ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8,061)
  • American Meteorological Society  (8,061)
Collection
  • Articles  (8,061)
Publisher
Years
Topic
  • 1
    Publication Date: 2021-10-15
    Description: A new, energetically and dynamically consistent closure for the lee wave drag on the large scale circulation is developed and tested in idealized and realistic ocean model simulations. The closure is based on the radiative transfer equation for internal gravity waves, integrated over wavenumber space, and consists of two lee wave energy compartments for up-and downward propagating waves, which can be co-integrated in an ocean model. Mean parameters for vertical propagation, mean-ow interaction, and the vertical wave momentum flux are calculated assuming that the lee waves stay close to the spectral shape given by linear theory of their generation.Idealized model simulations demonstrate how lee waves are generated and interact with the mean flow and contribute to mixing, and document parameter sensitivities. A realistic eddy-permitting global model at 1/10° resolution coupled to the new closure yields a globally integrated energy flux of 0.27 TW into the lee wave field. The bottom lee wave stress on the mean flow can be locally as large as the surface wind stress and can reach into the surface layer. The interior energy transfers by the stress are directed from the mean flow to the waves, but this often reverses, for example in the Southern Ocean in case of shear reversal close to the bottom. The global integral of the interior energy transfers from mean ow to waves is 0.14 TW, while 0.04 TW is driving the mean ow, but this share depends on parameter choices for non-linear effects.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-08
    Description: The complex behaviors of internal solitary waves (ISWs) in the Andaman Sea were revealed using data collected over nearly 22-month-long observation period completed by two moorings. Emanating from the submarine ridges northwest of Sumatra Island and south of Car Nicobar, two types of ISWs, referred to as S- and C-ISWs, respectively, were identified in the measurements, and S-ISWs were generally found to be stronger than C-ISWs. The observed S- and C-ISWs frequently appeared as multi-wave packets, accounting for 87% and 43% of their observed episodes, respectively. The simultaneous measurements collected by the two moorings featured evident variability along the S-ISW crests, with the average wave amplitude in the northern portion being 36% larger than that in the southern portion. The analyses of the arrival times revealed that the S-ISWs in the northern portion occurred more frequently and arrived more irregularly than those in the southern portion. Moreover, the temporal variability of ISWs drastically differed on monthly and seasonal time scales, characterized by relatively stronger S-ISWs in spring and autumn. Over interannual time scale, the temporal variations in ISWs were generally subtle. The monthly-to-annual variations of ISWs could be mostly explained by the variability in stratification, which could be modulated by the monsoons, the winds in equatorial Indian Ocean and the mesoscale eddies in Andaman Sea. From careful analyses preformed based on the long-term measurements, we argued that the observed ISWs were likely generated via internal tide release mechanism and their generation processes were obviously modulated by background circulations.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-21
    Description: The Lofoten Maelstrom has been known for centuries as one of the strongest open-ocean tidal currents in the world, estimated to reach 3 m s−1, and by some estimates as much as 5 m s−1. The strong current gives rise to choppy seas when waves enter the Moskenes Sound, making the area extremely difficult to navigate. Despite its reputation, few studies of its strength exist and no stationary in situ measurements for longer time periods have been made due to the challenging conditions. By deploying for the first time in situ wave and current instruments, we confirm some previous estimates of the strength of the current. We also show that its strength is strongly connected with wave breaking. From a consideration of specific forcing terms in the dynamical energy balance equation for waves on a variable current, we assess the impact of the underlying current using a convenient metric formulated as a function of the horizontal current gradients. We find that the horizontal gradients are a likely explanation for the observed enhanced wave breaking during strong currents at a rising tide.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-21
    Description: The quantification of pressure fields in the airflow over water waves is fundamental for understanding the coupling of the atmosphere and the ocean. The relationship between the pressure field, and the water surface slope and velocity, are crucial in setting the fluxes of momentum and energy. However, quantifying these fluxes is hampered by difficulties in measuring pressure fields at the wavy air-water interface. Here we utilise results from laboratory experiments of wind-driven surface waves. The data consist of particle image velocimetry of the airflow combined with laser-induced fluorescence of the water surface. These data were then used to develop a pressure field reconstruction technique based on solving a pressure Poisson equation in the airflow above water waves. The results allow for independent quantification of both the viscous stress and pressure-induced form drag components of the momentum flux. Comparison of these with an independent bulk estimate of the total momentum flux (based on law-of-the-wall theory) shows that the momentum budget is closed to within approximately 5%. In the partitioning of the momentum flux between viscous and pressure drag components, we find a greater influence of form drag at high wind speeds and wave slopes. An analysis of the various approximations and assumptions made in the pressure reconstruction, along with the corresponding sources of error, is also presented.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-17
    Description: Submesoscale lateral transport of Lagrangian particles in pycnocline conditions is investigated by means of idealized numerical simulations with reduced-interaction models. Using a projection technique, the models are formulated in terms of wave-mode and vortical-mode nonlinear interactions, and they range in complexity from full Boussinesq to waves-only and vortical-modes-only (QG) models. We find that, on these scales, most of the dispersion is done by vortical motions, but waves cannot be discounted because they play an important, albeit indirect, role. In particular, we show that waves are instrumental in filling out the spectra of vortical-mode energy at smaller scales through non-resonant vortex-wave-wave triad interactions. We demonstrate that a richer spectrum of vortical modes in the presence of waves enhances the effective lateral diffusivity, compared to QG. Waves also transfer energy upscale to vertically sheared horizontal flows which are a key ingredient for internal-wave shear dispersion. In the waves-only model, the dispersion rate is an order of magnitude smaller and is attributed entirely to internal-wave shear dispersion.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-17
    Description: The Arabian Sea, influenced by the Indian monsoon, has many unique features including its basin scale seasonally reversing surface circulation and the Great Whirl, a seasonal anti-cyclonic system appearing during the southwest monsoon close to the western boundary. To establish a comprehensive dynamical picture of the Arabian Sea, we utilize numerical model output and design a full vorticity budget that includes a fully-decomposed nonlinear term. The ocean general circulation model has 0.1° resolution and is mesoscale eddy-resolving in the region. In the western boundary current system, we highlight the role of nonlinear eddies in the life cycle of the Great Whirl. The nonlinear eddy term is of leading order importance in this feature’s vorticity balance. Specifically, it contributes to the Great Whirl’s persistence in boreal fall after the weakening of the southwesterly winds. In the open ocean, Sverdrup dynamics and annual Rossby waves are found to dominate the vorticity balance; the latter is considered as a key factor in the formation of the Great Whirl and the sea-sonal reversal of the western boundary current. In addition, we discuss different forms of vertically-integrated vorticity equations in the model and argue that the bottom pressure torque term can be interpreted analogously as friction in the western boundary and vortex stretching in the open ocean.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-17
    Description: The ocean is home to many different submesoscale phenomena, including internal waves, fronts, and gravity currents. Each of these processes entail complex nonlinear dynamics, even in isolation. Here we present shipboard, moored, and remote observations of a submesoscale gravity current front created by a shoaling internal tidal bore in the coastal ocean. The internal bore is observed to flatten as it shoals, leaving behind a gravity current front that propagates significantly slower than the bore. We posit that the generation and separation of the front from the bore is related to particular stratification ahead of the bore, which allows the bore to reach the maximum possible internal wave speed. After the front is calved from the bore, it is observed to propagate as a gravity current for ≈4 hours, with associated elevated turbulent dissipation rates. A strong cross-shore gradient of along-shore velocity creates enhanced vertical vorticity (Rossby number ≈ 40) that remains locked with the front. Lateral shear instabilities develop along the front and may hasten its demise.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-17
    Description: The abyssal Southwest Pacific Basin has warmed significantly between 1992-2017, consistent with warming along the bottom limb of the meridional overturning circulation seen throughout the global oceans. Here we present a framework for assessing the abyssal heat budget that includes the time-dependent unsteady effects of decadal warming and direct and indirect estimates of diapycnal mixing from microscale temperature measurements and finescale parameterizations. The unsteady terms estimated from the decadalwarming rate are shown to be within a factor of 3 of the steady state terms in the abyssal heat budget for the coldest portion of the water column and therefore, cannot be ignored. We show that a reduction in the lateral heat flux for the coldest temperature classes compensated by an increase in warmer waters advected into the basin has important implications for the heat balance and diffusive heat fluxes in the basin. Finally, vertical diffusive heat fluxes are estimated in different ways: using the newly available CTD-mounted microscale temperature measurements, a finescale strain parameterization, and a vertical kinetic energy parameterization from data along the P06 transect along 32.5°S. The unsteady-state abyssal heat budget for the basin shows closure within error estimates, demonstrating that (i) unsteady terms have become consequential for the heat balance in the isotherms closest to the ocean bottom and (ii) direct and indirect estimates from full depth GO-SHIP hydrographic transects averaged over similarly large spatial and temporal scales can capture the basin-averaged abyssal mixing needed to close the deep overturning circulation.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-14
    Description: The nominal spatial distribution of diapycnal mixing in the South China Sea (SCS) is obtained with Thorpe-scale analysis from 2004 to 2020. The inferred dissipation rate ε and diapycnal diffusivity Kz between 100 and 1500 m indicated that the strongest mixing occurred in the Luzon Strait and Dongsha Plateau regions, with ε ~ 3.0 × 10-8 W/kg (εmax = 5.3 × 10-6 W/kg) and Kz ~ 3.5 × 10-4 m2/s (Kz max = 4.2 = 10-2 m2/s). The weakest mixing occurred in the thermocline of the central basin, with ε ~ 6.2 × 10-10 W/kg and Kz ~ 3.7 × 10-6 m2/s. The ε and Kz in the continental slope indicated that the mixing in the northern part [O(10-8) W/kg, O(10-4) m2/s] was comparatively stronger than that in the Xisha and Nansha regions [O(10-9) W/kg, O(10-5) m2/s]. The Kz in the continental slope region (200–2000 m) decayed at a closed rate from the ocean bottom to the main thermocline when the measured depth D was normalized by the ocean depth H as D/H, whether in the shallow or deep oceans. The diapycnal diffusivity was parameterized as Kz = 3.3 × 10−4 (1 + )−2 − 6.0 × 10−6 m2/s. The vertically integrated energy dissipation was nominally as 15.8 mW/m2 for all data and 25.6 mW/m2 for data at stations H 〈 2000 m. This was about one order higher than that in the open oceans (3.0–3.3 mW/m2), which confirmed the active mixing state in the SCS.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-09
    Description: A set of realistic coastal simulations in California allows for the exploration of surface gravity wave effects on currents (WEC) in an active submesoscale current regime. We use a new method that takes into account the full surface gravity wave spectrum and produces larger Stokes drift than the monochromatic peak-wave approximation. We investigate two high wave events lasting several days — one from a remotely generated swell and another associated with local wind-generated waves — and perform a systematic comparison between solutions with and without WEC at two submesoscale-resolving horizontal grid resolutions (dx = 270 m and 100 m). WEC results in the enhancement of open-ocean surface density and velocity gradients when the averaged significant wave height HS is relatively large (〉 4.2m). For smaller waves, WEC is a minor effect overall. For the remote swell (strong waves and weak winds), WEC maintains submesoscale structures and accentuates the cyclonic vorticity and horizontal convergence skewness of submesoscale fronts and filaments. The vertical enstrophy ζ2 budget in cyclonic regions (ζ/f 〉 2) reveals enhanced vertical shear and enstrophy production via vortex tilting and stretching. Wind-forced waves also enhance surface gradients, up to the point where they generate a small-submesoscale roll-cell pattern with high vorticity and divergence that extends vertically through the entire mixed layer. The emergence of these roll-cells results in a buoyancy gradient sink near the surface that causes a modest reduction in the typically large submesoscale density gradients.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...