the difference between the simulated changes at the surface and in the oceanic circulation in the two ensembles is as large as the ozone effect itself. This shows the large uncertainty that is associated with the choice of the ozone field and how the ozone is treated.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...