ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cephalopod  (2)
  • BioMed Central  (1)
  • Springer Nature  (1)
  • Molecular Diversity Preservation International (MDPI)
  • 2015-2019  (2)
  • 1945-1949
Collection
Publisher
Years
  • 2015-2019  (2)
  • 1945-1949
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Animal Biotelemetry 3 (2015): 31, doi:10.1186/s40317-015-0076-1.
    Description: Soft-bodied marine invertebrates comprise a keystone component of ocean ecosystems; however, we know little of their behaviors and physiological responses within their natural habitat. Quantifying ocean conditions and measuring organismal responses to the physical environment is vital to understanding the species or ecosystem-level influences of a changing ocean. Here we describe a novel, soft-bodied invertebrate eco-sensor tag (the ITAG), its trial attachments to squid and jellyfish, and the fine-scale behavioral measurements recorded on captive animals. Tags were deployed on five jellyfish (Aurelia aurita) and eight squid (Loligo forbesi) in laboratory conditions for up to 24 h. Using concurrent video and tag data, movement signatures for specific behaviors were identified. These behaviors included straight swimming (for jellyfish), and finning, jetting, direction reversal and turning (for squid). Overall activity levels were quantified using the root-mean-squared magnitude of acceleration, and finning was found to be the dominant squid swimming gait during captive squid experiments. External light sensors on the ITAG were used to compare squid swimming activity relative to ambient light across a ca. 20-h trial. The deployments revealed that while swimming was continuous for captive squid, energetically costly swimming behaviors (i.e., jetting and rapid direction reversals) occurred infrequently. These data reflect the usefulness of the ITAG to study trade-offs between behavior and energy expenditure in captive and wild animals. These data demonstrate that eco-sensors with sufficiently high sampling rates can be applied to quantify behavior of soft-bodied taxa and changes in behavior due to interactions with the surrounding environment. The methods and tool described here open the door for substantial lab and field-based measurements of fine-scale behavior, physiology, and concurrent environmental parameters that will inform fisheries management, and elucidate the ecology of these important keystone taxa.
    Description: This work was supported by WHOI’s Ocean Life Institute and the Innovative Technology Program, Hopkins Marine Station’s Marine Life Observatory (to KK), as well as the National Science Foundation’s Ocean Acidification Program (to TAM) and NSF’s Program for Innovative Development of Biological Research (to TAM, KK and KAS).
    Keywords: Jellyfish ; Cephalopod ; Activity pattern ; Activity pattern ; Climate ; High-temporal resolution ; Sensory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of Springer Nature for personal use, not for redistribution. The definitive version was published in Zakroff, C., Mooney, T.A. & Wirth, C. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system. Hydrobiologia, 808(1),(2018):83-106, doi:10.1007/s10750-017-3342-9.
    Description: Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2 levels in a dose-dependent manner ranging from 400 - 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical velocities, significantly decreased from 400 to 1000 ppm pCO2, but showed non-significant decreases at higher concentrations. Activity and horizontal velocity decreased linearly with increasing pCO2, indicating a subtle impact to paralarval energetics. Patterns may have been obscured by notable individual variability in the paralarvae. Responses were also seen to vary between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared resilient to OA, with effects being slight. The newly developed 3D tracking system provides a powerful and accessible method for future studies to explore similar questions in the larvae of aquatic taxa.
    Description: We thank D. Remsen, the MBL Marine Resources Center staff, and MBL Gemma crew for their support in acquiring squid. R. Galat and the facilities staff of the WHOI ESL provided system support. D. McCorkle, KYK Chan, and M. White provided valuable insight on the OA system. E. Moberg, A. Beet, and A. Solow assisted in the development and coding of the 3D model system. We also thank E. Bonk, K. Hoering, M. Lee, D. Weiler, and A. Schlunk for their assistance and input with the experiments. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. This project is funded by NSF Grant No. 1220034.
    Keywords: Hypercapnia ; Cephalopod ; Larvae ; Movement analysis ; Stress physiology
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...