ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (242,138)
  • Cell Press  (242,138)
Collection
Years
Journal
  • 1
    facet.materialart.
    Unknown
    Cell Press
    In:  EPIC3Current Biology, Cell Press, 23(14), pp. 1330-1334, ISSN: 09609822
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 11 (2015): 1-12, doi:10.1016/j.celrep.2015.03.049.
    Description: Although recent research revealed an impact of westernization on diversity and composition of the human gut microbiota, the exact consequences on metacommunity characteristics are insufficiently understood, and the underlying ecological mechanisms have not been elucidated. Here, we have compared the fecal microbiota of adults from two non-industrialized regions in Papua New Guinea (PNG) with that of United States (US) residents. Papua New Guineans harbor communities with greater bacterial diversity, lower inter-individual variation, vastly different abundance profiles, and bacterial lineages undetectable in US residents. A quantification of the ecological processes that govern community assembly identified bacterial dispersal as the dominant process that shapes the microbiome in PNG but not in the US. These findings suggest that the microbiome alterations detected in industrialized societies might arise from modern lifestyle factors limiting bacterial dispersal, which has implications for human health and the development of strategies aimed to redress the impact of westernization.
    Description: This study was partly funded by BioGaia AB. BioGaia had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. A portion of this research is part of the Microbiomes in Transition Initiative at Pacific Northwest National Laboratory (PNNL). This research was conducted under the Laboratory Directed Research and Development Program at PNNL, a multi-program national laboratory operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 2 (2012): 242–248, doi:10.1016/j.celrep.2012.06.016.
    Description: Ion selectivity of metazoan voltage-gated Na+ channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF) at the channel pore. Yet, in addition to channels with a preference for Ca2+ ions, the expression and characterization of Na+ channel homologs from the sea anemone Nematostella vectensis, a member of the early-branching metazoan phylum Cnidaria, revealed a sodium-selective channel bearing a noncanonical SF. Mutagenesis and physiological assays suggest that pore elements additional to the SF determine the preference for Na+ in this channel. Phylogenetic analysis assigns the Nematostella Na+-selective channel to a channel group unique to Cnidaria, which diverged 〉540 million years ago from Ca2+-conducting Na+ channel homologs. The identification of Cnidarian Na+-selective ion channels distinct from the channels of bilaterian animals indicates that selectivity for Na+ in neuronal signaling emerged independently in these two animal lineages.
    Description: This study was supported by a research grant from the Austrian National Science Foundation (FWF P 21108-B17) to U.T., and by a United States-Israel Binational Agricultural Research and Development Grant (IS-4313-10) and an Israeli Science Foundation grant (107/08) to M.G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in iScience 1 (2018): 24-34, doi:10.1016/j.isci.2018.01.001.
    Description: The color and pattern changing abilities of octopus, squid, and cuttlefish via chromatophore neuro-muscular organs are unparalleled. Cuttlefish and octopuses also have a unique muscular hydrostat system in their skin. When this system is expressed, dermal bumps called papillae disrupt body shape and imitate the fine texture of surrounding objects, yet the control system is unknown. Here we report for papillae: (1) the motoneurons and the neurotransmitters that control activation and relaxation, (2) a physiologically fast expression and retraction system, and (3) a complex of smooth and striated muscles that enables long-term expression of papillae through sustained tension in the absence of neural input. The neural circuits controlling acute shape-shifting skin papillae in cuttlefish show homology to the iridescence circuits in squids. The sustained tension in papillary muscles for long-term camouflage utilizes muscle heterogeneity and points toward the existence of a “catch-like” mechanism that would reduce the necessary energy expenditure.
    Description: This work was funded by an AFOSR grant no. FA9550-14-1-0134, Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant (097814/Z/11/Z) to P.T.G-B., and a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (BBSRC, BB/L024667/1) to T.J.W.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 25 (2018): 1281–1291, doi:10.1016/j.celrep.2018.10.005.
    Description: Morphogenesis and mechanoelectrical transduction of the hair cell mechanoreceptor depend on the correct assembly of Usher syndrome (USH) proteins into highly organized macromolecular complexes. Defects in these proteins lead to deafness and vestibular areflexia in USH patients. Mutations in a non-USH protein, glutaredoxin domain-containing cysteine-rich 1 (GRXCR1), cause non-syndromic sensorineural deafness. To understand the deglutathionylating enzyme function of GRXCR1 in deafness, we generated two grxcr1 zebrafish mutant alleles. We found that hair bundles are thinner in homozygous grxcr1 mutants, similar to the USH1 mutants ush1c (Harmonin) and ush1ga (Sans). In vitro assays showed that glutathionylation promotes the interaction between Ush1c and Ush1ga and that Grxcr1 regulates mechanoreceptor development by preventing physical interaction between these proteins without affecting the assembly of another USH1 protein complex, the Ush1c- Cadherin23-Myosin7aa tripartite complex. By elucidating the molecular mechanism through which Grxcr1 functions, we also identify a mechanism that dynamically regulates the formation of Usher protein complexes.
    Description: This work was supported by grants from the NIH (DC004186, OD011195, and HD22486).
    Keywords: Grxcr1 ; Usher syndrome ; Hair cell ; Stereocilia ; Glutathionylation ; Harmonin ; Sans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meaders, J. L., de Matos, S. N., & Burgess, D. R. A pushing mechanism for microtubule aster positioning in a large cell type. Cell Reports, 33(1), (2020): 108213, doi:10.1016/j.celrep.2020.108213.
    Description: After fertilization, microtubule (MT) sperm asters undergo long-range migration to accurately position pronuclei. Due to the large sizes of zygotes, the forces driving aster migration are considered to be from pulling on the astral MTs by dynein, with no significant contribution from pushing forces. Here, we re-investigate the forces responsible for sperm aster centration in sea urchin zygotes. Our quantifications of aster geometry and MT density preclude a pulling mechanism. Manipulation of aster radial lengths and growth rates, combined with quantitative tracking of aster migration dynamics, indicates that aster migration is equal to the length of rear aster radii, supporting a pushing model for centration. We find that dynein inhibition causes an increase in aster migration rates. Finally, ablation of rear astral MTs halts migration, whereas front and side ablations do not. Collectively, our data indicate that a pushing mechanism can drive the migration of asters in a large cell type.
    Description: We would like to thank Dr. Jesse Gatlin for sending us the Tau-mCherry fusion protein for imaging live MTs. We would also like to thank Dr. Timothy Mitchison, Dr. Christine Field, and Dr. James Pelletier for supplying us with CA4, p150-CC1, and EB1-GFP peptides, as well as for fruitful discussions. Finally, we would like to thank Dr. Charles Shuster and Leslie Toledo-Jacobo for constructive feedback when preparing the manuscript. We thank Bret Judson and the Boston College Imaging Core for infrastructure and support. This material is based upon work supported by NSF grant no. 124425 to D.R.B.
    Keywords: Dynein ; Aster ; Microtubule ; Centrosome ; Pronucleus ; Fertilization ; Aster position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stolp, Z. D., Kulkarni, M., Liu, Y., Zhu, C., Jalisi, A., Lin, S., Casadevall, A., Cunningham, K. W., Pineda, F. J., Teng, X., & Hardwick, J. M. Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Reports, 39(2), (2022): 110647, https://doi.org/10.1016/j.celrep.2022.110647.
    Description: Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans.
    Description: Funding sources: National Institutes of Health, United States grants AI144373 and NS127076 (J.M.H.), AI115016 and AI153414 (K.W.C.), and AI052733, AI152078, and HL059842 (A.C.); National Natural Science Foundation of China 31970550; and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (X.T.).
    Keywords: Yeast ; Programmed cell death ; Vesicle trafficking ; AP-3 ; Vacuole ; Cryptococcus ; Yck3 ; Regulated cell death ; Lysosome ; Vacuolar membrane permeabilization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-30
    Description: Most tropical corals live in symbiosis with Symbiodiniaceae algae whose photosynthetic production of oxygen (O2) may lead to excess O2 in the diffusive boundary layer (DBL) above the coral surface. When flow is low, cilia-induced mixing of the coral DBL is vital to remove excess O2 and prevent oxidative stress that may lead to coral bleaching and mortality. Here, we combined particle image velocimetry using O2-sensitive nanoparticles (sensPIV) with chlorophyll (Chla)-sensitive hyperspectral imaging to visualize the microscale distribution and dynamics of ciliary flows and O2 in the coral DBL in relation to the distribution of Symbiodiniaceae Chla in the tissue of the reef building coral, Porites lutea. Curiously, we found an inverse relation between O2 in the DBL and Chla in the underlying tissue, with patches of high O2 in the DBL above low Chla in the underlying tissue surrounding the polyp mouth areas and pockets of low O2 concentrations in the DBL above high Chla in the coenosarc tissue connecting neighboring polyps. The spatial segregation of Chla and O2 is related to ciliary-induced flows, causing a lateral redistribution of O2 in the DBL. In a 2D transport-reaction model of the coral DBL, we show that the enhanced O2 transport allocates parts of the O2 surplus to areas containing less chla, which minimizes oxidative stress. Cilary flows thus confer a spatially complex mass transfer in the coral DBL, which may play an important role in mitigating oxidative stress and bleaching in corals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell 7 (2014): 1601–1613, doi:10.1016/j.celrep.2014.04.047.
    Description: We used high-speed optogenetic mapping technology to examine the spatial organization of local inhibitory circuits formed by cerebellar interneurons. Transgenic mice expressing channelrhodopsin-2 exclusively in molecular layer interneurons allowed us to focally photostimulate these neurons, while measuring resulting responses in postsynaptic Purkinje cells. This approach revealed that interneurons converge upon Purkinje cells over a broad area and that at least seven interneurons form functional synapses with a single Purkinje cell. The number of converging interneurons was reduced by treatment with gap junction blockers, revealing that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affected convergence in sagittal slices, but not in coronal slices, indicating a sagittal bias in electrical coupling between interneurons. We conclude that electrical synapse networks spatially coordinate interneurons in the cerebellum and may also serve this function in other brain regions.
    Description: This work was supported by a CRP grant from the National Research Foundation of Singapore and by the World Class Institute (WCI) Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (NRF grant number WCI 2009-003).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reusch, S., Biswas, A., Hirst, W. G., & Reber, S. Affinity purification of label-free tubulins from xenopus egg extracts. STAR Protocols, 1(3), (2020): 100151, doi:10.1016/j.xpro.2020.100151.
    Description: Cytoplasmic extracts from unfertilized Xenopus eggs have made important contributions to our understanding of microtubule dynamics, spindle assembly, and scaling. Until recently, these in vitro studies relied on the use of heterologous tubulin. This protocol allows for the purification of physiologically relevant Xenopus tubulins in milligram yield, which are a complex mixture of isoforms with various post-translational modifications. The protocol is applicable to any cell or tissue of interest. For complete details on the use and execution of this protocol, please refer to Hirst et al. (2020).
    Description: This article was prompted by our stay at the Marine Biological Laboratory (MBL), Woods Hole, MA, in the summer of 2016 funded by the Princeton-Humboldt Strategic Partnership Grant together with the lab of Sabine Petry (Princeton University). We are grateful to the National Xenopus Resource (NXR) for supplying frogs. For mass spectrometry, we would like to acknowledge the assistance of Benno Kuropka and Chris Weise from the Core Facility BioSupraMol supported by the Deutsche Forschungsgemeinschaft (DFG). We thank the Protein Expression Purification and Characterization (PEPC) facility at the MPI-CBG; in particular, we thank Aliona Bogdanova and Barbara Borgonovo. We thank all former and current members of the Reber lab for discussions and helpful advice, in particular Christoph Hentschel and Soma Zsoter for technical assistance. S.R. acknowledges funding from the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...