ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cham : Springer
  • English  (365)
  • Romanian
Collection
Language
  • 1
    Call number: AWI S1-16-89841
    Description / Table of Contents: This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.
    Type of Medium: Monograph available for loan
    Pages: xxiv, 900 Seiten , Illustrationen
    ISBN: 978-3-319-25466-1
    Series Statement: Signals and Communication Technology
    Language: English
    Note: Contents: 1 Introduction. - 1.1 Chapter Summary. - 1.2 The Meaning of the Book’s Title. - 1.3 Historical Background. - 1.4 How to Read This Book. - 1.5 Further Reading. - References. - PART 1 BASIC THEORETICAL CONCEPTS. - 2 Discrete-Time Signals and Systems. - 2.1 Chapter Summary. - 2.2 Basic Definitions and Concepts. - 2.3 Discrete-Time Signals: Sequences. - 2.3.1 Basic Sequence Operations. - 2.3.2 Basic Sequences. - 2.3.3 Deterministic and Random Signals. - 2.4 Linear Time-Invariant (LTI) Systems. - 2.4.1 Impulse Response of an LTI System and Linear Convolution. - 2.4.2 An Example of Linear Convolution. - 2.4.3 Interconnections of LTI Systems. - 2.4.4 Effects of Stability and Causality Constraints on the Impulse Response of an LTI System. - 2.4.5 Finite (FIR) and Infinite (IIR) Impulse Response Systems. - 2.4.6 Linear Constant-Coefficient Difference Equation (LCCDE). - 2.4.7 Examples of LCCDE. - 2.4.8 The Solutions of an LCCDE. - 2.4.9 From the LCCDE to the Impulse Response: Examples. - 2.4.10 Eigenvalues and Eigenfunctions of LTI Systems. - References. - 3 Transforms of Discrete-Time Signals. - 3.1 Chapter Summary. - 3.2 z-Transform. - 3.2.1 Examples of z-Transforms and Special Cases. - 3.2.2 Rational z-Transforms. - 3.2.3 Inverse z-Transform. - 3.2.4 The z-Transform on the Unit Circle. - 3.2.5 Selected z-Transform Properties. - 3.2.6 Transfer Function of an LTI System. - 3.2.7 Output Sequence of an LTI System. - 3.2.8 Zeros and Poles: Forms for Rational Transfer Functions. - 3.2.9 Inverse System. - 3.3 Discrete-Time Fourier Transform (DTFT). - 3.3.1 An Example of DTFT Converging in the Mean-Square Sense. - 3.3.2 Line Spectra. - 3.3.3 Inverse DTFT. - 3.3.4 Selected DTFT Properties. - 3.3.5 The DTFT of a Finite-Length Causal Sequence. - 3.4 Discrete Fourier Series (DFS). - 3.4.1 Selected DFS Properties. - 3.4.2 Sampling in the Frequency Domain and Aliasing in the Time Domain. - 3.5 Discrete Fourier Transform (DFT). - 3.5.1 The Inverse DFT in Terms of the Direct DFT. - 3.5.2 Zero Padding. - 3.5.3 Selected DFT Properties. - 3.5.4 Circular Convolution Versus Linear Convolution. - 3.6 Fast Fourier Transform (FFT). - 3.7 Discrete Trigonometric Expansion. - 3.8 Appendix: Mathematical Foundations of Signal Representation. - 3.8.1 Vector Spaces. - 3.8.2 Inner Product Spaces. - 3.8.3 Bases in Vector Spaces. - 3.8.4 Signal Representation by Orthogonal Bases. - 3.8.5 Signal Representation by Standard Bases. - 3.8.6 Frames and Biorthogonal Bases. - 3.8.7 Summary and Complements. - References. - 4 Sampling of Continuous-Time Signals. - 4.1 Chapter Summary. - 4.2 Sampling Theorem. - 4.3 Reconstruction of a Continuous-Time Signal from Its Samples. - 4.4 Aliasing in the Frequency Domain and Anti-Aliasing Filter. - 4.5 The Uncertainty Principle for the Analog Fourier Transform. - 4.6 Support of a Continuous-Time Signal in the Time and Frequency Domains. - 4.7 Appendix: Analog and Digital Frequency Variables. - References. - 5 Spectral Analysis of Deterministic Discrete-Time Signals. - 5.1 Chapter Summary. - 5.2 Issues in Practical Spectral Analysis. - 5.2.1 The Effect of Windowing. - 5.2.2 The Effect of Spectral Sampling. - 5.3 Classical Windows. - 5.4 The Kaiser Window. - 5.5 Energy and Power Signals and Their Spectral Representations. - 5.6 Correlation of Deterministic Discrete-Time Signals. - 5.6.1 Correlation of Energy Signals. - 5.6.2 Correlation of Power Signals. - 5.6.3 Effect of an LTI System on Correlation Properties of Input and Output Signals. - 5.7 Wiener-Khinchin Theorem. - 5.7.1 Energy Signals and Energy Spectrum. - 5.7.2 Power Signals and Power Spectrum. - References. - PART 2 DIGITAL FILTERS. - 6 Digital Filter Properties and Filtering Implementation. - 6.1 Chapter Summary. - 6.2 Frequency-Selective Filters. - 6.3 Real-Causal-Stable-Rational (RCSR) Filters. - 6.4 Amplitude Response. - 6.5 Phase Response. - 6.5.1 Phase Discontinuities and Zero-Phase Response. - 6.5.2 Linear Phase (LP). - 6.5.3 Generalized Linear Phase (GLP). - 6.5.4 Constraints on GLP Filters. - 6.6 Digital Filtering Implementation. - 6.6.1 Direct Forms. - 6.6.2 Transposed-Direct Forms. - 6.6.3 FIR Direct and Transposed-Direct Forms. - 6.6.4 Direct and Transposed-Direct Forms for LP FIR Filters. - 6.6.5 Cascade and Parallel Forms. - 6.7 Zero-Phase Filtering. - 6.8 An Incorrect Approach to Filtering. - 6.9 Filtering After Downsampling. - 6.9.1 Theory of Downsampling. - 6.9.2 An Example of Filtering After Downsampling. - References. - 7 FIR Filter Design. - 7.1 Chapter Summary. - 7.2 Design Process. - 7.3 Specifications of Digital Filters. - 7.3.1 Constraints on the Magnitude Response. - 7.3.2 Constraints on the Phase Response. - 7.4 Selection of Filter Type: IIR or FIR?. - 7.5 FIR-Filter Design Methods and Approximation Criteria. - 7.6 Properties of GLP FIR Filters. - 7.6.1 Factorization of the Zero-Phase Response. - 7.6.2 Zeros of the Transfer Function. - 7.6.3 Another Form of the Adjustable Term. - 7.7 Equiripple FIR Filter Approximations: Minimax Design. - 7.8 Predicting the Minimum Filter Order. - 7.9 MPR Algorithm. - 7.10 Properties of Equiripple FIR Filters. - 7.11 The Minimax Method for Bandpass Filters. - References. - 8 IIR Filter Design. - 8.1 Chapter Summary. - 8.2 Design Process. - 8.3 Lowpass Analog Filters. - 8.3.1 Laplace Transform. - 8.3.2 Transfer Function and Design Parameters. - 8.4 Butterworth Filters. - 8.5 Chebyshev Filters. - 8.5.1 Chebyshev-I Filters. - 8.5.2 Chebyshev-II Filters. - 8.6 Elliptic Filters. - 8.7 Normalized and Non-normalized Filters. - 8.8 Comparison Among the Four Analog Filter Types. - 8.9 From the Analog Lowpass Filter to the Digital One. - 8.9.1 Bilinear Transformation. - 8.9.2 Design Procedure. - 8.9.3 Examples. - 8.10 Frequency Transformations. - 8.10.1 From a Lowpass to a Highpass Filter. - 8.10.2 From a Lowpass to a Bandpass Filter. - 8.10.3 From a Lowpass to a Bandstop Filter . - 8.11 Direct Design of IIR Filters. - 8.12 Appendix. - 8.12.1 Trigonometric Functions with Complex Argument. - 8.12.2 Elliptic Integrals. - 8.12.3 Jacobi Elliptic Functions. - 8.12.4 Landen-Gauss Transformation. - 8.12.5 Elliptic Rational Function. - References. - PART 3 SPECTRAL ANALYSIS. - 9 Statistical Approach to Signal Analysis. - 9.1 Chapter Summary. - 9.2 Preliminary Considerations. - 9.3 Random Variables. - 9.4 Ensemble Averages. - 9.5 Stationary Random Processes and Signals. - 9.6 Ergodicity. - 9.7 Wiener-Khinchin Theorem for Random Signals and Power Spectrum. - 9.8 Cross-Power Spectrum of Two Random Signals. - 9.9 Effect of an LTI System on a Random Signal. - 9.10 Estimation of the Averages of Ergodic Stationary Signals. - 9.10.1 General Concepts in Estimation Theory. - 9.10.2 Mean and Variance Estimation. - 9.10.3 Autocovariance Estimation. - 9.10.4 Cross-Covariance Estimation. - 9.11 Appendix: A Road Map to the Analysis of a Data Record. - References. - 10 Non-Parametric Spectral Methods. - 10.1 Chapter Summary. - 10.2 Power Spectrum Estimation. - 10.3 Periodogram. - 10.3.1 Bias. - 10.3.2 Variance. - 10.3.3 Examples. - 10.3.4 Variance Reduction by Band- and Ensemble-Averaging. - 10.4 Bartlett’s Method. - 10.5 Modified Periodogram. - 10.6 Welch’s Method. - 10.7 Blackman-Tukey Method. - 10.8 Statistical Significance of Spectral Peaks. - 10.9 MultiTaper Method. - 10.10 Estimation of the Cross-Power Spectrum of Two Random Signals. - 10.11 Use of the FFT in Power Spectrum Estimation. - 10.12 Power Spectrum Normalization. - References. - 11 Parametric Spectral Methods. - 11.1 Chapter Summary. - 11.2 Signals with Rational Spectra . - 11.3 Stochastic Models and Processes. - 11.3.1 Autoregressive-Moving Average (ARMA) Model. - 11.3.2 Autoregressive (AR) Model. - 11.3.3 Moving Average (MA) Model. - 11.3.4 How the AR and MA Modeling Approaches Are Theoretically Related. - 11.3.5 First-Order AR and MA Models: White, Red and Blue Noise. - 11.3.6 Higher-Order AR Models. - 11.4 The AR Approach to Spectral Estimation. - 11.5 AR Modeling and Linear Prediction. - 11.6
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Cham : Springer
    Call number: AWI G6-15-89028
    Description / Table of Contents: The book offers a modern, comprehensive, and holistic view of natural gas seepage, defined as the visible or invisible flow of gaseous hydrocarbons from subsurface sources to Earth’s surface. Beginning with definitions, classifications for onshore and offshore seepage, and fundamentals on gas migration mechanisms, the book reports the latest findings for the global distribution of gas seepage and describes detection methods. Seepage implications are discussed in relation to petroleum exploration, environmental impacts (hazards, pollution, atmospheric emissions, and past climate change), emerging scientific issues (abiotic gas and methane on Mars), and the role of seeps in ancient cultures. With an updated bibliography and an integrated analysis of available data, the book offers a new fundamental awareness - gas seepage is more widespread than previously thought and influences all of Earth’s external “spheres”, including the hydrosphere, atmosphere, biosphere, and anthroposphere.
    Type of Medium: Monograph available for loan
    Pages: XIII, 199 S. , Ill., graph. Darst.
    ISBN: 978-3-319-14600-3
    Language: English
    Note: Contents: 1 Introduction. - 1.1 Basic Concepts and Definitions. - 1.1.1 What Gas Seepage Is, What It Is Not. - 1.1.2 A Jungle of Names: Seeps, Macroseeps, Microseepage, Microseeps, and Miniseepage. - 1.1.3 Seepage id est Migration. - 1.1.4 Microbial, Thermogenic, and Abiotic Methane. - 1.2 Significance of Seepage and Implications. - 1.2.1 Seepage and Petroleum Exploration. - 1.2.2 Marine Seepage on the Crest of the Wave. - 1.2.3 From Sea to Land. - 1.2.4 A New Vision. - References. - 2 Gas Seepage Classification and Global Distribution. - 2.1 Macro-Seeps. - 2.1.1 Gas Seeps. - 2.1.2 Oil Seeps. - 2.1.3 Gas-Bearing Springs. - 2.1.4 Mud Volcanoes. - 2.1.5 Miniseepage. - 2.1.6 The Global Distribution of Onshore Macro-Seeps. - 2.2 Microseepage. - 2.3 Marine Seepage Manifestations. - References. - 3 Gas Migration Mechanisms. - 3.1 Fundamentals. - 3.1.1 Sources and Pathways. - 3.1.2 Diffusion and Advection. - 3.2 Actual Mechanisms and Migration Forms. - 3.2.1 Bubble and Microbubble Flow. - 3.2.2 Gas Seepage Velocity. - 3.2.3 Matter Transport by Microbubbles. - 3.2.4 The Concept of Carrier Gas and Trace Gas. - References. - 4 Detecting and Measuring Gas Seepage. - 4.1 Gas Detection Methods. - 4.1.1 Above-Ground (Atmospheric) Measurements. - 4.1.2 Ground Measurements. - 4.1.3 Measurements in Aqueous Systems. - 4.2 Indirect Methods. - 4.2.1 Chemical-Mineralogical Alterations of Soils. - 4.2.2 Vegetation Changes (Geobotanical Anomalies). - 4.2.3 Microbiological Analyses of Soils. - 4.2.4 Radiometric Surveys. - 4.2.5 Geophysical Techniques. - References. - 5 Seepage in Field Geology and Petroleum Exploration. - 5.1 Seepage and Faults. - 5.2 Microseepage Applied to Areal Petroleum Exploration. - 5.2.1 Which Gas Can Be Measured?. - 5.2.2 Microseepage Methane Flux Measurements. - 5.3 Seep Geochemistry for Petroleum System Evaluation. - 5.3.1 Recognising Post-genetic Alterations of Gases. - 5.3.2 Assessing Gas Source Type and Maturity. - 5.3.3 The Presence of Undesirable Gases (CO2, H2S, N2). - 5.3.4 Helium in Seeps… for Connoisseurs. - References. - 6 Environmental Impact of Gas Seepage. - 6.1 Geohazards. - 6.1.1 Methane Explosiveness. - 6.1.2 The Toxicity of Hydrogen Sulphide. - 6.1.3 Mud Expulsions and the Degradation of Soil-Sediments. - 6.2 Stray Gas, Natural versus Man-Made. - 6.3 Hypoxia in Aquatic Environments. - 6.4 Gas Emissions to the Atmosphere. - 6.4.1 Methane Fluxes and the Global Atmospheric Budget. - 6.4.2 Ethane and Propane Seepage, a Forgotten Potential Source of Ozone Precursors. - 6.5 Natural Seepage and CO2 Geological Sequestration. - References. - 7 Seepage in Serpentinised Peridotites and on Mars. - 7.1 Seeps and Springs in Active Serpentinisation Systems. - 7.1.1 Where Abiotic Methane Is Seeping. - 7.1.2 How Abiotic Methane in Land-Based Serpentinisation Systems Is Formed. - 7.1.3 How to Distinguish Abiotic and Biotic Methane. - 7.1.4 Seepage to the Surface. - 7.1.5 Is Abiotic Gas Seepage Important for the Atmospheric Methane Budget?. - 7.2 Potential Methane Seepage on Mars. - 7.2.1 Looking for Methane on Mars. - 7.2.2 A Theoretical Martian Seepage. - References. - 8 Gas Seepage and Past Climate Change. - 8.1 Past Seepage Stronger than Today. - 8.2 Potential Proxies of Past Seepage. - 8.3 Methane and Quaternary Climate Change. - 8.3.1 Traditional Models: Wetlands versus Gas Hydrates. - 8.3.2 Adding Submarine Seeps. - 8.3.3 Considering Onshore and Offshore Seepage in Total. - 8.3.4 CH4 Isotope Signatures in Ice Cores. - 8.4 Longer Geological Time Scale Changes. - 8.4.1 The Concept of Sedimentary Organic Carbon Mobilization. - 8.4.2 Paleogene Changes. - References. - 9 Seeps in the Ancient World: Myths, Religions, and Social Development. - 9.1 Seeps in Mythology and Religion. - 9.2 Seeps in Social and Technological Development. - References. - Epilogue. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: IASS 18.92081
    Description / Table of Contents: This handbook is the first of its kind to provide a clear, accessible, and comprehensive introduction to the most important scientific and management topics in marine environmental protection. Leading experts discuss the latest perspectives and best practices in the field with a particular focus on the functioning of marine ecosystems, natural processes, and anthropogenic pressures. The book familiarizes readers with the intricacies and challenges of managing coasts and oceans more sustainably, and guides them through the maze of concepts and strategies, laws and policies, and the various actors that define our ability to manage marine activities. Providing valuable thematic insights into marine management to inspire thoughtful application and further study, it is essential reading for marine environmental scientists, policy-makers, lawyers, practitioners and anyone interested in the field.
    Type of Medium: Monograph non-lending collection
    Pages: In 2 Bänden
    ISBN: 9783319601540 (hbk.) , 9783319601564 (electronic; eBook)
    Language: English
    Note: Contents Volume 1 Part I Natural Science Basics 1 Introduction into Physical Oceanography / Rebecca Hummels 2 Ecological Organization of the Sea / Birte Matthiessen, Franziska Julie Werner, and Matthias Paulsen 3 Marine Ecosystem Services / Markus Salomon and Henriette Dahms Part II Impacts of Sectoral Marine Activities 4 Impact of Fishing Activities on Marine Life / Gerd Kraus and Rabea Diekmann 5 Mariculture / Thomas A. Wilding, Kenneth D. Black, Steven Benjamins, and Iona Campbell 6 Shipping / Alan Simcock 7 Impacts of Coastal Developments on Ecosystems / Christian Winter 8 Offshore Oil and Gas Production and Transportation / Stanislav Patin 9 Exploitation of Offshore Wind Energy / Jens Lüdeke 10 Dredging for Navigation, for Environmental Cleanup, and for Sand/Aggregates / Craig Vogt, Eugene Peck, and Gregory Hartman 11 Environmental Risks of Deep-sea Mining / Philip P. E. Weaver, David S. M. Billett, and Cindy L. Van Dover 12 Dumped Chemical Weapons / Jacek Bełdowski 13 Marine Climate Engineering / David P. Keller Part III Impacts of Land-Based Activities 14 Agriculture / Oene Oenema, Qian Liu, and Jingmeng Wang 15 Land-Based Industries / Elisabeth Schmid 16 Land-Based Wastewater Management / Stephan Koester 17 Tourism / Alan Simcock Part IV Pollution from Diffuse Sources 18 Climate Change: Warming Impacts on Marine Biodiversity / Helmut Hillebrand, Thomas Brey, Julian Gutt, Wilhelm Hagen, Katja Metfies, Bettina Meyer, and Aleksandra Lewandowska 19 Ocean Acidification / Peter Thor and Sam Dupont 20 Pollution with Hazardous Substances / Katja Broeg and Norbert Theobald 21 Pollution with Radioactive Substances / Hartmut Nies 22 Eutrophication / Justus E. E. van Beusekom 23 Marine Litter / Stefanie Werner and Aleke Stöfen O’Brien 24 Input of Energy/Underwater Sound / Olaf Boebel, Elke Burkhardt, and Ilse van Opzeeland 25 Introduction of Non-indigenous Species / Ralph Kuhlenkamp and Britta Kind Volume 2 Part V Social Drivers, Developments, and Perspectives of Increasing Ocean Uses 26 A Short History of the Use of Seas and Oceans / Sunhild Kleingärtner 27 Factors Behind Increasing Ocean Use: The IPAT Equation and the Marine Environment / Troels J. Hegland Part VI General Aspects of Management and Governance of Human Activities 28 Challenges and Foundations of Sustainable Ocean Governance / Till Markus 29 Institutional Framework for Marine Environmental Governance / Pradeep Singh 30 International Principles of Marine Environmental Protection / Gerd Winter 31 Overview of Management Strategies and Instruments / Carolin Kieß 32 Future Prospects of Marine Environmental Governance / Pradeep Singh and Aline Jaeckel Part VII Traditional Marine Management Topics 33 The International Legal Framework for Conservation and Management of Fisheries and Marine Mammals / Andrew Serdy 34 Aqua- and Mariculture Management: A Holistic Perspective on Best Practices / Marc H. Taylor and Lotta C. Kluger 35 Offshore Oil and Gas Exploitation / Henning Jessen 36 Sustainable Shipping / Ciarán McCarthy and Bénédicte Sage-Fuller 37 Management of Hazardous Substances in the Marine Environment / Mikael Karlsson and Michael Gilek 38 Origin and Management of Radioactive Substances in the Marine Environment / Hartmut Nies 39 Waste/Litter and Sewage Management / Aleke Stöfen-O’Brien and Stefanie Werner 40 Coastal and Ocean Tourism / Stefan Gössling, C. Michael Hall, and Daniel Scott Part VIII Emerging Management Topics 41 The Greening of Ports / Bénédicte Sage-Fuller 42 Offshore Windfarms / Greg Severinsen 43 Wave and Tidal Energy / Kate Johnson and Sandy Kerr 44 Deep-Seabed Mining / Philomene Verlaan 45 Marine Biodiversity: Opportunities for Global Governance and Management Coherence / Daniela Diz 46 Marine Protected Areas: Global Framework, Regional MPA Networks and a National Example / Henning von Nordheim 47 Marine Environmental Protection and Climate Change / Birgit Peters 48 Management of Non-indigenous Species and Invasive Alien Species / Wolfgang Köck and Bjørn-Oliver Magsig 49 Integrating Sectoral Ocean Policies / Markus Salomon and Miriam Dross 50 Marine Scientific Research / Anna-Maria Hubert 51 An Emerging Environmental Issue: Marine Discharge of Mine Tailings / Craig Vogt and Jens Skei 52 Managing and Regulating Underwater Noise Pollution / Till Markus and Pedro Pablo Silva Sánchez 53 Marine Geo-Engineering / Harald Ginzky 54 Marine Spatial Planning / Mathias Schubert
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: PIK N 071-18-91760
    Description / Table of Contents: This book contributes to the literature on resilience, hazard planning, risk management, environmental policy and design, presenting articles that focus on building resilience through social and technical means. Bringing together contributions from Japanese authors, the book also offers a rare English-language glimpse into current policy and practice in Japan since the 2011 Tohoku disaster. The growth of resilience as a common point of contact for fields as disparate as economics, architecture and population politics reflects a shared concern about our capacity to cope with and adapt to change. The ability to bounce back from hardship and disaster is essential to all of our futures. Yet, if such ability is to be sustainable, and not rely on a “brute force” response, innovation will need to become a core practice for policymakers and on-the-ground responders alike. The book offers a valuable reference guide for graduate students, researchers and policy analysts who are looking for a holistic but practical approach to resilience planning.
    Type of Medium: Monograph available for loan
    Pages: xv, 396 Seiten , Illustrationen, Diagramme, Karten , 23.5 cm x 15.5 cm
    ISBN: 9783319501697 , 978-3-319-84334-6
    Language: English
    Note: Contents: Part 1: Introduction ; 1 Understanding Change Through the Lens of Resilience ; Part 2: Recognizing Vulnerability ; 2 Japan After March 11th 2011: Between Swift Reconstruction and Sustainable Restructuring ; 3 Climate Change Vulnerability of Olive Oil Groves in Dry Areas of Tunisia: Case Study in the Governorate of Médenine ; 4 The Vehicle Transportation Problem in the Megacity São Paulo (Brazil) ; 5 Disasters and Their Impacts on Air Quality in the Human Living Environment ; 6 Vulnerability of Pastoral Social-Ecological Systems in Mongolia ; Part 3: Awareness and Preparedness for Change ; 7 The Importance of Information Availability for Climate Change Preparedness in the Cultural Heritage Sector: A Comparison Between the UK and Japan ; 8 Anticipating Environmental Change in Development Planning for the Archipelago of Indonesia ; 9 Institutional and Technical Innovation in Pakistan for Resilience to Extreme Climate Events ; 10 Development of an International Institutional Framework for Climate Adaptation and Practice in Adaptation Planning in Developing Countries ; 11 Mainstreaming Climate Change Adaptation Products and Services by Japanese Companies with Base-of-the-Economic-Pyramid (BoP) Businesses ; 12 Systems Established for Reconstruction After the Great East Japan Earthquake, and the Current Situation on the Ground ; Part 4: Tools and Methods for Building Resiliency ; 13 Developing an ICT-Based Toolbox for Resilient Capacity Building: Challenges, Obstacles and Approaches ; 14 Development of Tools to Assess Vulnerability to Climate Change in South Asia ; 15 Development Plan as a Tool to Improve the Disaster Resilience of Urban Areas ; 16 Swarm Planning—Developing a Tool for Innovative Resilience Planning ; Part 5: Transformation from Disaster and Crisis ; 17 Green Infrastructure in Reconstruction After the 2011 Earthquake and Tsunami: A Case Study of Historical Change on Awaji Island in Japan ; 18 The Long Term Economic Value of Holistic Ecological Planning for Disaster Risk ; 19 Disaster Response and Public Consultation in Cleaning Up Radioactive Contamination of the Environment ; 20 Building Resilience in Africa Through Transformation and a Green Economy: Challenges and Opportunities ; Part 6: Building Resiliency with Community ; 21 Community Based Environmental Design: Empowering Local Expertise in Design Charrettes ; 22 Solar-Based Decentralized Energy Solution - A Case of Entrepreneur Based Model from Rural India ; 23 The Importance of Social Capital in Building Community Resilience ; 24 The Veneer House Experience: The Role of Architects in Recovering Community After Disaster ; Part 7: Conclusion ; 25 Understanding Resilience Through the Lens of Change
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: M 18.91817
    Description / Table of Contents: This book is focused on the basics of applying thermochronology to geological and tectonic problems, with the emphasis on fission-track thermochronology. It is conceived for relatively new practitioners to thermochronology, as well as scientists experienced in the various methods. The book is structured in two parts. Part I is devoted to the fundamentals of the fission-track method, to its integration with other geochronologic methods, and to the basic principles of statistics for fission-track dating and sedimentology applied to detrital thermochronology. Part I also includes the historical development of the technique and thoughts on future directions. Part II is devoted to the geological interpretation of the thermochronologic record. The thermal frame of reference and the different approaches for the interpretation of fission-track data within a geological framework of both basement and detrital studies are discussed in detail. Separate chapters demonstrate the application of fission-track thermochronology from various perspectives (e.g., tectonics, petrology, stratigraphy, hydrocarbon exploration, geomorphology), with other chapters on the application to basement rocks in orogens, passive continental margins and cratonic interiors, as well as various applications of detrital thermochronology.
    Type of Medium: Monograph available for loan
    Pages: XV, 393 Seiten , Illustrationen
    ISBN: 9783319894195
    Series Statement: Springer Textbooks in Earth Sciences, Geography and Environment
    Classification:
    Applied Geology
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: 18/M 19.93098
    In: Lecture Notes in Artificial Intelligence
    Description / Table of Contents: Towards Explainable Artificial Intelligence -- Transparency: Motivations and Challenges -- Interpretability in Intelligent Systems: A New Concept? -- Understanding Neural Networks via Feature Visualization: A Survey -- Interpretable Text-to-Image Synthesis with Hierarchical Semantic Layout Generation -- Unsupervised Discrete Representation Learning -- Towards Reverse-Engineering Black-Box Neural Networks -- Explanations for Attributing Deep Neural Network Predictions -- Gradient-Based Attribution Methods -- Layer-Wise Relevance Propagation: An Overview -- Explaining and Interpreting LSTMs -- Comparing the Interpretability of Deep Networks via Network Dissection -- Gradient-Based vs. Propagation-Based Explanations: An Axiomatic Comparison -- The (Un)reliability of Saliency Methods -- Visual Scene Understanding for Autonomous Driving Using Semantic Segmentation -- Understanding Patch-Based Learning of Video Data by Explaining Predictions -- Quantum-Chemical Insights from Interpretable Atomistic Neural Networks -- Interpretable Deep Learning in Drug Discovery -- Neural Hydrology: Interpreting LSTMs in Hydrology -- Feature Fallacy: Complications with Interpreting Linear Decoding Weights in fMRI -- Current Advances in Neural Decoding -- Software and Application Patterns for Explanation Methods
    Description / Table of Contents: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. Forsensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI
    Type of Medium: Monograph available for loan
    Edition: 1st ed. 2019
    ISBN: 978-3-030-28953-9
    Series Statement: Lecture Notes in Artificial Intelligence 11700
    Language: English
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: 9783030335663 (e-book)
    Description / Table of Contents: This book presents current knowledge on chemistry and physics of Arctic atmosphere. Special attention is given to studies of the Arctic haze phenomenon, Arctic tropospheric clouds, Arctic fog, polar stratospheric and mesospheric clouds, atmospheric dynamics, thermodynamics and radiative transfer as related to the polar environment. The atmosphere-cryosphere feedbacks and atmospheric remote sensing techniques are presented in detail. The problems of climate change in the Arctic are also addressed.
    Type of Medium: 12
    Pages: 1 Online-Ressource (723 Seiten) , Illustrationen
    ISBN: 9783030335663 (e-book)
    Series Statement: Springer Polar Sciences
    Language: English
    Note: Contents 1 Dynamical Processes in the Arctic Atmosphere / Marius O. Jonassen, Dmitry Chechin, Alexey Karpechko,Christof Lüpkes, Thomas Spengler, Annick Tepstra, Timo Vihma,and Xiangdong Zhang 2 Thermodynamics of the Arctic Atmosphere / Claudio Tomasi, Boyan H. Petkov, Oxana Drofa, and Mauro Mazzola 3 Trace Gases in the Arctic Atmosphere / Kimberly Strong, William R. Simpson, Kristof Bognar,Rodica Lindenmaier, and Sébastien Roche 4 Arctic Aerosols / Roberto Udisti, Rita Traversi, Silvia Becagli, Claudio Tomasi,Mauro Mazzola, Angelo Lupi, and Patricia K. Quinn 5 A Climatological Overview of Arctic Clouds / Abhay Devasthale, Joseph Sedlar, Michael Tjernström,and Alexander Kokhanovsky 6 Arctic Ice Fog: Its Microphysics and Prediction / Ismail Gultepe, Andrew J. Heymsfield, and Martin Gallagher 7 Polar Stratospheric Clouds in the Arctic / Francesco Cairo and Tiziana Colavitto 8 Noctilucent Clouds: General Properties and Remote Sensing / Christian von Savigny, Gerd Baumgarten, and Franz-Josef Lübkenix 9 Remote Sensing of Arctic Atmospheric Aerosols / Alexander Kokhanovsky, Claudio Tomasi, Alexander Smirnov,Andreas Herber, Roland Neuber, André Ehrlich, Angelo Lupi, Boyan H. Petkov, Mauro Mazzola, Christoph Ritter, Carlos Toledano,Thomas Carlund, Vito Vitale, Brent Holben, Tymon Zielinski,Simon Bélanger, Pierre Larouche, Stefan Kinne, Vladimir Radionov,Manfred Wendisch, Jason L. Tackett, and David M. Winker 10 Radiation in the Arctic Atmosphere and Atmosphere –Cryosphere Feedbacks / Claudio Tomasi, Boyan H. Petkov, Angelo Lupi, Mauro Mazzola,Christian Lanconelli, and Ismail Gultepe 11 Climate Change in the Arctic / Torben Koenigk, Jeff Key, and Timo Vihma Index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Cham : Springer
    Call number: AWI G3-20-93399
    Description / Table of Contents: This book provides a cross-disciplinary overview of permafrost and the carbon cycle by providing an introduction into the geographical distribution of permafrost, with a focus on the distribution of permafrost and its soil carbon reservoirs. The chapters explain the basic physical properties and processes of permafrost soils: ice, mineral and organic components, and how these interact with climate, vegetation and geomorphological processes. In particular, the book covers the role of the large quantities of ice in many permafrost soils which are crucial to understanding carbon cycle processes. An explanation is given on how permafrost becomes loaded with ice and carbon. Gas hydrates are also introduced. Structures and processes formed by the intense freeze-thaw action in the active layer are considered (e.g. ice wedging, cryoturbation), and the processes that occur as the permafrost thaws, (pond and lake formation, erosion). The book introduces soil carbon accumulation and decomposition mechanisms and how these are modified in a permafrost environment. A separate chapter deals with deep permafrost carbon, gas reservoirs and recently discovered methane emission phenomena from regions such as Northwest Siberia and the Siberian yedoma permafrost.
    Type of Medium: Monograph available for loan
    Pages: xv, 508 Seiten , Illustrationen, Diagramme, Karten
    ISBN: 9783030313784
    Language: English
    Note: Contents 1 Introduction 1.1 What Is Permafrost and Where Does it Occur? 1.2 Research on Permafrost: A Shifting Focus from Ice to Carbon 1.3 The Permafrost Carbon Feedback 1.4 Setting the Stage 1.4.1 Climate in Permafrost Areas 1.4.2 Vegetation in Permafrost Areas 1.4.3 Peatlands and Wetlands 1.4.4 Soils 1.4.5 Ice Age Permafrost 1.4.6 Geomorphology 1.5 Recent and Future Climate Change 1.6 The Uncertain Future of Permafrost References 2 The Energy Balance of Permafrost Soils and Ecosystems 2.1 The Radiation Balance 2.2 Latent, Sensible and Conductive Heat Fluxes 2.2.1 Partitioning of the Radiative Flux into Turbulent and Conductive Fluxes 2.2.2 Measurement Uncertainty 2.3 Heat Balance of Vegetation Cover 2.4 Seasonality of the Surface Heat Balance Illustrated by Data 2.4.1 Summer 2.4.2 Winter Cooling 2.4.3 Changes in the Heat Balance and Climate Change 2.5 Ground Heat Flux 2.5.1 Soil Profile Scale 2.5.2 The Effect of Ground Surface Conditions on Soil Temperature and Heat Flux 2.5.3 Large Scale Approaches 2.6 Deeper Permafrost Temperature Profile and Lateral Heat Fluxes 2.7 Lakes and Other Water Bodies References 3 The Role of Ground Ice 3.1 Basic Soil Ice Characteristics 3.2 Ice Segregation and Frost Heave 3.2.1 Ice Segregation Process 3.2.2 Environmental Conditions for Ice Segregation 3.3 Cracking and Wedging 3.3.1 Processes of Ice Wedge Formation 3.3.2 Ice Wedges in the Landscape 3.4 Frost Mounds 3.4.1 Palsas and Similar Features 3.4.2 Pingos 3.5 Cryoturbation and Patterned Ground 3.6 Slope Process: Solifluction and Cryogenic Landslides 3.7 Contribution of Ice to Rock Weathering 3.8 Ice and Hydrology 3.8.1 Active Layer Hydrological Processes 3.8.2 Runoff and River Discharge 3.9 Thaw Lakes 3.9.1 Thaw Lake Formation and Geomorphology 3.9.2 Thaw Lake Disappearance 3.10 Mapping Ice Content References 4 Permafrost Carbon Quantities and Fluxes 4.1 The Ecosystem Carbon Balance 4.1.1 Terrestrial Environments 4.1.2 Lakes 4.1.3 The Greenhouse Gas Balance 4.2 Vegetation Primary Production 4.2.1 Photosynthesis and Carbon Allocation 4.2.2 Primary Production in a Cold Climate 4.3 Vegetation Composition: Effects on the Carbon Cycle 4.4 Carbon Quantity in Permafrost Soils and Frozen Deposits 4.4.1 Yedoma Deposits 4.4.2 Peat 4.4.3 Alluvial and Lake Sediments 4.4.4 Landscape-Scale Variation of the Soil Organic Carbon Stock 4.5 Soil Organic Matter Quality and Decomposition 4.5.1 Organic Matter Quality in Permafrost 4.5.2 Carbon Conservation in Permafrost 4.5.3 Decomposer Communities in Cold and Waterlogged Soils 4.5.4 Organic Matter Decomposition Reaction Rates and Their Dependence on Temperature 4.5.5 Nutrient Cycles and Nitrous Oxide 4.5.6 Ecosystem Methane Emission 4.6 Ecosystem Carbon Flux Data 4.6.1 Quantifying Ecosystem Carbon Fluxes of Permafrost Ecosystems by Surface Measurements 4.6.2 Temporal and Spatial Variability of Permafrost Ecosystem Carbon Fluxes References 5 Permafrost in Transition 5.1 Which Changes? 5.2 Diffuse Permafrost Thaw 5.2.1 Observations of Active Layer Thickness and Surface Subsidence 5.2.2 Relation of Active Layer Thickness with Climate Change 5.2.3 Carbon Cycle Effects of Active Layer and Soil Temperature Change 5.2.4 Self-Heating Effect 5.3 Permafrost Thaw and Geomorphological Change 5.3.1 Thaw Pond and Fen Development 5.3.2 Thaw Lake Expansion 5.3.3 Thaw Lake Carbon Cycle Change 5.3.4 Erosion 5.4 Hydrological Changes 5.4.1 Water Balance: Groundwater Hydrology and Permafrost Thaw 5.4.2 Water Balance: Precipitation and Evapotranspiration 5.4.3 River Discharge Changes and Flooding 5.4.4 Water Transport of Carbon and Nutrients 5.4.5 Soil Hydrology Changes – Wetting or Drying? 5.4.6 Soil Hydrology Changes – Carbon Cycle Effects References 6 Vegetation Change 6.1 Zonal Vegetation Shifts 6.1.1 Present Climate-Related Vegetation Change 6.1.2 Arctic Greening and Browning 6.1.3 Feedbacks on Climate and Soil Temperature 6.1.4 Carbon Balance Effects of Vegetation Change 6.1.5 Fire 6.2 Thawing Permafrost and Vegetation 6.2.1 Effects of Permafrost Thaw on Vegetation: Nutrient Release 6.2.2 Below-Ground Interaction of Root Systems with Nutrients and Soil Carbon 6.2.3 Abrupt Thaw and Vegetation 6.2.4 Resilience 6.3 Human Vegetation Disturbance: Industrialisation and Agriculture References 7 Methane 7.1 Deep CH4 Sources 7.2 Climate Change Related Release of Deep Permafrost CH4 7.3 Cryovolcanism: Gas Emission Craters 7.4 CH4 Emissions in Perspective: Ecosystem Emissons, CO2 and N2O References 8 Models: Forecasting the Present and Future of Permafrost 8.1 Land Surface Models 8.2 Permafrost Models 8.3 The Carbon Cycle in Models 8.4 Geomorphology: Lake Formation and Erosion in Models 8.5 Outlook References Glossary Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: 6/M 20.94107
    In: International Association of Geodesy Symposia, 150
    Description / Table of Contents: Part I: Gravity Field Modelling and Height Systems -- Orbit Optimization for Future Satellite Gravity Field Missions: Influence of the Time Variable Gravity Field Models in a Genetic Algorithm Approach. Comparison of Criteria for the Identification of Correlated Orders in GRACE Spherical Harmonic Coefficients -- Second- and Third-Order Derivatives of the Somigliana-Pizzetti Reference Gravity Field -- On the Advantage of Normal Heights -- Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery -- On Combining the Directional Solutions of the Gravitational Curvature Boundary-Value Problem -- Part II: Theory of Modern Geodetic Reference Frames -- Review of Reference Frame Representations for a Deformable Earth -- Impacts of the LARES and LARES-2 Satellite Missions on the SLR Terrestrial Reference Frame -- Permanent GNSS Network Optimization Considering Tectonic Motions -- Part III: Estimation Theory and Inverse Problems in Geodesy -- Adjustment of Gauss-Helmert Models with Autoregressive and Student Errors -- How Abnormal Are the PDFs of the DIA Method: A Quality Description in the Context of GNSS -- Controlling the BiasWithin Free Geodetic Networks -- Regularized Solutions of the Two Layers Inverse Gravimetric Problem in the Space of Bounded Variation Functions -- Converted Total Least Squares Method and Gauss-Helmert Model with Applications to Coordinate Transformations -- A Bayesian Nonlinear Regression Model Based on t-Distributed Errors -- The GNSS for Meteorology (G4M) Procedure and Its Application to Four Significant Weather Events -- Part IV: Advanced Numerical Methods in Geodesy -- Modeling the Gravitational Field by Using CFD Techniques -- Surface Loading of a Self-Gravitating, Laterally Heterogeneous Elastic Sphere: Preliminary Result for the 2D Case -- Using Structural Risk Minimization to Determine the Optimal Complexity of B-Spline Surfaces for Modelling Correlated Point Cloud Data -- On the Numerical Implementation of a Perturbation Method for Satellite Gravity Mapping -- Part V: Geodetic Data Analysis -- Non-Recursive Representation of an Autoregressive Process Within the Magic Square -- A Bootstrap Approach to Testing for Time-Variability of AR Process Coefficients in Regression Time Series with t-Distributed White Noise Components -- Identification of Suspicious Data for Robust Estimation of Stochastic Processes -- Quality and Distribution of Terrestrial Gravity Data for Precise Regional Geoid Modeling: A Generalized Setup -- Part VI: Interactions of Geodesy and Mathematics -- Geodesy and Mathematics: Interactions, Acquisitions, and Open Problems.
    Description / Table of Contents: This volume gathers the proceedings of the IX Hotine-Marussi Symposium on Mathematical Geodesy, which was held from 18 to 22 June 2018 at the Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Italy. Since 2006, the Hotine-Marussi Symposia series has been produced under the auspices of the Inter-Commission Committee on Theory (ICCT) within the International Association of Geodesy (IAG). The ICCT has organized the last four Hotine-Marussi Symposia, held in Wuhan (2006) and Rome (2009, 2013 and 2018). The overall goal of the ICCT and Hotine-Marussi Symposia has always been to advance geodetic theory, as reflected in the 25 peer-reviewed research articles presented here. The IX Hotine-Marussi Symposium was divided into 10 topical sessions covering all aspects of geodetic theory including reference frames, gravity field modelling, adjustment theory, atmosphere, time series analysis and advanced numerical methods. In total 118 participants attended the Symposium and delivered 82 oral and 37 poster presentations. During a special session at the Accademia Nazionale deiLincei, the oldest scientific academy in the world, six invited speakers discussed interactions of geodesy with oceanography, glaciology, atmospheric research, mathematics, Earth science and seismology.
    Type of Medium: Monograph available for loan
    Pages: XI, 256 p. 101 illus., 84 illus. in color.
    Edition: 1st ed. 2021.
    ISBN: 9783030542672
    Series Statement: International Association of Geodesy Symposia 151
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: 9783319714042 (e-book)
    Type of Medium: 12
    Pages: 1 Online-Ressource (xv, 435 Seiten) , Illustrationen, Diagramme
    Edition: Second edtion
    ISBN: 9783319714042 (e-book)
    Series Statement: Use R!
    Language: English
    Note: Contents 1 Introduction 1.1 Why Numerical Ecology? 1.2 Why R? 1.3 Readership and Structure of the Book 1.4 How to Use This Book 1.5 The Data Sets 1.5.1 The Doubs Fish Data 1.5.2 The Oribatid Mite Data 1.6 A Quick Reminder About Help Sources 1.7 Now It Is Time 2 Exploratory Data Analysis 2.1 Objectives 2.2 Data Exploration 2.2.1 Data Extraction 2.2.2 Species Data: First Contact 2.2.3 Species Data: A Closer Look 2.2.4 Ecological Data Transformation 2.2.5 Environmental Data 2.3 Conclusion 3 Association Measures and Matrices 3.1 Objectives 3.2 The Main Categories of Association Measures (Short Overview) 3.2.1 Q Mode and R Mode 3.2.2 Symmetrical or Asymmetrical Coefficients in Q Mode: The Double-Zero Problem 3.2.3 Association Measures for Qualitative or Quantitative Data 3.2.4 To Summarize 3.3 Q Mode: Computing Dissimilarity Matrices Among Objects 3.3.1 Q Mode: Quantitative Species Data 3.3.2 Q Mode: Binary (Presence-Absence) Species Data 3.3.3 Q Mode: Quantitative Data (Excluding Species Abundances) 3.3.4 Q Mode: Binary Data (Excluding Species Presence-Absence Data) 3.3.5 Q Mode: Mixed Types Including Categorical (Qualitative Multiclass) Variables 3.4 R Mode: Computing Dependence Matrices Among Variables 3.4.1 R Mode: Species Abundance Data 3.4.2 R Mode: Species Presence-Absence Data 3.4.3 R Mode: Quantitative and Ordinal Data (Other than Species Abundances) 3.4.4 R Mode: Binary Data (Other than Species Abundance Data) 3.5 Pre-transformations for Species Data 3.6 Conclusion 4 Cluster Analysis 4.1 Objectives 4.2 Clustering Overview 4.3 Hierarchical Clustering Based on Links 4.3.1 Single Linkage Agglomerative Clustering 4.3.2 Complete Linkage Agglomerative Clustering 4.4 Average Agglomerative Clustering 4.5 Ward's Minimum Variance Clustering 4.6 Flexible Clustering 4.7 Interpreting and Comparing Hierarchical Clustering Results 4.7.1 Introduction 4.7.2 Cophenetic Correlation 4.7.3 Looking for Inteipretable Clusters 4.8 Non-hierarchical Clustering 4.8.1 k-means Partitioning 4.8.2 Partitioning Around Medoids (PAM) 4.9 Comparison with Environmental Data 4.9.1 Comparing a Typology with External Data (ANOVA Approach) 4.9.2 Comparing Two Typologies (Contingency Table Approach) 4.10 Species Assemblages 4.10.1 Simple Statistics on Group Contents 4.10.2 Kendall's W Coefficient of Concordance 4.10.3 Species Assemblages in Presence-Absence Data 4.10.4 Species Co-occurrence Network 4.11 Indicator Species 4.11.1 Introduction 4.11.2 IndVal: Species Indicator Values 4.11.3 Correlation-Type Indices 4.12 Multivariate Regression Trees (MRT): Constrained Clustering 4.12.1 Introduction 4.12.2 Computation (Principle) 4.12.3 Application Using Packages mvpart and MVPARTwrap 4.12.4 Combining MRT and IndVal 4.13 MRT as a Monothetic Clustering Method 4.14 Sequential Clustering 4.15 A Very Different Approach: Fuzzy Clustering 4.15.1 Fuzzy c-means Using Package cluster's Function fanny () 4.15.2 Noise Clustering Using the vegclust () Function 4.16 Conclusion 5 Unconstrained Ordination 5.1 Objectives 5.2 Ordination Overview 5.2.1 Multidimensional Space 5.2.2 Ordination in Reduced Space 5.3 Principal Component Analysis (PCA) 5.3.1 Overview 5.3.2 PCA of the Environmental Variables of the Doubs River Data Using rda () 5.3.3 PCA on Transformed Species Data 5.3.4 Domain of Application of PCA 5.3.5 PCA Using Function PCA. newr () 5.3.6 Imputation of Missing Values in PCA 5.4 Correspondence Analysis (CA) 5.4.1 Introduction 5.4.2 CA Using Function cca () of Package vegan 5.4.3 CA Using Function CA. newr () 5.4.4 Arch Effect and Detrended Correspondence Analysis (DCA) 5.4.5 Multiple Correspondence Analysis (MCA) 5.5 Principal Coordinate Analysis (PCoA) 5.5.1 Introduction 5.5.2 Application of PCoA to the Doubs Data Set Using cmdscaleO and vegan 5.5.3 Application of PCoA to the Doubs Data Set Using pcoa () 5.6 Nonmetric Multidimensional Scaling (NMDS) 5.6.1 Introduction 5.6.2 Application to the Doubs Fish Data 5.6.3 PCoA or NMDS? 5.7 Hand-Written PCA Ordination Function 6 Canonical Ordination 6.1 Objectives 6.2 Canonical Ordination Overview 6.3 Redundancy Analysis (RDA) 6.3.1 Introduction 6.3.2 RDA of the Doubs River Data 6.3.3 Distance-Based Redundancy Analysis (db-RDA) 6.3.4 A Hand-Written RDA Function 6.4 Canonical Correspondence Analysis (CCA) 6.4.1 Introduction 6.4.2 CCA of the Doubs River Data 6.5 Linear Discriminant Analysis (LDA) 6.5.1 Introduction 6.5.2 Discriminant Analysis Using Ida () 6.6 Other Asymmetric Analyses 6.6.1 Principal Response Curves (PRC) 6.6.2 Co-correspondence Analysis (CoCA) 6.7 Symmetric Analysis of Two (or More) Data Sets 6.8 Canonical Correlation Analysis (CCorA) 6.8.1 Introduction 6.8.2 Canonical Correlation Analysis Using CCorA () 6.9 Co-inertia Analysis (CoIA) 6.9.1 Introduction 6.9.2 Co-inertia Analysis Using Function coinertia () of ade4 6.10 Multiple Factor Analysis (MFA) 6.10.1 Introduction 6.10.2 Multiple Factor Analysis Using FactoMineR 6.11 Relating Species Traits and Environment 6.11.1 The Fourth-Corner Method 6.11.2 RLQ Analysis 6.11.3 Application in R 6.12 Conclusion 7 Spatial Analysis of Ecological Data 7.1 Objectives 7.2 Spatial Structures and Spatial Analysis: A Short Overview 7.2.1 Introduction 7.2.2 Induced Spatial Dependence and Spatial Autocorrelation 7.2.3 Spatial Scale 7.2.4 Spatial Heterogeneity 7.2.5 Spatial Correlation or Autocorrelation Functions and Spatial Correlograms 7.2.6 Testing for the Presence of Spatial Correlation: Conditions 7.2.7 Modelling Spatial Structures 7.3 Multivariate Trend-Surface Analysis 7.3.1 Introduction 7.3.2 Trend-Surface Analysis in Practice 7.4 Eigenvector-Based Spatial Variables and Spatial Modelling 7.4.1 Introduction 7.4.2 Distance-Based Moran's Eigenvector Maps (dbMEM) and Principal Coordinates of Neighbour Matrices (PCNM) 7.4.3 MEM in a Wider Context: Weights Other than Geographic Distances 7.4.4 MEM with Positive or Negative Spatial Correlation: Which Ones should Be Used? 7.4.5 Asymmetric Eigenvector Maps (AEM): When Directionality Matters 7.5 Another Way to Look at Spatial Structures: Multiscale Ordination (MSO) 7.5.1 Principle 7.5.2 Application to the Mite Data - Exploratory Approach 7.5.3 Application to the Detrended Mite and Environmental Data 7.6 Space-Time Interaction Test in Multivariate ANOVA, Without Replicates 7.6.1 Introduction 7.6.2 Testing the Space-Time Interaction with the sti Functions 7.7 Conclusion 8 Community Diversity 8.1 Objectives 8.2 The Multiple Facets of Diversity 8.2.1 Introduction 8.2.2 Species Diversity Measured by a Single Number 8.2.3 Taxonomic Diversity Indices in Practice 8.3 When Space Matters: Alpha, Beta and Gamma Diversities 8.4 Beta Diversity 8.4.1 Beta Diversity Measured by a Single Number 8.4.2 Beta Diversity as the Variance of the Community Composition Table: SCBD and LCBD Indices 8.4.3 Partitioning Beta Diversity into Replacement, Richness Difference and Nestedness Components 8.5 Functional Diversity, Functional Composition and Phylogenetic Diversity of Communities 8.5.1 Alpha Functional Diversity 8.5.2 Beta Taxonomic, Phylogenetic and Functional Diversities 8.6 Conclusion Bibliography Index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...