ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union (AGU)
  • Springer Science + Business Media
  • MDPI Publishing
  • 1
    Publication Date: 2024-02-27
    Description: Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO〈jats:sub〉2〈/jats:sub〉 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO〈jats:sub〉2〈/jats:sub〉 sink with lower net CO〈jats:sub〉2〈/jats:sub〉 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO〈jats:sub〉2〈/jats:sub〉 sink was located in western Canada (median: −52 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH〈jats:sub〉4〈/jats:sub〉 m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO〈jats:sub〉2〈/jats:sub〉 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-03-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-03-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 25(1), ISSN: 1525-2027
    Publication Date: 2024-03-04
    Description: Mineral dust accumulated on the ocean floor is an important archive for reconstructing past atmospheric circulation changes and climatological conditions in the source areas. Dust emitted from Southern Hemisphere dust sources is widely deposited over the oceans. However, there are few records of dust deposition over the open ocean, and a large need for extended geographical coverage exists. We present a large data set (134 surface sediment samples) of Late Holocene dust deposition from seafloor surface sediments covering the entire South Atlantic Ocean. Polymodal grain-size distributions of the lithogenic fraction indicate that the sediments are composed of multiple sediment components. By using end-member modeling, we attempt to disentangle the dust signal from non-aeolian sediments. Combined with 230Th-normalized lithogenic fluxes, we quantified the specific deposition fluxes for mineral dust, crrent-sorted sediments and ice-rafted debris (IRD). Although the method could not completely separate the different components in every region, it shows that dust deposition off the most prominent dust source for the South Atlantic Ocean—southern South America—amounts up to approximately 0.7 g cm−2 Kyr−1 and decreases downwind. Bottom-current-sorted sediments and IRD are mostly concentrated around the continental margins. The ratio of the coarse to fine dust end members reveals input from north African dust sources to the South Atlantic. The majority of the observations are in good agreement with new model simulations. This extensive and relevant data set of dust grain size and deposition fluxes to the South Atlantic could be used to calibrate and validate further model simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-03-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-13
    Description: The availability of silicon (Si) in the ocean plays an important role in regulating biogeochemical and ecological processes. The Si budget of the Arctic Ocean appears balanced, with inputs equivalent to outputs, though it is unclear how a changing climate might aggravate this balance. In this study, we focus on Si cycling in Arctic coastal areas and continental shelf sediments to better constrain the Arctic Ocean Si budget. We provide the first estimate of amorphous Si (ASi) loading from erosion of coastal Yedoma deposits (30–90 Gmol yr−1), demonstrating comparable rates to particulate Si loading from rivers (10–90 Gmol yr−1). We found a positive relationship between surface sediment ASi and organic matter content on continental shelves. Combining these values with published Arctic shelf sediment properties and burial rates we estimate 70 Gmol Si yr−1 is buried on Arctic continental shelves, equivalent to 4.5% of all Si inputs to the Arctic Ocean. Sediment dissolved Si fluxes increased with distance from river mouths along cruise transects of shelf regions influenced by major rivers in the Laptev and East Siberian seas. On an annual basis, we estimate that Arctic shelf sediments recycle approximately up to twice as much DSi (680 Gmol Si) as is loaded from rivers (340–500 Gmol Si).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Global Biogeochemical Cycles, American Geophysical Union (AGU), 38(1), ISSN: 0886-6236
    Publication Date: 2024-02-13
    Description: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year−1 in observational product and +0.54 PgCO2-e year−1 in model median) and CH4 (+0.21 PgCO2-e year−1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%–60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-26
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Erosion of permafrost coasts due to climate warming releases large quantities of organic carbon (OC) into the Arctic Ocean. While burial of permafrost OC in marine sediments potentially limits degradation, resuspension of sediments in the nearshore zone potentially enhances degradation and greenhouse gas production, adding to the “permafrost carbon feedback.” Recent studies, focusing on bulk sediments, suggest that permafrost OC derived from coastal erosion is predominantly deposited close to shore. However, bulk approaches disregard sorting processes in the coastal zone, which strongly influence the OC distribution and fate. We studied soils and sediments along a transect from the fast‐eroding shoreline of Herschel Island—〈jats:italic〉Qikiqtaruk〈/jats:italic〉 (Yukon, Canada) to a depositional basin offshore. Sample material was fractionated by density (1.8 g cm〈jats:sup〉−3〈/jats:sup〉) and size (63 μm), separating loose OC from mineral‐associated OC. Each fraction was analyzed for element content (TOC, TN), carbon isotopes (δ〈jats:sup〉13〈/jats:sup〉C, Δ〈jats:sup〉14〈/jats:sup〉C), molecular biomarkers (〈jats:italic〉n〈/jats:italic〉‐alkanes, 〈jats:italic〉n〈/jats:italic〉‐alkanoic acids, lignin phenols, cutin acids), and mineral surface area. The OC partitioning between fractions changes considerably along the transect, highlighting the importance of hydrodynamic sorting in the nearshore zone. Additionally, OC and biomarker loadings decrease along the land‐ocean transect, indicating significant loss of OC during transport. However, molecular proxies for degradation show contrasting trends, suggesting that OC losses are not always well reflected in its degradation state. This study, using fraction partitioning that crosses land‐ocean boundaries in a way not done before, aids to disentangle sorting processes from degradation patterns, and provides quantitative insight into losses of thawed and eroded permafrost OC.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-04-05
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-13
    Description: Since the 1980s various international directives and frameworks have acknowledged the potential of risk communication to foster community empowerment. However, to achieve empowerment, communication has to be effective. When it comes to natural disasters, such as earthquakes, science communication requires the involvement of communities as a whole, promoting bottom-up strategies and proactive engagement. In this light, we conducted a scoping review of scientific publications on seismic risk communication in Europe published between 2000 and 2022. We focused on how seismic risk communication has changed in that time span, looking for targeted approaches, tools, recipients and channels. Here we provide an overview of the results obtained from the analysis of 109 selected publications, also highlighting the importance of scientific communication as a transnational problem, due to the mobility of modern society. Our study reveals that seismic risk communication in Europe is becoming increasingly proactive, focusing on a bottom-up strategy that relies on youth to build the resilience of future generations. The potential for the community empowerment has been primarily addressed with seismic risk communication during the pre-crisis phase of the disaster, when risk awareness can be effectively raised. Social media are increasingly used to provide timely and actionable information in times of crisis, to engage citizens within a two-way risk communication model, in the pre-crisis time, and to provide scientific data for post-disaster processing. The future agenda of seismic risk communication in Europe should focus on building trust with the public, moving towards a three-way model of seismic risk communication and, even more importantly, taking action to curb the spread of fake news and their negative impact on disaster management. Last but not least, more efforts should be made to link practice and theory and explicitly build seismic risk communication on theoretical models.
    Description: Published
    Description: San Francisco, California, USA
    Description: OS: Terza missione
    Keywords: Seismic risk ; communication ; Europe ; scoping review ; 04.06. Seismology ; 05.08. Risk ; 05.09
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-03-13
    Description: In mid-September 2021 there was a rapid increase in geophysical and geochemical parameters on the island of Vulcano, Italy, reaching alarming values. This phase of unrest aroused serious concern among Civil Protection, local authorities and the scientific community due to the risk of phreatomagmatic activity, with potentially serious repercussions on the inhabitants of the island and on visiting tourists. The beginning of the unrest was marked by a high occurrence rate of local micro-seismicity related to fluid dynamics within the shallower hydrothermal system (mainly Long Period and Very Long Period events); Volcano-Tectonic (VT) earthquakes increased in late October after most of the monitored parameters reached their climax. Afterwards, major episodes of VT activity were also recorded from March to April and at the end of the year 2022, when an earthquake of ML 4.6 occurred on December 4, SW of the island of Vulcano. Here, we analyze the VT earthquakes from January 2020 to December 2022, in terms of space-time distribution, energy release and focal mechanisms in the framework of the regional geodynamic context and in the light of the main characteristics of the seismic activity recorded in the Vulcano area over the past 36 years.
    Description: Published
    Description: San Francisco, California, USA
    Description: OST3 Vicino alla faglia
    Keywords: earthquakes ; monitoring ; volcano unrest ; Vulcano ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publication Date: 2024-03-18
    Description: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publication Date: 2024-03-18
    Description: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publication Date: 2024-03-18
    Description: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-03-21
    Description: Tropospheric reactive bromine (Bry) influences the oxidation capacity of the atmosphere by acting as a sink for ozone and nitrogen oxides. Aerosol acidity plays a crucial role in Bry abundances through acid-catalyzed debromination from sea-salt-aerosol, the largest global source. Bromine concentrations in a Russian Arctic ice-core, Akademii Nauk, show a 3.5-fold increase from pre-industrial (PI) to the 1970s (peak acidity, PA), and decreased by half to 1999 (present day, PD). Ice-core acidity mirrors this trend, showing robust correlation with bromine, especially after 1940 (r = 0.9). Model simulations considering anthropogenic emission changes alone show that atmospheric acidity is the main driver of Bry changes, consistent with the observed relationship between acidity and bromine. The influence of atmospheric acidity on Bry should be considered in interpretation of ice-core bromine trends.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(4), ISSN: 0094-8276
    Publication Date: 2024-03-27
    Description: The eruption of the Hunga Tonga‐Hunga Ha'apai volcano on 15 January 2022 was one of the most explosive eruptions of the last decades. The amount of water vapor injected into the stratosphere was unprecedented in the observational record, increasing the stratospheric water vapor burden by about 10%. Using model runs from the ATLAS chemistry and transport model and Microwave Limb Sounder (MLS) satellite observations, we show that while 20%–40% more water vapor than usual was entrained into the Antarctic polar vortex in 2023 as it formed, the direct chemical effect of the increased water vapor on Antarctic ozone depletion in June through October was minor (less than 4 DU). This is because low temperatures in the vortex, as occur every year in the Antarctic, limit water vapor to the saturation pressure and thus reset any anomalies through the process of dehydration before they can affect ozone loss.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-06-23
    Description: Climate change in the Arctic has substantial impacts on human life and ecosystems both within and beyond the Arctic. Our analysis of CMIP6 simulations shows that some climate models project much larger Arctic climate change than other models, including changes in sea ice, ocean mixed layer, air-sea heat flux, and surface air temperature in wintertime. In particular, dramatic enhancement of Arctic Ocean convection down to a few hundred meters is projected in these models but not in others. Interestingly, these models employ the same ocean model family (NEMO) while the choice of models for the atmosphere and sea ice varies. The magnitude of Arctic climate change is proportional to the strength of the increase in poleward ocean heat transport, which is considerably higher in this group of models. Establishing the plausibility of this group of models with high Arctic climate sensitivity to anthropogenic forcing is imperative given the implied ramifications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2023-06-23
    Description: Sea ice leads play an important role in energy exchange between the ocean and atmosphere in polar regions, and therefore must be considered in weather and climate models. As sea ice leads are not explicitly resolved in such models, lead-averaged surface heat flux is of considerable interest for the parameterization of energy exchange. Measurements and numerical studies have established that the lead-averaged surface heat flux depends not only on meteorological parameters, but also on lead width. Nonetheless, few studies to date have investigated the dependency of surface heat flux on lead width. Most findings on that dependency are based on observations with lead widths smaller than a few hundred meters, but leads can have widths from a few meters to several kilometers. In this parameter study, we present the results of three series of large-eddy simulations of turbulent exchange processes above leads. We varied the lead width and air temperature, as well as the roughness length. As this study focused on conditions without background wind, ice-breeze circulation occurred, and was the main driver of the adjustment of surface heat flux. A previous large-eddy simulation study with uncommonly large roughness length found that lead-averaged surface heat flux exhibited a distinct maximum at lead widths of about 3 km, while our results show the largest heat fluxes for the smallest leads simulated (lead width of 50 m). At more realistic roughness lengths, we observed monotonously increasing heat fluxes with increasing lead width. Further, new scaling laws for the ice-breeze circulation are proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(3), ISSN: 2169-9275
    Publication Date: 2023-06-23
    Description: The Arctic is warming much faster than the global average. This is known as Arctic Amplification and is caused by feedbacks in the local climate system. In this study, we explore a previously proposed hypothesis that an associated wind feedback in the Barents Sea could play an important role by increasing the warm water inflow into the Barents Sea. We find that the strong recent decrease in Barents Sea winter sea ice cover causes enhanced ocean-atmosphere heat flux and a local air temperature increase, thus a reduction in sea level pressure and a local cyclonic wind anomaly with eastward winds in the Barents Sea Opening. By investigating various reanalysis products and performing high-resolution perturbation experiments with the ocean and sea ice model FESOM2.1, we studied the impact of cyclonic atmospheric circulation changes on the warm Atlantic Water import into the Arctic via the Barents Sea and Fram Strait. We found that the observed wind changes do not significantly affect the warm water transport into the Barents Sea, which rejects the wind-feedback hypothesis. At the same time, the cyclonic wind anomalies in the Barents Sea increase the amount of Atlantic Water recirculating westwards in Fram Strait by a downslope shift of the West Spitsbergen Current, and thus reduce Atlantic Water reaching the Arctic basin via Fram Strait. The resulting warm-water anomaly in the Greenland Sea Gyre drives a local anticyclonic circulation anomaly.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(22), ISSN: 0094-8276
    Publication Date: 2023-11-25
    Description: Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the long‐term variability of Antarctic sea ice, and the limited attention given to model‐dependent parameters in current sea ice data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern Ocean in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the sea ice volume anomaly modeling reveals the importance of the sea ice‐ocean interaction in the SIC assimilation, implying the necessity of assimilating more oceanic and sea‐ice observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(20), ISSN: 0094-8276
    Publication Date: 2023-11-20
    Description: Surface processes alter the water stable isotope signal of the surface snow after deposition. However, it remains an open question to which extent surface post-depositional processes should be considered when inferring past climate information from ice core records. Here, we present simulations for the Greenland Ice Sheet, combining outputs from two climate models with an isotope-enabled snowpack model. We show that surface vapor exchange and associated fractionation imprint a climate signal into the firn, resulting in an increase in the annual mean value of δ18O by +2.3‰ and a reduction in d-excess by −6.3‰. Further, implementing isotopic fractionation during surface vapor exchange improves the representation of the observed seasonal amplitude in δ18O from 65.0% to 100.2%. Our results stress that surface vapor exchange is important in the climate proxy signal formation and needs consideration when interpreting ice core climate records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-02-23
    Description: Comparing helicopter-borne surface temperature maps in winter and optical orthomosaics in summer from the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one-dimensional steady-state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold-based classification achieves a correct classification for 41% of the melt ponds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), 38, 22 p., pp. e2022PA004439-e2022PA004439, ISSN: 2572-4517
    Publication Date: 2023-08-30
    Description: Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio-Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B-based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B-based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B-based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under-constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 〉 0.9) related to equatorial surface-ocean pH, which can be used for consistency checks. Long-term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio-Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(12), ISSN: 0094-8276
    Publication Date: 2023-09-01
    Description: Aquatic ecosystems play an important role in global methane cycling and many field studies have reported methane supersaturation in the oxic surface mixed layer (SML) of the ocean and in the epilimnion of lakes. The origin of methane formed under oxic condition is hotly debated and several pathways have recently been offered to explain the “methane paradox.” In this context, stable isotope measurements have been applied to constrain methane sources in supersaturated oxygenated waters. Here we present stable carbon isotope signatures for six widespread marine phytoplankton species, three haptophyte algae and three cyanobacteria, incubated under laboratory conditions. The observed isotopic patterns implicate that methane formed by phytoplankton might be clearly distinguished from methane produced by methanogenic archaea. Comparing results from phytoplankton experiments with isotopic data from field measurements, suggests that algal and cyanobacterial populations may contribute substantially to methane formation observed in the SML of oceans and lakes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 15(9), ISSN: 1942-2466
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Most viscous‐plastic sea ice models use the elliptical yield curve. This yield curve has a fundamental flaw: it excludes acute angles between deformation features at high resolution. Conceptually, the teardrop (TD) and parabolic lens (PL) yield curves offer an attractive alternative. These yield curves feature a non‐symmetrical shape, a Coulombic behavior for the low‐medium compressive stress, and a continuous transition to the ridging‐dominant mode, but their published formulation leads to negative or zero bulk and shear viscosities and, consequently, poor numerical convergence with stress states at times outside the yield curve. These issues are a consequence of the original assumption that the constitutive equations of the commonly used elliptical yield curve are also applicable to non‐symmetrical yield curves and yield curves with tensile strength. We derive a corrected formulation for the constitutive relations of the TD and PL yield curves. Results from simple uni‐axial loading experiments show that with the new formulation the numerical convergence of the solver improves and much smaller nonlinear residuals after a smaller number of total solver iterations can be reached, resulting in significant improvements in numerical efficiency and representation of the stress and deformation fields. The TD and PL yield curves lead to smaller angles of failure that better agree with observations. They are promising candidates to replace the elliptical yield curve in high‐resolution pan‐Arctic sea ice simulations.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Reviews of Geophysics, American Geophysical Union (AGU), 61(3), ISSN: 8755-1209
    Publication Date: 2023-10-09
    Description: Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(1), ISSN: 2169-9275
    Publication Date: 2023-05-10
    Description: We assessed the spatial and temporal variability of the Arctic Boundary Current (ABC) using seven oceanographic moorings, deployed across the continental slope north of Severnaya Zemlya in 2015–2018. Transports and individual water masses were quantified based on temperature and salinity recorders and current profilers. Our results were compared with observations from the northeast Svalbard and the central Laptev Sea continental slopes to evaluate the hydrographic transformation along the ABC pathway. The highest velocities (〉0.30 m s−1) of the ABC occurred at the upper continental slope and decreased offshore to below 0.03 m s−1 in the deep basin. The ABC showed seasonal variability with velocities two times higher in winter than in summer. Compared to upstream conditions in Svalbard, water mass distribution changed significantly within 20 km of the shelf edge due to mixing with- and intrusion of shelf waters. The ABC transported 4.15 ± 0.3 Sv in the depth range 50–1,000 m, where 0.88 ± 0.1, 1.5 ± 0.2, 0.61 ± 0.1 and 1.0 ± 0.15 Sv corresponded to Atlantic Water (AW), Dense Atlantic Water (DAW), Barents Sea Branch Water (BSBW) and Transformed Atlantic Water (TAW). 62–70% of transport was constrained to within 30–40 km of the shelf edge, and beyond 84 km, transport increases were estimated to be 0.54 Sv. Seasonality of TAW derived from local shelf-processes and advection of seasonal-variable Fram Strait waters, while BSBW transport variability was dominated by temperature changes with maximum transport coinciding with minimum temperatures. Further Barents Sea warming will likely reduce TAW and BSBW transport leading to warmer conditions along the ABC pathway.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-06-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), ISSN: 2572-4517
    Publication Date: 2023-02-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-03-01
    Description: The Himalayan mountain range produces one of the steepest and largest rainfall gradients on Earth, with 〉3 m/yr rainfall difference over a ∼100 km distance. The Indian Summer Monsoon (ISM) contributes more than 80% to the annual precipitation budget of the central Himalayas. The remaining 20% falls mainly during pre-ISM season. Understanding the seasonal cycle and the transfer pathways of moisture from precipitation to the rivers is crucial for constraining water availability in a warming climate. However, the partitioning of moisture into the different storage systems such as snow, glacier, and groundwater and their relative contribution to river discharge throughout the year remains under-constrained. Here, we present novel field data from the Kali Gandaki, a trans-Himalayan river, and use 4-year time series of river and rain water stable isotope composition (δ18O and δ2H values) as well as river discharge, satellite Global Precipitation Measurement amounts, and moisture source trajectories to constrain hydrological variability. We find that rainfall before the onset of the ISM is isotopically distinct and that ISM rain and groundwater have similar isotopic values. Our study lays the groundwork for using isotopic measurements to track changes in precipitation sources during the pre-ISM to ISM transition in this key region of orographic precipitation. Specifically, we highlight the role of pre-ISM precipitation, derived from the Gangetic plain, to define the seasonal river isotopic variability across the central Himalayas. Lastly, isotopic values across the catchment document the importance of a large well-mixed groundwater reservoir supplying river discharge, especially during the non-ISM season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-03-01
    Description: The Himalayan mountain range produces one of the steepest and largest rainfall gradients on Earth, with 〉3 m/yr rainfall difference over a ∼100 km distance. The Indian Summer Monsoon (ISM) contributes more than 80% to the annual precipitation budget of the central Himalayas. The remaining 20% falls mainly during pre-ISM season. Understanding the seasonal cycle and the transfer pathways of moisture from precipitation to the rivers is crucial for constraining water availability in a warming climate. However, the partitioning of moisture into the different storage systems such as snow, glacier, and groundwater and their relative contribution to river discharge throughout the year remains under-constrained. Here, we present novel field data from the Kali Gandaki, a trans-Himalayan river, and use 4-year time series of river and rain water stable isotope composition (δ18O and δ2H values) as well as river discharge, satellite Global Precipitation Measurement amounts, and moisture source trajectories to constrain hydrological variability. We find that rainfall before the onset of the ISM is isotopically distinct and that ISM rain and groundwater have similar isotopic values. Our study lays the groundwork for using isotopic measurements to track changes in precipitation sources during the pre-ISM to ISM transition in this key region of orographic precipitation. Specifically, we highlight the role of pre-ISM precipitation, derived from the Gangetic plain, to define the seasonal river isotopic variability across the central Himalayas. Lastly, isotopic values across the catchment document the importance of a large well-mixed groundwater reservoir supplying river discharge, especially during the non-ISM season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-02-08
    Description: Shells of the giant clam Tridacna can provide decade-long records of past environmental conditions via their geochemical composition and structurally through growth banding. Counting the daily bands can give an accurate internal age model with high temporal resolution, but daily banding is not always visually retrievable, especially in fossil specimens. We show that daily geochemical cycles (e.g., Mg/Ca) are resolvable via highly spatially resolved laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS; 3 \xc3\x97 33 \xce\xbcm laser slit) in our Miocene (\xe2\x88\xbc10 Ma) specimen, even in areas where daily banding is not visually discernible. By applying wavelet transformation on the measured daily geochemical cycles, we quantify varying daily growth rates throughout the shell. These growth rates are thus used to build an internal age model independent of optical daily band countability. Such an age model can be used to convert the measured elemental ratios from a function of distance to a function of time, which helps evaluate paleoenvironmental proxy data, for example, regarding the timing of sub-seasonal events. Furthermore, the quantification of daily growth rates across the shell facilitates the evaluation of (co)dependencies between growth rates and corresponding elemental compositions.
    Keywords: Tridacna
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(21), ISSN: 0094-8276
    Publication Date: 2023-11-01
    Description: Molybdenum (Mo) is a trace element sensitive to oceanic redox conditions. The fidelity of sedimentary Mo as a paleoredox proxy of coeval seawater depends on the extent of Mo remobilization during postdepositional processes. Here we present the Mo content and isotope profiles for deep sediments from the Nankai Trough, Japan. The Mo signature suggests that these sediments have experienced extensive early diagenesis and hydrothermal alteration at depth. Iron (Fe)‐manganese (Mn) (oxyhydr)oxide alteration combined with Mo thiolation leads to a more than twenty‐fold enrichment of Mo within the sulfate reduction zone. Hydrothermal fluids and Mo adsorption onto Fe‐Mn (oxyhydr)oxides cause extremely negative Mo‐isotope values at the underthrust zone. These postdepositional Mo signals might be misinterpreted as expanded anoxia in the water column. Our findings highlight the importance of constraining postdepositional effects on Mo‐based proxies during paleoredox reconstruction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(17), ISSN: 0094-8276
    Publication Date: 2023-09-08
    Description: We quantify sea ice concentration (SIC) changes related to synoptic cyclones separately for each month of the year in the Greenland, Barents and Kara Seas for 1979–2018. We find that these SIC changes can be statistically significant throughout the year. However, their strength varies from region to region and month to month, and their sign strongly depends on the considered time scale (before/during vs. after cyclone passages). Our results show that the annual cycle of cyclone impacts on SIC is related to varying cyclone intensity and traversed sea ice conditions. We further show that significant changes in these cyclone impacts have manifested in the last 40 years, with the strongest changes occurring in October and November. For these months, SIC decreases before/during cyclones have more than doubled in magnitude in the Barents and Kara Seas, while SIC increases following cyclones have weakened (intensified) in the Barents Sea (Kara Sea).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-12-19
    Description: As a contribution to the Regional Carbon Cycle Assessment and Processes phase 2 (RECCAP2) project, we present synthesized estimates of Arctic Ocean sea-air CO2 fluxes and their uncertainties from surface ocean pCO2-observation products, ocean biogeochemical hindcast and data assimilation models, and atmospheric inversions. For the period of 1985–2018, the Arctic Ocean was a net sink of CO2 of 116 ± 4 TgC yr−1 in the pCO2 products, 92 ± 30 TgC yr−1 in the models, and 91 ± 21 TgC yr−1 in the atmospheric inversions. The CO2 uptake peaks in late summer and early autumn, and is low in winter when sea ice inhibits sea-air fluxes. The long-term mean CO2 uptake in the Arctic Ocean is primarily caused by steady-state fluxes of natural carbon (70% ± 15%), and enhanced by the atmospheric CO2 increase (19% ± 5%) and climate change (11% ± 18%). The annual mean CO2 uptake increased from 1985 to 2018 at a rate of 31 ± 13 TgC yr−1 dec−1 in the pCO2 products, 10 ± 4 TgC yr−1 dec−1 in the models, and 32 ± 16 TgC yr−1 dec−1 in the atmospheric inversions. Moreover, 77% ± 38% of the trend in the net CO2 uptake over time is caused by climate change, primarily due to rapid sea ice loss in recent years. Furthermore, true uncertainties may be larger than the given ensemble standard deviations due to common structural biases across all individual estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-01-06
    Description: The seasonal cycle is the dominant mode of variability in the air-sea CO2 flux in most regions of the global ocean, yet discrepancies between different seasonality estimates are rather large. As part of the Regional Carbon Cycle Assessment and Processes Phase 2 project (RECCAP2), we synthesize surface ocean pCO2 and air-sea CO2 flux seasonality from models and observation-based estimates, focusing on both a present-day climatology and decadal changes between the 1980s and 2010s. Four main findings emerge: First, global ocean biogeochemistry models (GOBMs) and observation-based estimates (pCO2 products) of surface pCO2 seasonality disagree in amplitude and phase, primarily due to discrepancies in the seasonal variability in surface DIC. Second, the seasonal cycle in pCO2 has increased in amplitude over the last three decades in both pCO2 products and GOBMs. Third, decadal increases in pCO2 seasonal cycle amplitudes in subtropical biomes for both pCO2 products and GOBMs are driven by increasing DIC concentrations stemming from the uptake of anthropogenic CO2 (Cant). In subpolar and Southern Ocean biomes, however, the seasonality change for GOBMs is dominated by Cant invasion, whereas for pCO2 products an indeterminate combination of Cant invasion and climate change modulates the changes. Fourth, biome-aggregated decadal changes in the amplitude of pCO2 seasonal variability are largely detectable against both mapping uncertainty (reducible) and natural variability uncertainty (irreducible), but not at the gridpoint scale over much of the northern subpolar oceans and over the Southern Ocean, underscoring the importance of sustained high-quality seasonally resolved measurements over these regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-01-06
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-12-20
    Description: We assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) and pCO2-observation-based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(1), ISSN: 2169-9275
    Publication Date: 2024-01-31
    Description: We assessed the spatial and temporal variability of the Arctic Boundary Current (ABC) using seven oceanographic moorings, deployed across the continental slope north of Severnaya Zemlya in 2015–2018. Transports and individual water masses were quantified based on temperature and salinity recorders and current profilers. Our results were compared with observations from the northeast Svalbard and the central Laptev Sea continental slopes to evaluate the hydrographic transformation along the ABC pathway. The highest velocities (〉0.30 m s−1) of the ABC occurred at the upper continental slope and decreased offshore to below 0.03 m s−1 in the deep basin. The ABC showed seasonal variability with velocities two times higher in winter than in summer. Compared to upstream conditions in Svalbard, water mass distribution changed significantly within 20 km of the shelf edge due to mixing with- and intrusion of shelf waters. The ABC transported 4.15 ± 0.3 Sv in the depth range 50–1,000 m, where 0.88 ± 0.1, 1.5 ± 0.2, 0.61 ± 0.1 and 1.0 ± 0.15 Sv corresponded to Atlantic Water (AW), Dense Atlantic Water (DAW), Barents Sea Branch Water (BSBW) and Transformed Atlantic Water (TAW). 62–70% of transport was constrained to within 30–40 km of the shelf edge, and beyond 84 km, transport increases were estimated to be 0.54 Sv. Seasonality of TAW derived from local shelf-processes and advection of seasonal-variable Fram Strait waters, while BSBW transport variability was dominated by temperature changes with maximum transport coinciding with minimum temperatures. Further Barents Sea warming will likely reduce TAW and BSBW transport leading to warmer conditions along the ABC pathway.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2024-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 24(12), ISSN: 1525-2027
    Publication Date: 2024-01-22
    Description: In the Fram Strait, mid-ocean ridge spreading is represented by the ultra-slow system of the Molloy Ridge, the Molloy Transform Fault and the Knipovich Ridge. Sediments on oceanic and continental crust are gas charged and there are several locations with documented seafloor seepage. Sedimentary faulting shows recent stress release in the sub-surface, but the drivers of stress change and its influence on fluid flow are not entirely understood. We present here the results of an 11-month-long ocean bottom seismometer survey conducted over the highly faulted sediment drift northwards from the Knipovich Ridge to monitor seismicity and infer the regional state of stress. We obtain a detailed earthquake catalog that improves the spatial resolution of mid-ocean ridge seismicity compared with published data. Seismicity at the Molloy Transform Fault is occurring southwards from the bathymetric imprint of the fault, as supported by a seismic profile. Earthquakes in the northern termination of the Knipovich Ridge extend eastwards from the ridge valley, which together with syn-rift faulting identified in seismic reflection data, suggests that a portion of the currently active spreading center is buried under sediments away from the bathymetric expression of the rift valley. This hints at the direct link between crustal rifting processes and faulting in shallow sediments. Two earthquakes occur close to the seepage system of the Vestnesa Ridge further north from the network. We suggest that deeper rift structures, reactivated by gravity and/or post-glacial subsidence, may lead to accommodation of stress through shallow extensional faults, therefore impacting seepage dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 128(10), ISSN: 2169-9003
    Publication Date: 2024-03-14
    Description: Radio Echo Sounding (RES) surveys conducted in May 2010 and April 2011 revealed a 2 km2 flat area with increased bed reflectivity at the base of Isunnguata Sermia at the western margin of the Greenland Ice Sheet. This flat reflector was located within a localized subglacial hydraulic potential (hydropotential) minimum, as part of a complex and elongated trough system. By analogy with comparable features in Antarctica, the initial interpretation of such a feature was a potential subglacial lake. In September 2013 a co-located seismic survey revealed a 1,750 m by 540 and 37 m thick stratified lens-shaped bedform at the base of a subglacial trough system. Amplitude Versus Angle (AVA) analysis yields a derived reflection coefficient R = 0.09 ± 0.14 indicative of consolidated sediments possibly overlain by dilatant till. The bed and flank on the northern side of the trough consist of unconsolidated, possibly water-bearing sediments with R = −0.10 ± 0.08, whereas on the southern side it consists of more consolidated material. We interpret the trough as a key component of the wider subglacial drainage network, for which the sediments on its northern side act as a localized water-storage reservoir. Given the observation of seasonally forming and rapidly draining supraglacial meltwater lakes in this area, we interpret the lens-shaped bedform as deposited by episodically ponding meltwater within the subglacial trough system. Our results highlight the importance of transient subglacial hydrological and sedimentological processes such as drainage events for the interaction of ice sheets and their substrates, to understand ice dynamics in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-03-19
    Description: The greenhouse gas (GHG) balance of boreal peatlands in permafrost regions will be affected by climate change through disturbances such as permafrost thaw and wildfire. Although the future GHG balance of boreal peatlands including ponds is dominated by the exchange of both carbon dioxide (CO2) and methane (CH4), disturbance impacts on fluxes of the potent GHG nitrous oxide (N2O) could contribute to shifts in the net radiative balance. Here, we measured monthly (April to October) fluxes of N2O, CH4, and CO2 from three sites located across the sporadic and discontinuous permafrost zones of western Canada. Undisturbed permafrost peat plateaus acted as N2O sinks (−0.025 mg N2O m−2 d−1), but N2O uptake was lower from burned plateaus (−0.003 mg N2O m−2 d−1) and higher following permafrost thaw in the thermokarst bogs (−0.054 mg N2O m−2 d−1). The thermokarst bogs had below-ambient N2O soil gas concentrations, suggesting that denitrification consumed atmospheric N2O during reduction to dinitrogen. Atmospheric uptake of N2O in peat plateaus and thermokarst bogs increased with soil temperature and soil moisture, suggesting sensitivity of N2O consumption to further climate change. Four of five peatland ponds acted as N2O sinks (−0.018 mg N2O m−2 d−1), with no influence of thermokarst expansion. One pond with high nitrate concentrations had high N2O emissions (0.30 mg N2O m−2 d−1). Overall, our study suggests that the future net radiative balance of boreal peatlands will be dominated by impacts of wildfire and permafrost thaw on CH4 and CO2 fluxes, while the influence from N2O is minor.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), 38(10), ISSN: 2572-4517
    Publication Date: 2024-03-13
    Description: Three recently published papers including Napier et al. (2022, https://doi.org/10.1029/2021PA004355) utilize novel microanalytical approaches with varved marine sediments to demonstrate the potential to reconstruct seasonal and inter-annual climate variability. Obtaining paleoclimate data at a resolution akin to the observational record is vitally important for improving our understanding of climate phenomena such as monsoons and modes of variability such as the El Niño Southern Oscillation, for which appraisals of past inter-annual variability is critical. The ability to generate seasonal and inter annual resolution sea surface temperature proxy time series spanning a thousand years or more is revolutionary and has the potential to fill gaps in our knowledge of climate variability. Although generally limited to sediments from regions with oxygen depleted bottom waters, there is great potential to integrate shorter seasonal resolution climate “snap shots” from other archives such as annually banded corals into composite time series. But as paleoceanographic data are used more by the observational and modeling fields, we make the case for conducting a thorough case-by-case assessment of the processes that influence the climate signal recovered from proxies, using careful replication to validate new approaches. Understanding or exploring the potential influence of processes which effectively filter the climate signal will lead to more quantitative paleoceanographic data that will better serve the broader climate science community.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-03-21
    Description: Snowpack emissions are recognized as an important source of gas-phase reactive bromine in the Arctic and are necessary to explain ozone depletion events in spring caused by the catalytic destruction of ozone by halogen radicals. Quantifying bromine emissions from snowpack is essential for interpretation of ice-core bromine. We present ice-core bromine records since the pre-industrial (1750 CE) from six Arctic locations and examine potential post-depositional loss of snowpack bromine using a global chemical transport model. Trend analysis of the ice-core records shows that only the high-latitude coastal Akademii Nauk (AN) ice core from the Russian Arctic preserves significant trends since pre-industrial times that are consistent with trends in sea ice extent and anthropogenic emissions from source regions. Model simulations suggest that recycling of reactive bromine on the snow skin layer (top 1 mm) results in 9–17% loss of deposited bromine across all six ice-core locations. Reactive bromine production from below the snow skin layer and within the snow photic zone is potentially more important, but the magnitude of this source is uncertain. Model simulations suggest that the AN core is most likely to preserve an atmospheric signal compared to five Greenland ice cores due to its high latitude location combined with a relatively high snow accumulation rate. Understanding the sources and amount of photochemically reactive snow bromide in the snow photic zone throughout the sunlit period in the high Arctic is essential for interpreting ice-core bromine, and warrants further lab studies and field observations at inland locations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 128(10), ISSN: 2169-8953
    Publication Date: 2024-04-11
    Description: Human activities have increasingly changed terrestrial particulate organic carbon (POC) export to the coastal ocean since the Industrial Age (19th century). However, the influence of human perturbations on the composition and flux of terrestrial biospheric and petrogenic POC sub-pools remains poorly constrained. Here, we examined 13C and 14C compositions of bulk POC and source-specific biomarkers (fatty acids, FA) from two nearshore sediment cores collected in the Pearl River-derived mudbelt, to determine the impacts of human perturbations of the Pearl River watershed on the burial of terrestrial POC in the coastal ocean over the last century. Our results show that although agricultural practices and deforestation during the 1930s–1950s increased C4 plant coverage in the watershed, the export fluxes of terrestrial biospheric and petrogenic POC remained rather unchanged; however, added perturbations since 1974, including increasing coal consumption, embankment and dam constructions caused massive export of both petrogenic POC and relatively fresh terrestrial biospheric POC from the river delta. Our data reveal that human activities substantially enhance the transfer of petrogenic POC and fresh biospheric POC to the coastal ocean after ca. 1974, with the latter process acting as an important sink for anthropogenic CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Earth's Future, American Geophysical Union (AGU), 10(9), ISSN: 2328-4277
    Publication Date: 2022-11-06
    Description: In this study we assessed the representation of the sea surface salinity (SSS) and liquid freshwater content (LFWC) of the Arctic Ocean in the historical simulation of 31 CMIP6 models with comparison to 39 Coupled Model Intercomparison Project phase 5 (CMIP5) models, and investigated the projected changes in Arctic liquid and solid freshwater content and freshwater budget in scenarios with two different shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5). No significant improvement was found in the SSS and LFWC simulation from CMIP5 to CMIP6, given the large model spreads in both CMIP phases. The overestimation of LFWC continues to be a common bias in CMIP6. In the historical simulation, the multi-model mean river runoff, net precipitation, Bering Strait and Barents Sea Opening (BSO) freshwater transports are 2,928 ± 1,068, 1,839 ± 3,424, 2,538 ± 1,009, and −636 ± 553 km3/year, respectively. In the last decade of the 21st century, CMIP6 MMM projects these budget terms to rise to 4,346 ± 1,484 km3/year (3,678 ± 1,255 km3/year), 3,866 ± 2,935 km3/year (3,145 ± 2,651 km3/year), 2,631 ± 1,119 km3/year (2,649 ± 1,141 km3/year) and 1,033 ± 1,496 km3/year (449 ± 1,222 km3/year) under SSP5-8.5 (SSP2-4.5). Arctic sea ice is expected to continue declining in the future, and sea ice meltwater flux is likely to decrease to about zero in the mid-21st century under both SSP2-4.5 and SSP5-8.5 scenarios. Liquid freshwater exiting Fram and Davis straits will be higher in the future, and the Fram Strait export will remain larger. The Arctic Ocean is projected to hold a total of 160,300 ± 62,330 km3 (141,590 ± 50,310 km3) liquid freshwater under SSP5-8.5 (SSP2-4.5) by 2100, about 60% (40%) more than its historical climatology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 127(10), ISSN: 2169-8953
    Publication Date: 2023-06-21
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro-, meso- and macrozooplankton) in the ocean biogeochemical model FESOM-REcoM. In the presented model, microzooplankton is a fast-growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow-growing group with a low temperature optimum. Meso- and macrozooplankton produce fast-sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light-controlled Sverdrup system to a dilution-controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on-going and future environmental change in model projections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 14(12), ISSN: 1942-2466
    Publication Date: 2023-06-23
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea-surface salinity and sea-level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea-ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere-ocean-ice interaction occurs. One-year-long sea-ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea-ice concentration from 2011 to 2019 is calibrated by trend-adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational global subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea-ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(22), ISSN: 0094-8276
    Publication Date: 2023-06-21
    Description: Based on the ERA5 reanalysis, we report on statistically significant impacts of transient cyclones on sea ice concentration (SIC) in the Atlantic sector of the Arctic Ocean in winter under “New Arctic” conditions (2000–2020). This includes a pattern of reduced SIC prior to and during cyclones for the whole study domain, while a regional difference between increased SIC in the Barents Sea and reduced SIC in the Greenland Sea is found as the net effect from 3 days prior to 5 days after the cyclone passage. Generally, locally low to medium SIC conditions combined with intense cyclones drive highest SIC changes. There are indications that both thermodynamic and dynamic effects contribute to the SIC changes, but a detailed quantification is required in future research. We provide evidence that cyclone impacts on SIC have amplified compared to the “Old Arctic” (1979–1999), particularly in the Barents Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(23), ISSN: 0094-8276
    Publication Date: 2023-09-19
    Description: The strong cooling during the Last Glacial Maximum (LGM, 21 ka BP) provides a rigorous test of climate models' ability to simulate past and future climate changes. We force an atmospheric general circulation model with two recent global LGM sea surface temperature (SST) reconstructions, one suggesting a weak and the other a more pronounced cooling, and compare the simulated land surface temperatures (LSTs) to reconstructed data. Our results do not confirm either SST reconstruction. The cold SST data set leads to good agreement between simulated and observed LSTs at low latitudes, but is systematically too cold at mid-latitudes. The opposite is true for the warm SST data set. Differences between the simulated LSTs are caused by varying land surface albedos, which is lower for the warmer SST reconstruction. The inconsistency between reconstructed and simulated climate points to a potentially significant bias in the proxy reconstructions and/or the climate sensitivity of current climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-01-31
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(20), pp. e2022gl099529-e2022gl099529, ISSN: 0094-8276
    Publication Date: 2024-03-14
    Description: The climate signal imprinted in the snow isotopic composition allows to infer past climate variability from ice core stable water isotope records. The concurrent evolution of vapor and surface snow isotopic composition between precipitation events indicates that post-depositional atmosphere-snow humidity exchange influences the snow and hence the ice core isotope signal. To date, however, this is not accounted for in paeleoclimate reconstructions from isotope records. Here we show that vapor-snow exchange explains 36% of the summertime day-to-day δ18O variability of the surface snow between precipitation events, and 53% of the δD variability. Through observations from the Greenland Ice Sheet and accompanying modeling we demonstrate that vapor-snow exchange introduces a warm bias on the summertime snow isotope value relevant for ice core records. In case of long-term variability in atmosphere-snow exchange the relevance for the ice core signal is also variable and thus paleoclimate reconstructions from isotope records should be revisited.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(24), ISSN: 0094-8276
    Publication Date: 2024-03-13
    Description: The East Australian Current (EAC) is the western boundary current of the South Pacific Subtropical Gyre that transports warm tropical waters to higher southern latitudes and significantly impacts the climate of Australia and New Zealand. Modern observations show that the EAC has strengthened with rising global temperatures. However, little is known about the pre-industrial variability of the EAC and the forcing mechanisms. Planktic foraminifera Globigerinoides ruber (white) Mg/Ca-based sea surface temperature reconstructions offshore northeastern Australia between 15° and 26°S reveal an increase by ∼1.2°C after ∼1400 CE. We infer that the increase in temperature is related to a stronger EAC heat transport that is likely driven by a strengthening of the Southern Hemisphere subtropical gyre circulation due to a progressive shift of the Southern annular mode toward its positive phase and of El Niño-Southern Oscillation toward more El Niño-like conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(1), ISSN: 0094-8276
    Publication Date: 2024-03-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 13(10), ISSN: 1942-2466
    Publication Date: 2023-06-21
    Description: We propose to make the damping time scale, which governs the decay of pseudo-elastic waves in the Elastic Viscous Plastic (EVP) sea-ice solvers, independent of the external time step and large enough to warrant numerical stability for a moderate number of internal time steps. A necessary condition is that the forcing on sea ice varies slowly on the damping time scale, in which case an EVP solution may still approach a Viscous Plastic one, but on a time scale longer than a single external time step. In this case, the EVP method becomes very close to the recently proposed modified EVP (mEVP) method in terms of stability and simulated behavior. In a simple test case dealing with sea ice breaking under the forcing of a moving cyclone, the EVP method with an enlarged damping time scale can simulate linear kinematic features which are very similar to those from the traditional EVP implementation, although a much smaller number of internal time steps is used. There is more difference in sea-ice thickness and linear kinematic features simulated in a realistic Arctic configuration between using the traditional and our suggested choices of EVP damping time scales, but it is minor considering model uncertainties associated with choices of many other parameters in sea-ice models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-01-18
    Description: The North Atlantic Basin is a major sink for atmospheric carbon dioxide (CO2) due in part to the extensive plankton blooms which form there supported by nutrients supplied by the three-dimensional ocean circulation. Hence, changes in ocean circulation and/or stratification may influence primary production and biological carbon export. In this study, we assess this possibility by evaluating inorganic nutrient budgets for 2004 and 2010 in the North Atlantic based on observations from the transatlantic A05-24.5°N and the Greenland-Portugal OVIDE hydrographic sections, to which we applied a box inverse model to solve the circulation and estimate the across-section nutrient transports. Full water column nutrient budgets were split into upper and lower meridional overturning circulation (MOC) limbs. According to our results, anomalous circulation in early 2010, linked to extreme negative NAO conditions, led to an enhanced northward advection of more nutrient-rich waters by the upper overturning limb, which resulted in a significant nitrate and phosphate convergence north of 24.5°N. Combined with heaving of the isopycnals, this anomalous circulation event in 2010 favored an enhancement of the nutrient consumption (5.7 ± 4.1 kmol-P s−1) and associated biological CO2 uptake (0.25 ± 0.18 Pg-C yr−1, upper-bound estimate), which represents a 50% of the mean annual sea–air CO2 flux in the region. Our results also suggest a transient state of deep silicate divergence in both years. Both results are indicative of a MOC-driven modulation of the biological carbon uptake (by the upper MOC limb) and nutrient inventories (by the lower MOC limb) in the North Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-03-14
    Description: The presence of clouds in the Arctic regulates the surface energy budget (SEB) over the sea-ice surface and the ice-free ocean. Following several previous field campaigns, the cloud-radiation relationship, including cloud vertical structure and phase, has been elucidated; however, modeling of this relationship has matured slowly. In recognition of the recent decline in the Arctic sea-ice extent, representation of the cloud system in numerical models should consider the effects of areas covered by sea ice and ice-free areas. Using an in situ stationary meteorological observation data set obtained over the ice-free Arctic Ocean by the Japanese Research Vessel Mirai (September 2014), coordinated evaluation of six regional climate models (RCMs) with nine model runs was performed by focusing on clouds and the SEB. The most remarkable findings were as follows: (1) reduced occurrence of unstable stratification with low-level cloud water in all models in comparison to the observations, (2) significant differences in cloud water representations between single- and double-moment cloud schemes, (3) extensive differences in partitioning of hydrometeors including solid/liquid precipitation, and (4) pronounced lower-tropospheric air temperature biases. These issues are considered as the main sources of SEB uncertainty over ice-free areas of the Arctic Ocean. The results from a coupled RCM imply that the SEB is constrained by both the atmosphere and the ocean (and sea ice) with considerable feedback. Coordinated improvement of both stand-alone atmospheric and coupled RCMs would promote a more comprehensive and improved understanding of the Arctic air-ice-sea coupled system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 126(12), ISSN: 2169-9003
    Publication Date: 2024-03-14
    Description: Bedforms of Thwaites Glacier, West Antarctica both record and affect ice flow, as shown by geophysical data and simple models. Thwaites Glacier flows across the tectonic fabric of the West Antarctic rift system with its bedrock highs and sedimentary basins. Swath radar and seismic surveys of the glacier bed have revealed soft-sediment flutes 100 m or more high extending 15 km or more across basins downglacier from bedrock highs. Flutes end at prominent hard-bedded moats on stoss sides of the next topographic highs. We use simple models to show that ice flow against topography increases pressure between ice and till upglacier along the bed over a distance that scales with the topography. In this basal zone of high pressure, ice-contact water would be excluded, thus increasing basal drag by increasing ice-till coupling and till flux, removing till to allow bedrock erosion that creates moats. Till carried across highlands would then be deposited in lee-side positions forming bedforms that prograde downglacier over time, and that remain soft on top through feedbacks that match till-deformational fluxes from well upglacier of the topography. The bedforms of the part of Thwaites surveyed here are prominent because ice flow has persisted over a long time on this geological setting, not because ice flow is anomalous. Bedform development likely has caused evolution of ice flow over time as till and lubricating water were redistributed, moats were eroded and bedforms grew.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 12(12), ISSN: 1942-2466
    Publication Date: 2023-06-21
    Description: Ocean models at eddy-permitting resolution are generally overdissipative, damping the intensity of the mesoscale eddy field. To reduce overdissipation, we propose a simplified, kinematic energy backscatter parametrization built into the viscosity operator in conjunction with a new flow-dependent coefficient of viscosity based on nearest neighbor velocity differences. The new scheme mitigates excessive dissipation of energy and improves global ocean simulations at eddy-permitting resolution. We find that kinematic backscatter substantially raises simulated eddy kinetic energy, similar to an alternative, previously proposed dynamic backscatter parametrization. While dynamic backscatter is scale aware and energetically more consistent, its implementation is more complex. Furthermore, it turns out to be computationally more expensive, as it applies, among other things, an additional prognostic subgrid energy equation. The kinematic backscatter proposed here, by contrast, comes at no additional computational cost, following the principle of simplicity. Our primary focus is the discretization on triangular unstructured meshes with cell placement of velocities (an analog of B-grids), as employed by the Finite-volumE Sea ice-Ocean Model (FESOM2). The kinematic backscatter scheme with the new viscosity coefficient is implemented in FESOM2 and tested in the simplified geometry of a zonally reentrant channel as well as in a global ocean simulation on a 1/4° mesh. This first version of the new kinematic backscatter needs to be tuned to the specific resolution regime of the simulation. However, the tuning relies on a single parameter, emphasizing the overall practicality of the approach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 125(2), ISSN: 2169-8953
    Publication Date: 2024-01-30
    Description: Climate change in the Arctic leads to permafrost degradation and to associated changes infreshwater geochemistry. There is a limited understanding of how disturbances such as active layerdetachments or retrogressive thaw slumps impact water quality on a catchment scale. This study investigateshow permafrost degradation affects concentrations of dissolved organic carbon (DOC), total dissolvedsolids (TDS), suspended sediment, and stable water isotopes in adjacent Low Arctic watersheds. Weincorporated data on disturbance between 1952 and 2015, as well as sporadic runoff and geochemistry dataof streams nearby. Our results show that the total disturbed area decreased by 41% between 1952 and 2015,whereas the total number of disturbances increased by 66% in all six catchments. The spatial variabilityof hydrochemical parameters is linked to catchment properties and not necessarily reflected at the outflow.Degrading ice‐wedge polygons were found to increase DOC concentrations upstream in Ice Creek West,whereas hydrologically connected disturbances were linked to increases in TDS and suspended sediment.Although we found a great spatial variability of hydrochemical concentrations along the paired watershed,there was a linear relationship between catchment size and daily DOC, total dissolved nitrogen, and TDSfluxes for all six streams. Suspended sedimentflux on the contrary did not show a clear relationship as onehydrologically connected retrogressive thaw slump impacted the overallflux in one of the streams.Understanding the spatial variability of water quality will help to model the lateral geochemicalfluxes fromArctic catchments
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-03-31
    Description: Coeval changes in atmospheric CO2 and 14C contents during the last deglaciation are often attributed to ocean circulation changes that released carbon stored in the deep ocean during the Last Glacial Maximum (LGM). Work is being done to generate records that allow for the identification of the exact mechanisms leading to the accumulation and release of carbon from the oceanic reservoir, but these mechanisms are still the subject of debate. Here we present foraminifera 14C data from five cores in a transect across the Chilean continental margin between ~540 and ~3,100 m depth spanning the last 20,000 years. Our data reveal that during the LGM, waters at ~2,000 m were 50% to 80% more depleted in Δ14C than waters at ~1,500 m when compared to modern values, consistent with the hypothesis of a glacial deep ocean carbon reservoir that was isolated from the atmosphere. During the deglaciation, our intermediate water records reveal homogenization in the Δ14C values between ~800 and ~1,500 m from ~16.5–14.5 ka cal BP to ~14–12 ka cal BP, which we interpret as deeper penetration of Antarctic Intermediate Water. While many questions still remain, this process could aid the ventilation of the deep ocean at the beginning of the deglaciation, contributing to the observed ~40 ppm rise in atmospheric pCO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), 124(8), pp. 5503-5528, ISSN: 2169-9275
    Publication Date: 2022-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 45(23), pp. 12972-12981, ISSN: 0094-8276
    Publication Date: 2023-01-30
    Description: The Arctic Ocean is known to be contaminated by various persistent organic pollutants (POPs). The Fram Strait, the only deepwater passage to the Arctic Ocean (from the Atlantic Ocean), represents an unquantified gateway for POPs fluxes into and out of the Arctic. Polyethylene passive samplers were deployed in vertical profiles in the Fram Strait and in air and surface water in the Canadian Archipelago to determine the concentrations, profiles, and mass fluxes of dissolved polychlorinated biphenyls (PCBs) and organochlorine pesticides. In the Fram Strait, higher concentrations of ΣPCBs (1.3–3.6 pg/L) and dichlorodiphenyltrichloroethanes (ΣDDTs, 5.2–9.1 pg/L) were observed in the deepwater masses (below 1,000 m), similar to nutrient-like vertical profiles. There was net southward transport of hexachlorobenzene and hexachlorocyclohexanes (ΣHCHs) of 0.70 and 14 Mg/year but a net northward transport of ΣPCBs at 0.16 Mg/year through the Fram Strait.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 44: Transient Stability Analysis of Islanded AC Microgrids with a Significant Share of Virtual Synchronous Generators Energies doi: 10.3390/en11010044 Authors: Chang Yuan Peilin Xie Dan Yang Xiangning Xiao As an advanced control method that could bring extra inertia and damping characteristics to inverter-based distributed generators, the virtual synchronous generator (VSG) has recently drawn considerable attention. VSGs are expected to enhance the frequency regulation capability of the local power grid, especially the AC microgrid in island mode. However, the cost of that performance promotion is potential instability. In this paper, the unstable phenomena of the islanded microgrid dominated by SGs and distributed generators (DSs) are addressed after mathematical modeling and detailed eigenvalue analyses respectively. The influence of VSG key parameters, e.g., virtual inertia, damping factor, and droop coefficient on system stability is investigated, and the corresponding mathematical calculation method of unstable region is obtained. The theoretical analysis is well supported by time domain simulation results. The predicted frequency oscillation suggests the consideration of stability constrain during the VSG parameters design procedure.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 77: Anisotropy in Thermal Recovery of Oil Shale—Part 1: Thermal Conductivity, Wave Velocity and Crack Propagation Energies doi: 10.3390/en11010077 Authors: Guoying Wang Dong Yang Zhiqin Kang Jing Zhao In this paper, the evolution of thermal conductivity, wave velocity and microscopic crack propagation both parallel and perpendicular to the bedding plane in anisotropic rock oil shale were studied at temperatures ranging from room temperature to 600 °C. The results show that the thermal conductivity of the perpendicular to bedding direction (KPER) (PER: perpendicular to beeding direction), wave velocity of perpendicular to bedding diretion (VPER), thermal conduction coefficient of parallel to beeding direction (KPAR) and wave velocity of parallel to beeding direction (VPAR) (PAR: parallel to bedding direction) decreased with the increase in temperature, but the rates are different. KPER and VPER linearly decreased with increasing temperature from room temperature to 350 °C, with an obvious decrease at 400 °C corresponding to a large number of cracks generated along the bedding direction. KPER, VPER, KPAR and VPAR generally maintained fixed values from 500 °C to 600 °C. 400 °C has been identified as the threshold temperature for anisotropic evolution of oil shale thermal physics. In addition, the relationship between the thermal conductivity and wave velocity based on the anisotropy of oil shale was fitted using linear regression. The research in this paper can provide reference for the efficient thermal recovery of oil shale, thermal recovery of heavy oil reservoirs and the thermodynamic engineering in other sedimentary rocks.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 64: Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling Energies doi: 10.3390/en11010064 Authors: Xuezhe Wei Xueyuan Wang Haifeng Dai Battery impedance based state estimation methods receive extensive attention due to its close relation to internal dynamic processes and the mechanism of a battery. In order to provide impedance for a battery management system (BMS), a practical on-board impedance measuring method based on distributed signal sampling is proposed and implemented. Battery cell perturbing current and its response voltage for impedance calculation are sampled separately to be compatible with BMS. A digital dual-channel orthogonal lock-in amplifier is used to calculate the impedance. With the signal synchronization, the battery impedance is obtained and compensated. And the relative impedance can also be obtained without knowing the current. For verification, an impedance measuring system made up of electronic units sampling and processing signals and a DC-AC converter generating AC perturbing current is designed. A type of 8 Ah LiFePO4 battery is chosen and the valuable frequency range for state estimations is determined with a series of experiments. The battery cells are connected in series and the impedance is measured with the prototype. It is shown that the measurement error of the impedance modulus at 0.1 Hz–500 Hz at 5 °C–35 °C is less than 4.5% and the impedance phase error is less than 3% at <10 Hz at room temperature. In addition, the relative impedance can also be tracked well with the designed system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 80: Well Test Analysis for Fractured and Vuggy Carbonate Reservoirs of Well Drilling in Large Scale Cave Energies doi: 10.3390/en11010080 Authors: Cuiqiao Xing Hongjun Yin Kexin Liu Xingke Li Jing Fu A well test analysis model for fractured and vuggy carbonate reservoir of wells drilling in large scale cave considering wellbore storage and skin factor is established in this paper. The Laplace transformation and Stehfest numerical inversion are applied to obtain the results of wellbore pressure. Through the sensitivity analysis of different parameters for the well test typical curves, it is found that the change of the well test curves is in accordance with the theoretical analysis. With the increase of skin factor, the hump of well test typical curves is steeper. The storage ratio influences the depth and width of the concave in the pressure derivative curves. The cross flow coefficient mainly affects the position of the concave occurrence in the pressure derivative curves. The dimensionless reservoir radius mainly affects the middle and late stages of the log-log pressure type curves, and the later well test curves will be upturned for sealed boundary. The duration of the early stage of the log-log curves will become longer when drilling in large scale cave. The effective well radius is increased to a certain extent, which is in full agreement with the conclusions in this paper. The size of the caves has the same effect on the well test typical curves as wellbore storage coefficient. Due to acidification, fracturing, and other reasons, the boundary of the cave will collapse. Therefore, considering the wellbore storage coefficient and skin effect is very important during well testing. However, the existing models for well testing of fractured and vuggy carbonate reservoir often ignore the wellbore storage coefficient and skin effect. For fractured and vuggy carbonate reservoirs of well drilling in large scale cave, the existing models are not applicable. Since the previous models are mostly based on the triple-porosity medium and the equivalent continuum. The well test model for well drilling in large scale cave of fracture-cavity carbonate reservoirs with wellbore storage coefficient and skin factor in this work has significant application value for oil field.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 32: High-Precision Speed Control Based on Multiple Phase-Shift Resonant Controllers for Gimbal System in MSCMG Energies doi: 10.3390/en11010032 Authors: Jian Feng Qing Wang Kun Liu The high precision speed control of gimbal servo system in magnetically suspended control moment gyro (MSCMG) suffers from periodic torque disturbances, which lead to periodic fluctuations in speed control. This paper proposes a novel multiple phase-shift resonant controller (MPRC) for a gimbal servo system to suppress the periodic torque ripples whose frequencies vary with the operational speed of the gimbal servo motor and high-speed motor. First, the periodic torque ripples caused by cogging torque, flux harmonics and the dynamic unbalance of the high speed rotor are analyzed. Second, the principle and structure of MPRC parallel with proportional integral (PI) controllers are discussed. The design and stability analysis of the proposed MPRC plus PI control scheme are given both for the current loop and speed loop. The closed-loop stability is ensured by adjusting the phase in the entire operational speed range. Finally, the effectiveness of the proposed control method is verified through simulation and experimental results.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-07-25
    Description: Remote Sensing, Vol. 10, Pages 1171: Multi-Criteria Evaluation of Snowpack Simulations in Complex Alpine Terrain Using Satellite and In Situ Observations Remote Sensing doi: 10.3390/rs10081171 Authors: Jesús Revuelto Grégoire Lecourt Matthieu Lafaysse Isabella Zin Luc Charrois Vincent Vionnet Marie Dumont Antoine Rabatel Delphine Six Thomas Condom Samuel Morin Alessandra Viani Pascal Sirguey This work presents an extensive evaluation of the Crocus snowpack model over a rugged and highly glacierized mountain catchment (Arve valley, Western Alps, France) from 1989 to 2015. The simulations were compared and evaluated using in-situ point snow depth measurements, in-situ seasonal and annual glacier surface mass balance, snow covered area evolution based on optical satellite imagery at 250 m resolution (MODIS sensor), and the annual equilibrium-line altitude of glaciers, derived from satellite images (Landsat, SPOT, and ASTER). The snowpack simulations were obtained using the Crocus snowpack model driven by the same, originally semi-distributed, meteorological forcing (SAFRAN) reanalysis using the native semi-distributed configuration, but also a fully distributed configuration. The semi-distributed approach addresses land surface simulations for discrete topographic classes characterized by elevation range, aspect, and slope. The distributed approach operates on a 250-m grid, enabling inclusion of terrain shadowing effects, based on the same original meteorological dataset. Despite the fact that the two simulations use the same snowpack model, being potentially subjected to same potential deviation from the parametrization of certain physical processes, the results showed that both approaches accurately reproduced the snowpack distribution over the study period. Slightly (although statistically significantly) better results were obtained by using the distributed approach. The evaluation of the snow cover area with MODIS sensor has shown, on average, a reduction of the Root Mean Squared Error (RMSE) from 15.2% with the semi-distributed approach to 12.6% with the distributed one. Similarly, surface glacier mass balance RMSE decreased from 1.475 m of water equivalent (W.E.) for the semi-distributed simulation to 1.375 m W.E. for the distribution. The improvement, observed with a much higher computational time, does not justify the recommendation of this approach for all applications; however, for simulations that require a precise representation of snowpack distribution, the distributed approach is suggested.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-07-25
    Description: Remote Sensing, Vol. 10, Pages 1169: Multi-Year Analyses of Columnar Aerosol Optical and Microphysical Properties in Xi’an, a Megacity in Northwestern China Remote Sensing doi: 10.3390/rs10081169 Authors: Xiaoli Su Junji Cao Zhengqiang Li Kaitao Li Hua Xu Suixin Liu Xuehua Fan A thorough understanding of aerosol optical properties and their spatio-temporal variability are required to accurately evaluate aerosol effects in the climate system. In this study, a multi-year study of aerosol optical and microphysical properties was firstly performed in Xi’an based on three years of sun photometer remote sensing measurements from 2012 to 2015. The multi-year average of aerosol optical depth (AOD) at 440 nm was about 0.88 ± 0.24 (mean ± SD), while the averaged Ångström Exponent (AE) between 440 and 870 nm was 1.02 ± 0.15. The mean value of single scattering albedo (SSA) was around 0.89 ± 0.03. Aerosol optical depth and AE showed different seasonal variation patterns. Aerosol optical depth was slightly higher in winter (0.99 ± 0.36) than in other seasons (~0.85 ± 0.20), while AE showed its minimum in spring (0.85 ± 0.05) due to the impact of dust episodes. The seasonal variations of volume particle size distribution, spectral refractive index, SSA, and asymmetry factor were also analyzed to characterize aerosols over this region. Based on the aerosol products derived from sun photometer measurements, the classification of aerosol types was also conducted using two different methods in this region. Results show that the dominant aerosol types are absorbers in all seasons, especially in winter, demonstrating the strong absorptivity of aerosols in Xi’an.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-07-25
    Description: Sustainability, Vol. 10, Pages 2593: Visual Analysis of the Height Ratio between Building and Background Vegetation. Two Rural Cases of Study: Spain and Sweden Sustainability doi: 10.3390/su10082593 Authors: Jacinto Garrido-Velarde María Jesús Montero-Parejo Julio Hernández-Blanco Lorenzo García-Moruno The perception of apparent sizes of buildings in a rural environment depends on the height ratio between the building and its surrounding vegetation, and it is this parameter which is currently used to assess the built landscapes. The impact of a contrasting height is less strong if the building does not exceed the horizon line. For buildings overshooting the skyline, the building’s level of sharpness and number of lines in contrast to the sky determines the impact of the scales, and vegetation in the background helps to reduce impact. The specific objectives of the present study were: (1) finding height–ratio thresholds between building and background vegetation, which may improve the integration of rural buildings in sky-sensitive locations, and; (2) comparing the results in two rural contexts with very different climatic conditions: Spain and Sweden. A survey of eighteen scenarios (nine Spanish and nine Swedish), all digitally modified with different relative height ratios between vegetation and buildings, was performed. The survey was evaluated by the public from both countries. Regardless of the country of origin, integration of the building was good or very good when the vegetation in background did not exceed one half of the height of the construction. These results may be translated to technical criteria for planning assessment.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-07-25
    Description: Sensors, Vol. 18, Pages 2406: Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion Sensors doi: 10.3390/s18082406 Authors: Zhihong Deng Lijian Yin Baoyu Huo Yuanqing Xia In most practical applications, the tracking process needs to update the data constantly. However, outliers may occur frequently in the process of sensors’ data collection and sending, which affects the performance of the system state estimate. In order to suppress the impact of observation outliers in the process of target tracking, a novel filtering algorithm, namely a robust adaptive unscented Kalman filter, is proposed. The cost function of the proposed filtering algorithm is derived based on fading factor and maximum correntropy criterion. In this paper, the derivations of cost function and fading factor are given in detail, which enables the proposed algorithm to be robust. Finally, the simulation results show that the presented algorithm has good performance, and it improves the robustness of a general unscented Kalman filter and solves the problem of outliers in system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-07-25
    Description: Sustainability, Vol. 10, Pages 2586: Conserving Tropical Forests: Can Sustainable Livelihoods Outperform Artisanal or Informal Mining? Sustainability doi: 10.3390/su10082586 Authors: Joshua Fisher Poonam Arora Sophia Rhee The viability of conservation efforts, including protected areas and buffer zones, depends on finding ways to make those strategies more attractive and viable for local populations. This paper presents a pilot study utilizing a rapid rural appraisal of livelihoods in the buffer zone of Tambopata National Reserve in Madre de Dios, Peru, threatened by illegal gold mining and logging. We evaluated three predominant economic activities—artisanal gold mining, Brazil nut harvesting, and fish farming—in terms of potential economic returns. The main research question we ask is whether the latter two potentially sustainable land uses can match or exceed the returns from mining. Contrary to popular belief, we find that enhancing value creation at product origin could make existing forest-friendly livelihoods as or more lucrative than extractive ones. This has implications on local conservation policy encouraging implementable strategies incentivizing sustainable livelihoods in tandem with, and in support of, conservation goals.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 969: Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales Water doi: 10.3390/w10080969 Authors: Meizhao Lv Hui Lu Kun Yang Zhongfeng Xu Meixia Lv Xiaomeng Huang The current evaluations of global land data assimilation system (GLDAS) runoff were generally limited to the observation-rich areas. At the global and hemispheric scales, we assessed different runoff components performance of GLDAS (1.0 and 2.1) using the University of New Hampshire and Global Runoff Data Centre (UNH-GRDC) dataset. The results suggest that GLDAS simulations show considerable uncertainties, particularly in partition of surface and subsurface runoffs, in snowmelt runoff modeling, and in capturing the northern peak time. GLDAS1.0-CLM (common land model) produced more surface runoff almost globally; GLDAS-Noah generated more surface runoff over the northern middle-high latitudes and more subsurface runoff in the remaining areas; while the partition in GLDAS1.0-VIC (variable infiltration capacity) is almost opposite to that in Noah. Comparing to GLDAS1.0-Noah, GLDAS2.1-Noah improved the premature snow-melting tendency, but its snowmelt-runoff peak magnitude was excessively high in June and July. The discrepancies in northern primary peak times among precipitation and runoff is partly caused by the combination of rainfall and melting-snow over high-latitude, as well as the very different temporal–spatial distributions for snowmelt runoff simulated by GLDAS models. This paper can provide valuable guidance for GLDAS users, and contribute to the further improvement of hydrological parameterized schemes.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-07-25
    Description: Remote Sensing, Vol. 10, Pages 1166: Inventory of Glaciers in the Shaksgam Valley of the Chinese Karakoram Mountains, 1970–2014 Remote Sensing doi: 10.3390/rs10081166 Authors: Haireti Alifu Yukiko Hirabayashi Brian Alan Johnson Jean-Francois Vuillaume Akihiko Kondoh Minoru Urai The Shaksgam Valley, located on the north side of the Karakoram Mountains of western China, is situated in the transition zone between the Indian monsoon system and dry arid climate zones. Previous studies have reported abnormal behaviors of the glaciers in this region compared to the global trend of glacier retreat, so the region is of special interest for glacier-climatological studies. For this purpose, long-term monitoring of glaciers in this region is necessary to obtain a better understanding of the relationships between glacier changes and local climate variations. However, accurate historical and up-to-date glacier inventory data for the region are currently unavailable. For this reason, this study conducted glacier inventories for the years 1970, 1980, 1990, 2000 and 2014 (i.e., a ~10-year interval) using multi-temporal remote sensing imagery. The remote sensing data used included Corona KH-4A/B (1965–1971), Hexagon KH-9 (1980), Landsat Thematic Mapper (TM) (1990/1993), Landsat Enhanced Thematic Mapper Plus (ETM+) (2000/2001), and Landsat Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (2014/2015) multispectral satellite images, as well as digital elevation models (DEMs) from the Shuttle Radar Topography Mission (SRTM), DEMs generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images (2005–2014), and Advanced Land Observing Satellite (ALOS) World 3D 30 m mesh (AW3D30). In the year 2014, a total of 173 glaciers (including 121 debris-free glaciers) (>0.5 km2), covering an area of 1478 ± 34 km2 (area of debris-free glaciers: 295 ± 7 km2) were mapped. The multi-temporal glacier inventory results indicated that total glacier area change between 1970–2014 was not significant. However, individual glacier changes showed significant variability. Comparisons of the changes in glacier terminus position indicated that 55 (32 debris-covered) glaciers experienced significant advances (~40–1400 m) between 1970–2014, and 74 (32 debris-covered) glaciers experienced significant advances (~40–1400 m) during the most recent period (2000–2014). Notably, small glaciers showed higher sensitivity to climate changes, and the glaciers located in the western part of the study site were exhibiting glacier area expansion compared to other parts of the Shaksgam Valley. Finally, regression analyses indicated that topographic parameters were not the main driver of glacier changes. On the contrary, local climate variability could explain the complex behavior of glaciers in this region.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-07-25
    Description: Sustainability, Vol. 10, Pages 2601: Researcher–Planner Dialogue on Environmental Justice and Its Knowledges—A Means to Encourage Social Learning Towards Sustainability Sustainability doi: 10.3390/su10082601 Authors: Aino Rekola Riikka Paloniemi Societies aiming for a sustainable future need more effective and legitimate planning and decision making practices, in which various actors together find pathways towards a sustainable transition. In this paper, we approach sustainability and environmental justice as epistemological (and ontological) challenges for land-use planning, and empirically analyse how action research could support planners’ social learning and planning towards fair and sustainable development. We analysed qualitatively the evolution of the researcher–planner dialogue while co-designing and developing better methods, means and practices to improve environmental justice in regional scale planning in Kymenlaakso Region, South-East Finland. We found that researcher-planner dialogue developed during cooperation. While in the beginning, social learning related to approaching environmental justice as a fair distribution of power evolved incrementally, later, when dialogue became more focused, communicative and reflective as an outcome of mutual frames and trust, learning occurred in a more transformative way. Such transformative learning concerned recognising youth as a silent group in the planning process and the means to involve their perceptions in planning. In order to support sustainability transformation in the future, we conclude that it is essential to create opportunities for such incremental and transformative social learning through innovative modes of interaction in various contexts.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-07-25
    Description: Sustainability, Vol. 10, Pages 2602: Towards a Joint Local Energy Transition Process in Urban Districts: The GO2Zero Simulation Game Sustainability doi: 10.3390/su10082602 Authors: Geertje Bekebrede Ellen van Bueren Ivo Wenzler The depletion of fossil fuel sources for our energy system and the influence on overall CO2 emissions drive the need to more sustainable energy systems. The transition towards a renewable energy system cannot be seen as a purely technical issue; it is strongly embedded within society. In this study, we analyze the stakeholder complexities of the transition in urban districts and research the use of a simulation game to increase the understanding of the complexity of the transition. Surveys and observations were used to collect data about the learning experiences of playing the game GO2Zero. The results show that participants liked to play the game and they considered the game a valid representation of the system. Further, the participants agree that they obtained a better understanding of the complexity of the residential energy system and experienced a variety of challenges in the transition. Simulation games, like GO2Zero, could become valuable instruments in local energy transition processes as they offer a safe environment for novices and experts to jointly experiment with the challenges in this process. These experiences could support the design of the transition process by helping actors to formulate goals and collaborative strategies for achieving those goals. Future research will focus on the use of this game for experimenting with different strategies and instruments and to analyze their effects.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-07-26
    Description: Diversity, Vol. 10, Pages 73: Weevils as Targets for Biological Control, and the Importance of Taxonomy and Phylogeny for Efficacy and Biosafety Diversity doi: 10.3390/d10030073 Authors: Barbara I. P. Barratt Matthew J. W. Cock Rolf G. Oberprieler Curculionidae are a large mainly herbivorous family of beetles, some of which have become crop pests. Classical biological control has been attempted for about 38 species in 19 genera, and at least moderate success has been achieved in 31 % of cases. Only two weevil species have been considered to be completely controlled by a biological control agent. Success depends upon accurately matching natural enemies with their hosts, and hence taxonomy and phylogeny play a critical role. These factors are discussed and illustrated with two case studies: the introduction of the braconid parasitoid Mictroctonus aethiopoides into New Zealand for biological control of the lucerne pest Sitona discoideus, a case of complex phylogenetic relationships that challenged the prediction of potential non-target hosts, and the use of a mymarid egg parasitoid, Anaphes nitens, to control species of the eucalypt weevil genus Gonipterus, which involves failure to match up parasitoids with the right target amongst a complex of very closely related species. We discuss the increasing importance of molecular methods to support biological control programmes and the essential role of these emerging technologies for improving our understanding of this very large and complex family.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-07-26
    Description: Forests, Vol. 9, Pages 448: Shifts in Growing Season of Tropical Deciduous Forests as Driven by El Niño and La Niña during 2001–2016 Forests doi: 10.3390/f9080448 Authors: Phan Kieu Diem Uday Pimple Asamaporn Sitthi Pariwate Varnakovida Katsunori Tanaka Sukan Pungkul Kumron Leadprathom Monique Y. LeClerc Amnat Chidthaisong This study investigated the spatiotemporal dynamics of tropical deciduous forest including dry dipterocarp forest (DDF) and mixed deciduous forest (MDF) and its phenological changes in responses to El Niño and La Niña during 2001–2016. Based on time series of Normalized Difference Vegetation Index (NDVI) extracted from Moderate Resolution Imaging Spectroradiometer (MODIS), the start of growing season (SOS), the end of growing season (EOS), and length of growing season (LOS) were derived. In absence of climatic fluctuation, the SOS of DDF commonly started on 106 ± 7 DOY, delayed to 132 DOY in El Niño year (2010) and advanced to 87 DOY in La Niña year (2011). Thus, there was a delay of about 19 to 33 days in El Niño and an earlier onset of about 13 to 27 days in La Niña year. The SOS of MDF started almost same time as of DDF on the 107 ± 7 DOY during the neutral years and delayed to 127 DOY during El Niño, advanced to 92 DOY in La Niña year. The SOS of MDF was delayed by about 12 to 28 days in El Niño and was earlier about 8 to 22 days in La Niña. Corresponding to these shifts in SOS and LOS of both DDF and MDF were also induced by the El Niño–Southern Oscillation (ENSO).
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 550: Information Geometry of Nonlinear Stochastic Systems Entropy doi: 10.3390/e20080550 Authors: Rainer Hollerbach Donovan Dimanche Eun-jin Kim We elucidate the effect of different deterministic nonlinear forces on geometric structure of stochastic processes by investigating the transient relaxation of initial PDFs of a stochastic variable x under forces proportional to -xn (n=3,5,7) and different strength D of δ-correlated stochastic noise. We identify the three main stages consisting of nondiffusive evolution, quasi-linear Gaussian evolution and settling into stationary PDFs. The strength of stochastic noise is shown to play a crucial role in determining these timescales as well as the peak amplitude and width of PDFs. From time-evolution of PDFs, we compute the rate of information change for a given initial PDF and uniquely determine the information length L(t) as a function of time that represents the number of different statistical states that a system evolves through in time. We identify a robust geodesic (where the information changes at a constant rate) in the initial stage, and map out geometric structure of an attractor as L(t→∞)∝μm, where μ is the position of an initial Gaussian PDF. The scaling exponent m increases with n, and also varies with D (although to a lesser extent). Our results highlight ubiquitous power-laws and multi-scalings of information geometry due to nonlinear interaction.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 553: Hierarchical Structure of Generalized Thermodynamic and Informational Entropy Entropy doi: 10.3390/e20080553 Authors: Pierfrancesco Palazzo The present research aimed at discussing the thermodynamic and informational aspects of entropy concept to propose a unitary perspective of its definitions as an inherent property of any system in any state. The dualism and the relation between physical nature of information and the informational content of physical states of matter and phenomena play a fundamental role in the description of multi-scale systems characterized by hierarchical configurations. A method is proposed to generalize thermodynamic and informational entropy property and characterize the hierarchical structure of its canonical definition at macroscopic and microscopic levels of a system described in the domain of classical and quantum physics. The conceptual schema is based on dualisms and symmetries inherent to the geometric and kinematic configurations and interactions occurring in many-particle and few-particle thermodynamic systems. The hierarchical configuration of particles and sub-particles, representing the constitutive elements of physical systems, breaks down into levels characterized by particle masses subdivision, implying positions and velocities degrees of freedom multiplication. This hierarchy accommodates the allocation of phenomena and processes from higher to lower levels in the respect of the equipartition theorem of energy. However, the opposite and reversible process, from lower to higher level, is impossible by virtue of the Second Law, expressed as impossibility of Perpetual Motion Machine of the Second Kind (PMM2) remaining valid at all hierarchical levels, and the non-existence of Maxwell’s demon. Based on the generalized definition of entropy property, the hierarchical structure of entropy contribution and production balance, determined by degrees of freedom and constraints of systems configuration, is established. Moreover, as a consequence of the Second Law, the non-equipartition theorem of entropy is enunciated, which would be complementary to the equipartition theorem of energy derived from the First Law.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    MDPI Publishing
    In: Entropy
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 552: The Gibbs Paradox Entropy doi: 10.3390/e20080552 Authors: Simon Saunders The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics. They have a variety of answers, some restricted to quantum theory (there is no classical solution), some to classical theory (the quantum case is different). The solution offered here applies to both in equal measure, and is based on the concept of particle indistinguishability (in the classical case, Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations. ‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a mathematically convenient, but physically muddled, fiction.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-07-26
    Description: Energies, Vol. 11, Pages 1937: Evaluation of Fast Charging Efficiency under Extreme Temperatures Energies doi: 10.3390/en11081937 Authors: Germana Trentadue Alexandre Lucas Marcos Otura Konstantinos Pliakostathis Marco Zanni Harald Scholz Multi-type fast charging stations are being deployed over Europe as electric vehicle adoption becomes more popular. The growth of an electrical charging infrastructure in different countries poses different challenges related to its installation. One of these challenges is related to weather conditions that are extremely heterogeneous due to different latitudes, in which fast charging stations are located and whose impact on the charging performance is often neglected or unknown. The present study focused on the evaluation of the electric vehicle (EV) charging process with fast charging devices (up to 50 kW) at ambient (25 °C) and at extreme temperatures (−25 °C, −15 °C, +40 °C). A sample of seven fast chargers and two electric vehicles (CCS (combined charging system) and CHAdeMO (CHArge de Move)) available on the commercial market was considered in the study. Three phase voltages and currents at the wall socket, where the charger was connected, as well as voltage and current at the plug connection between the charger and vehicle have been recorded. According to SAE (Society of Automotive Engineers) J2894/1, the power conversion efficiency during the charging process has been calculated as the ratio between the instantaneous DC power delivered to the vehicle and the instantaneous AC power supplied from the grid in order to test the performance of the charger. The inverse of the efficiency of the charging process, i.e., a kind of energy return ratio (ERR), has been calculated as the ratio between the AC energy supplied by the grid to the electric vehicle supply equipment (EVSE) and the energy delivered to the vehicle’s battery. The evaluation has shown a varied scenario, confirming the efficiency values declared by the manufacturers at ambient temperature and reporting lower energy efficiencies at extreme temperatures, due to lower requested and, thus, delivered power levels. The lowest and highest power conversion efficiencies of 39% and 93% were observed at −25 °C and ambient temperature (+25 °C), respectively.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 549: Entropy-Based Feature Extraction for Electromagnetic Discharges Classification in High-Voltage Power Generation Entropy doi: 10.3390/e20080549 Authors: Imene Mitiche Gordon Morison Alan Nesbitt Brian G. Stewart Philip Boreham This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-07-26
    Description: Energies, Vol. 11, Pages 1934: Multi-Port Zero-Current Switching Switched-Capacitor Converters for Battery Management Applications Energies doi: 10.3390/en11081934 Authors: Yat Chi Fong Ka Wai Eric Cheng S. Raghu Raman Xiaolin Wang A novel implementation of multi-port zero-current switching (ZCS) switched-capacitor (SC) converters for battery management applications is presented. In addition to the auto-balancing feature offered by the SC technique, the proposed SC converter permits individual control of the charging or discharging current of the series-connected energy storage elements, such as the battery or super-capacitor cells. This approach enables advanced state control and accelerates the equalizing process by coordinated operation with the battery management system (BMS) and an adjustable voltage source, which can be implemented by a DC-DC converter interfaced to the energy storage string. Different configurations, including the single-input multi-output (SIMO), multi-input single-output (MISO) SC converters, and the corresponding altered circuits for string-to-cells, cells-to-string, as well as cells-to-cells equalizers, are discussed with a circuit analysis and derivation of the associated mathematical representation. The simulation study and experimental results indicated a significant increase in the balancing speed with the presence of BMS and closed-loop control of cell currents.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1287: Polysaccharide-Based Aerogel Bead Production via Jet Cutting Method Materials doi: 10.3390/ma11081287 Authors: Imke Preibisch Philipp Niemeyer Yusuf Yusufoglu Pavel Gurikov Barbara Milow Irina Smirnova The aim of this work is to develop a method to produce spherical biopolymer-based aerogel particles, which is capable for scale-up in the future. Therefore, the jet cutting method is suggested. Amidated pectin, sodium alginate, and chitosan are used as a precursor (a 1–3 wt. % solution) for particle production via jet cutting. Gelation is realized via two methods: the internal setting method (using calcium carbonate particles as cross-linkers and citric and acidic acid for pH adjustment) and the diffusion method (in calcium chloride solutions). Gel particles are subjected to solvent exchange to ethanol and consequent supercritical drying with CO2. Spherical aerogel particles with narrow particle size distributions in the range of 400 to 1500 µm and a specific surface area of around 500 m2/g are produced. Overall, it can be concluded that the jet cutting method is suitable for aerogel particle production, although the shape of the particles is not perfectly spherical in all cases. However, parameter adjustment might lead to even better shaped particles in further work. Moreover, the biopolymer-based aerogel particles synthesized in this study are tested as humidity absorbers in drying units for home appliances, particularly for dishwashers. It has been shown that for several cycles of absorption and desorption of humidity, aerogel particles are stable with an absorption capacity of around 20 wt. %.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1279: Computational Predictions and Microwave Plasma Synthesis of Superhard Boron-Carbon Materials Materials doi: 10.3390/ma11081279 Authors: Paul A. Baker Shane A. Catledge Sumner B. Harris Kathryn J. Ham Wei-Chih Chen Cheng-Chien Chen Yogesh K. Vohra Superhard boron-carbon materials are of prime interest due to their non-oxidizing properties at high temperatures compared to diamond-based materials and their non-reactivity with ferrous metals under extreme conditions. In this work, evolutionary algorithms combined with density functional theory have been utilized to predict stable structures and properties for the boron-carbon system, including the elusive superhard BC5 compound. We report on the microwave plasma chemical vapor deposition on a silicon substrate of a series of composite materials containing amorphous boron-doped graphitic carbon, boron-doped diamond, and a cubic hard-phase with a boron-content as high as 7.7 at%. The nanoindentation hardness of these composite materials can be tailored from 8 GPa to as high as 62 GPa depending on the growth conditions. These materials have been characterized by electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, and nanoindentation hardness, and the experimental results are compared with theoretical predictions. Our studies show that a significant amount of boron up to 7.7 at% can be accommodated in the cubic phase of diamond and its phonon modes and mechanical properties can be accurately modeled by theory. This cubic hard-phase can be incorporated into amorphous boron-carbon matrices to yield superhard materials with tunable hardness values.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-07-26
    Description: Forests, Vol. 9, Pages 446: Plant Hydraulic Trait Covariation: A Global Meta-Analysis to Reduce Degrees of Freedom in Trait-Based Hydrologic Models Forests doi: 10.3390/f9080446 Authors: A. Rio Mursinna Erica McCormick Katie Van Horn Lisa Sartin Ashley M. Matheny Current vegetation modeling strategies use broad categorizations of plants to estimate transpiration and biomass functions. A significant source of model error stems from vegetation categorizations that are mostly taxonomical with no basis in plant hydraulic strategy and response to changing environmental conditions. Here, we compile hydraulic traits from 355 species around the world to determine trait covariations in order to represent hydraulic strategies. Simple and stepwise regression analyses demonstrate the interconnectedness of multiple vegetative hydraulic traits, specifically, traits defining hydraulic conductivity and vulnerability to embolism with wood density and isohydricity. Drought sensitivity is strongly (Adjusted R2 = 0.52, p < 0.02) predicted by a stepwise linear model combining rooting depth, wood density, and isohydricity. Drought tolerance increased with increasing wood density and anisohydric response, but with decreasing rooting depth. The unexpected response to rooting depth may be due to other tradeoffs within the hydraulic system. Rooting depth was able to be predicted from sapwood specific conductivity and the water potential at 50% loss of conductivity. Interestingly, the influences of biome or growth form do not increase the accuracy of the drought tolerance model and were able to be omitted. Multiple regression analysis revealed 3D trait spaces and tradeoff axes along which species’ hydraulic strategies can be analyzed. These numerical trait spaces can reduce the necessary input to and parameterization of plant hydraulics modules, while increasing the physical representativeness of such simulations.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1290: Compositional Dependence of Phase Selection in CoCrCu0.1FeMoNi-Based High-Entropy Alloys Materials doi: 10.3390/ma11081290 Authors: Ning Liu Chen Chen Isaac Chang Pengjie Zhou Xiaojing Wang To study the effect of alloy composition on phase selection in the CoCrCu0.1FeMoNi high-entropy alloy (HEA), Mo was partially replaced by Co, Cr, Fe, and Ni. The microstructures and phase selection behaviors of the CoCrCu0.1FeMoNi HEA system were investigated. Dendritic, inter-dendritic, and eutectic microstructures were observed in the as-solidified HEAs. A simple face centered cubic (FCC) single-phase solid solution was obtained when the molar ratio of Fe, Co, and Ni was increased to 1.7 at the expense of Mo, indicating that Fe, Co, and Ni stabilized the FCC structure. The FCC structure was favored at the atomic radius ratio δ ≤ 2.8, valence electron concentration (VEC) ≥ 8.27, mixing entropy ΔS ≤ 13.037, local lattice distortion parameter α2 ≤ 0.0051, and ΔS/δ2 > 1.7. Mixed FCC + body centered cubic (BCC) structures occurred for 4.1 ≤ δ ≤ 4.3 and 7.71 ≤ VEC ≤ 7.86; FCC or/and BCC + intermetallic (IM) mixtures were favored at 2.8 ≤ δ ≤ 4.1 or δ > 4.3 and 7.39 < VEC ≤ 8.27. The IM phase is favored at electronegativity differences greater than 0.133. However, ΔS, α2, and ΔS/δ2 were inefficient in identifying the (FCC or/and BCC + IM)/(FCC + BCC) transition. Moreover, the mixing enthalpy cannot predict phase structures in this system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1286: An Evaluation of Wetting and Adhesion of Three Bioceramic Root Canal Sealers to Intraradicular Human Dentin Materials doi: 10.3390/ma11081286 Authors: Jung-Hong Ha Hyeon-Cheol Kim Young Kyung Kim Tae-Yub Kwon Root canal sealers should have good wetting and adhesion with intraradicular dentin. This study evaluated the wetting and adhesion properties of three bioceramic root canal sealers on dentin using contact angle (CA) measurements and calculations based on the Owens–Wendt–Rabel–Kälble (OWRK) model and compared the properties with those of a resin sealer. Three bioceramic sealers (EndoSequence BC Sealer (BC); Endoseal MTA (EM); and MTA Fillapex (MF)) were tested, together with one epoxy resin-based sealer (AH Plus (AP)). Disc-shaped sealer specimens and human premolar teeth with flat and polished intraradicular dentin surfaces were prepared (n = 12). The CAs of two liquids (water and methylene iodide) were measured on the surfaces using the sessile drop method. The wetting and adhesion properties of the four sealers were calculated using the wetting envelope and isogram diagram, respectively. Group BC showed the best wettability among the four sealer groups. The best adhesion was achieved for group EM, followed by group BC, with a significant difference being present between the two groups (p < 0.05). The OWRK-based calculation indicated that the bioceramic BC and EM sealers showed superior wetting and adhesion properties to the AP sealers.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1281: Investigation of Cutting Temperature during Turning Inconel 718 with (Ti,Al)N PVD Coated Cemented Carbide Tools Materials doi: 10.3390/ma11081281 Authors: Jinfu Zhao Zhanqiang Liu Qi Shen Bing Wang Qingqing Wang Physical Vapor Deposition (PVD) Ti1−xAlxN coated cemented carbide tools are commonly used to cut difficult-to-machine super alloy of Inconel 718. The Al concentration x of Ti1−xAlxN coating can affect the coating microstructure, mechanical and thermo-physical properties of Ti1−xAlxN coating, which affects the cutting temperature in the machining process. Cutting temperature has great influence on the tool life and the machined surface quality. In this study, the influences of PVD (Ti,Al)N coated cemented carbide tools on the cutting temperature were analyzed. Firstly, the microstructures of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coatings were inspected. The increase of Al concentration x enhanced the crystallinity of PVD Ti1−xAlxN coatings without epitaxy growth of TiAlN crystals. Secondly, the mechanical and thermo-physical properties of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coated tools were analyzed. The pinning effects of coating increased with the increasing of Al concentration x, which can decrease the friction coefficient between the PVD Ti1−xAlxN coated cemented carbide tools and the Inconel 718 material. The coating hardness and thermal conductivity of Ti1−xAlxN coatings increased with the increase of Al concentration x. Thirdly, the influences of PVD Ti1−xAlxN coated tools on the cutting temperature in turning Inconel 718 were analyzed by mathematical analysis modelling and Lagrange simulation methods. Compared with the uncoated tools, PVD Ti0.41Al0.59N coated tools decreased the heat generation as well as the tool temperature to reduce the thermal stress generated within the tools. Lastly, the influences of Ti1−xAlxN coatings on surface morphologies of the tool rake faces were analyzed. The conclusions can reveal the influences of PVD Ti1−xAlxN coatings on cutting temperature, which can provide guidance in the proper choice of Al concentration x for PVD Ti1−xAlxN coated tools in turning Inconel 718.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1278: Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets Materials doi: 10.3390/ma11081278 Authors: Sutao Han Xuedao Shu Chang Shu Considering problems about concaves at the stepped shaft ends, this paper established the plastic flow kinetic theories about metal deforming during the cross-wedge rolling (CWR) process. By means of the DEFORM-3D finite element software and the point tracing method, the forming process of stepped shafts and the forming mechanism of concaves at shaft ends were studied. Based on the forming features of stepped shafts, rolling pieces were designed using variable cone angle billets. Single-factor tests were conducted to analyze the influence law of the shape parameters of billet with variable cone angle on end concaves, and rolling experiments were performed for verification. According to the results, during the rolling process of stepped shafts, concaves will come into being in stages, and the increasing tendency of its depth is due to the wave mode, the parameters of cone angle α, the first cone section length n. Furthermore, the total cone section length m has an increasingly weaker influence on the end concaves. Specifically, cone angle α has the most significant influence on the quality of shaft ends, which is about twice the influence of the total cone section length m. The concave depth will decrease at the beginning, and then increase with the increasing of the cone angle α and the first cone section length n, and it will decrease with the increasing of the total cone section length m. Finite element numerical analysis results are perfectly consistent with experimental results, with the error ratio being lower than 5%. The results provide a reliable theoretical basis for effectively disposing of end concave problems during CWR, rationally confirming the shape parameters of billets with a variable cone angle, improving the quality of stepped shaft ends, and realizing the near-net forming process of cross-wedge rolling without a stub bar.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1276: Tool Wear Mechanism in Cutting of Stack CFRP/UNS A97075 Materials doi: 10.3390/ma11081276 Authors: Severo Raul Fernandez-Vidal Sergio Fernandez-Vidal Moises Batista Jorge Salguero The aeronautics industry’s competitiveness has led to the need to increase productivity with one shot drilling (OSD) systems capable of drilling stacks of dissimilar materials (fibre/metal laminates, FML) in order to reduce riveting times. Among the materials that constitute the current aeronautical models, composite materials and aluminium (Al) and titanium (Ti) alloys stand out. These one-pass machining techniques produce high-quality holes, especially when all the elements that have to be joined are made of the same material. This work has followed a conventional OSD strategy and the same cutting conditions applied to CFRP (carbo-fibre-reinforced polymer), Al and CFRP/Al stacked sheets to know the wear mechanisms produced. With this purpose, results were obtained by using current specific techniques, such as microstructural analysis, monitoring of the shear forces and analysis of macrogeometric deviations. It has been determined that when these drilling techniques are applied under the same cutting conditions to stacks of materials of a different nature, the results of the wear mechanisms acting on the tool differ from those obtained when machining each material separately. This article presents a comparison between the effects of tool wear during dry drilling of CFRP and UNS A97075 plates separately and when machined as stacks.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2420: Strain Transfer Characteristics of Resistance Strain-Type Transducer Using Elastic-Mechanical Shear Lag Theory Sensors doi: 10.3390/s18082420 Authors: Yongqian Li Zhigang Wang Chi Xiao Yinming Zhao Yaxin Zhu Zili Zhou The strain transfer characteristics of resistance strain gauge are theoretically investigated. A resistance strain-type transducer is modeled to be a four-layer and two-glue (FLTG) structure model, which comprises successively the surface of an elastomer sensitive element, a ground adhesive glue, a film substrate layer, an upper adhesive glue, a sensitive grids layer, and a polymer cover. The FLTG model is studied in elastic–mechanical shear lag theory, and the strain transfer progress in a resistance strain-type transducer is described. The strain transitional zone (STZ) is defined and the strain transfer ratio (STR) of the FLTG structure is formulated. The dependences of the STR and STZ on both the dimensional sizes of the adhesive glue and structural parameters are calculated. The results indicate that the width, thickness and shear modulus of the ground adhesive glue have a greater influence on the STZ ratio. To ensure that the resistance strain gauge has excellent strain transfer performance and low hysteresis, it is recommended that the paste thickness should be strictly controlled, and the STZ ratio should be less than 10%. Moreover, the STR strongly depends on the length and width of the sensitive grids.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2416: Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure Sensors doi: 10.3390/s18082416 Authors: Guanyu Huang Dan Zhang Sheng Guo Haibo Qu To measure large external forces exerted on a loading platform, a novel three-dimensional force sensor is developed in this paper. The proposed sensor was designed with a parallel mechanism with three degrees of freedom. Kinematic analysis of this sensor was performed. Due to its structural characteristics, the working principle of the sensor was analyzed using a Jacobian matrix. The sensitivity diversity index and measuring capability were both calculated. The analysis showed that the proposed sensor is more suitable for measuring large forces than existing strain sensors. In addition, compared with existing strain sensors, this sensor is more suitable for measuring forces along the x and y axes. By changing the stiffness coefficients of the springs, the proposed sensor has reconfigurability. This sensor can change its measuring capability to meet different requirements. Next, the mode shapes and natural frequencies of the proposed sensor were performed. Finally, based on these performance indices, the design variables were optimized using a Multi-Objective Genetic Algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2415: Cheeses Made from Raw and Pasteurized Cow’s Milk Analysed by an Electronic Nose and an Electronic Tongue Sensors doi: 10.3390/s18082415 Authors: Nuno I. P. Valente Alisa Rudnitskaya João A. B. P. Oliveira M. Teresa S. R. Gomes Elvira M. M. Gaspar Cheese prepared from whole milk, raw and pasteurized, were analysed by an electronic nose based on piezoelectric quartz crystals and an electronic tongue based on potentiometric sensors, immediately after their preparation and along ripening (after 7 and 21 days). Whey was also analysed by the potentiometric electronic tongue. Results obtained by the electronic nose and tongue were found to be complementary, with the electronic nose being more sensitive to differences in the milk and the electronic tongue being more sensitive to milk pasteurization. Electronic tongue was able to distinguish cheeses made from raw and pasteurized milk, both analysing the whey or the curd, with correct classification rate of 96% and 84%, respectively. Besides, the electronic nose was more sensitive than the electronic tongue to the ripening process, with large differences between samples after 7 and 21 days, while the electronic tongue was only sensitive to the initial maturation stages, with large difference between freshly prepared cheese and with seven days of maturation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2412: Validation of the Accuracy and Convergence Time of Real Time Kinematic Results Using a Single Galileo Navigation System Sensors doi: 10.3390/s18082412 Authors: Zbigniew Siejka For the last two decades, the American GPS and Russian GLONASS were the basic systems used in global positioning and navigation. In recent years, there has been significant progress in the development of positioning systems. New regional systems have been created, i.e., the Japanese Quasi-Zenith Satellite System (QZSS) and Indian Regional Navigational Satellite System (IRNSS). A plan to build its own regional navigation system named Korean Positioning System (KPS) was announced South Korea on 5 February 2018. Currently, two new global navigation systems are under development: the European Galileo and the Chinese BeiDou. The full operability of both systems by 2020 is planned. The paper deals with a possibility of determination of the user’s position from individual and independent global navigation satellite system (GNSS). The article is a broader concept aimed at independent determination of precise position from individual GPS, GLONASS, BeiDou and Galileo systems. It presents real time positioning results (Real Time Kinematic-RTK) using signals from Galileo satellites only. During the test, 14 Galileo satellites were used and the number of simultaneously observed Galileo satellites varied from five to seven. Real-time measurements were only possible in certain 24-h observation windows. However, their number was completed within 6 days at the end of 2017 and beginning of 2018, so there was possible to infer about the current availability, continuity, convergence time and accuracy of the RTK measurements. In addition, the systematic errors were demonstrated for the Galileo system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-07-26
    Description: Sustainability, Vol. 10, Pages 2613: An E-Commerce Platform for Industrialized Construction Procurement Based on BIM and Linked Data Sustainability doi: 10.3390/su10082613 Authors: Dandan He Zhongfu Li Chunlin Wu Xin Ning Industrialized construction has raised the requirements of procurement methods used in the construction industry. The rapid development of e-commerce offers efficient and effective solutions, however the large number of participants in the construction industry means that the data involved are complex, and problems arise related to volume, heterogeneity, and fragmentation. Thus, the sector lags behind others in the adoption of e-commerce. In particular, data integration has become a barrier preventing further development. Traditional e-commerce platform, which considered data integration for common product data, cannot meet the requirements of construction product data integration. This study aimed to build an information-integrated e-commerce platform for industrialized construction procurement (ICP) to overcome some of the shortcomings existing platforms. We proposed a platform based on Building Information Modelling (BIM) and linked data, taking an innovative approach to data integration. It uses industrialized construction technology to support product standardization, BIM to support procurement process, and linked data to connect different data sources. The platform was validated using a case study. With the development of an e-commerce ontology, industrialized construction component information was extracted from BIM models and converted to Resource Description Framework (RDF) format. Related information from different data sources was also converted to RDF format, and Simple Protocol and Resource Description Framework Query Language (SPARQL) queries were implemented. The platform provides a solution for the development of e-commerce platform in the construction industry.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-07-26
    Description: Sustainability, Vol. 10, Pages 2614: An Efficient Grid-Based K-Prototypes Algorithm for Sustainable Decision-Making on Spatial Objects Sustainability doi: 10.3390/su10082614 Authors: Hong-Jun Jang Byoungwook Kim Jongwan Kim Soon-Young Jung Data mining plays a critical role in sustainable decision-making. Although the k-prototypes algorithm is one of the best-known algorithms for clustering both numeric and categorical data, clustering a large number of spatial objects with mixed numeric and categorical attributes is still inefficient due to complexity. In this paper, we propose an efficient grid-based k-prototypes algorithm, GK-prototypes, which achieves high performance for clustering spatial objects. The first proposed algorithm utilizes both maximum and minimum distance between cluster centers and a cell, which can reduce unnecessary distance calculation. The second proposed algorithm as an extension of the first proposed algorithm, utilizes spatial dependence; spatial data tends to be similar to objects that are close. Each cell has a bitmap index which stores the categorical values of all objects within the same cell for each attribute. This bitmap index can improve performance if the categorical data is skewed. Experimental results show that the proposed algorithms can achieve better performance than the existing pruning techniques of the k-prototypes algorithm.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...