ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union (AGU)
  • International Union of Crystallography (IUCr)
Collection
Years
  • 1
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 1.1920 – 95.2014
    Print: 10.1925 – 92.2011 (Location: A17, Kompaktmagazin, 22/1-5)
    Print: 61.1980 – 92.2011 (Location: A43, ZS-Auslage)
    Formerly as: Transactions  (1920–1968)
    Continued as: Eos: Earth & Space Science News  (1915–)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Print ISSN: 0002-8606 , 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Acronym: Eos
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Journal cover
    Unknown
    American Geophysical Union (AGU)
    Online: 96.2015 –
    Formerly as: Eos: Transactions  (1920–2014)
    Publisher: American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Keywords: Geophysik ; Meteorologie ; Ozeanographie
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    Online: 6(1).1998 –
    Publisher: International Union of Crystallography (IUCr)
    Print ISSN: 1067-0696
    Electronic ISSN: 1945-0834
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.1965 –
    Print: 31.1995 – 41.2005 (Location: A17, Kompaktmagazin, 70/2-4)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Acronym: WRR
    Abbreviation: Water Resour Res
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 35(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Journal cover
    Unknown
    International Union of Crystallography (IUCr)
    Online: 1.1948 – 23.1967
    Publisher: International Union of Crystallography (IUCr)
    Print ISSN: 0365-110X
    Electronic ISSN: 1600-8642
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Journal cover
    Unknown
    International Union of Crystallography (IUCr) | Wiley
    Online: 61.2005 –
    Online: 61.2005 –
    Publisher: International Union of Crystallography (IUCr) , Wiley
    Print ISSN: 1744-3091
    Electronic ISSN: 2053-230X
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Journal cover
    Unknown
    International Union of Crystallography (IUCr) | Wiley
    Online: 53.1997 –
    Online: 53.1997 –
    Formerly as: Acta Crystallographica  (1948–1967)
    Publisher: International Union of Crystallography (IUCr) , Wiley
    Corporation: International Union of Crystallography, IUCr
    Print ISSN: 0108-7681 , 0567-7408 , 2052-5192
    Electronic ISSN: 1600-5740 , 1600-8650 , 2052-5206
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Journal cover
    Unknown
    International Union of Crystallography (IUCr)
    Online: 64.2008 –
    Publisher: International Union of Crystallography (IUCr)
    Corporation: International Union of Crystallography, IUCr
    Electronic ISSN: 1600-5368 , 2056-9890
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Journal cover
    Unknown
    International Union of Crystallography (IUCr) | Wiley
    Online: 53.1997 –
    Online: 53.1997 –
    Publisher: International Union of Crystallography (IUCr) , Wiley
    Corporation: International Union of Crystallography, IUCr
    Print ISSN: 0907-4449
    Electronic ISSN: 1399-0047 , 2059-7983
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Journal cover
    Unknown
    International Union of Crystallography (IUCr) | Wiley
    Online: 53.1997 – 66.2010
    Online: 53.1997 –
    Formerly as: Acta Crystallographica  (1948–1967)
    Publisher: International Union of Crystallography (IUCr) , Wiley
    Corporation: International Union of Crystallography, IUCr
    Print ISSN: 0108-7673 , 0567-7394
    Electronic ISSN: 1600-5724 , 1600-8596 , 2053-2733
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Journal cover
    Unknown
    International Union of Crystallography (IUCr) | Wiley
    Online: 53.1997 –
    Online: 53.1997 –
    Formerly as: Crystal Structure Communications  (1972–1982)
    Publisher: International Union of Crystallography (IUCr) , Wiley
    Corporation: International Union of Crystallography, IUCr
    Print ISSN: 0108-2701 , 2053-2296
    Electronic ISSN: 1600-5759 , 2053-2296
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Journal cover
    Unknown
    International Union of Crystallography (IUCr)
    Online: 57.2001 – 63.2007
    Publisher: International Union of Crystallography (IUCr)
    Corporation: International Union of Crystallography, IUCr
    Electronic ISSN: 1600-5368
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Journal cover
    Unknown
    International Union of Crystallography (IUCr)
    Online: 61.2005 –
    Publisher: International Union of Crystallography (IUCr)
    Print ISSN: 2053-230X
    Electronic ISSN: 1744-3091
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.1982 –
    Print: 4.1985 – 24.2005 (Location: A17, Kompaktmagazin, 67/3-5)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU 〈Washington, DC〉 , European Geosciences Union, EGU
    Description: Tectonics contains original scientific contributions in analytical, synthetic, and integrative tectonics. Papers are restricted to the structure and evolution of the terrestrial lithosphere with dominant emphasis on the continents.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Keywords: Seismologie ; Tektonik ; Plattentektonik ; Lithosphäre ; Kontinente ; seismology ; tectonics; plate tectonics ; lithosphere ; continents
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.2003 –
    Online: 1(1).2003 –
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Print ISSN: 1542-7390
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 1(1).2003 –
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 1539-4964
    Electronic ISSN: 2325-4432
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 83.1978 –
    Print: 83.1978 – 110.2005 (Location: A17, Kompaktmagazin, 38/5 - 39/4)
    Formerly as: Journal of Geophysical Research / A  (–)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: JGR: Space Physics is dedicated to the publication of new and original research in the broad field of space science. This embraces aeronomy, magnetospheric physics, planetary atmospheres, ionospheres and magnetospheres, solar and interplanetary physics, cosmic rays, and heliospheric physics. Science that links interactions between space science and other components of the Sun-Earth system are encouraged, as are multidisciplinary and system-level science papers.
    Print ISSN: 0148-0227 , 2169-9380
    Electronic ISSN: 2156-2202 , 2169-9402
    Topics: Geosciences , Physics
    Parallel titles: JGR Space Physics
    Acronym: JGR
    Abbreviation: J Geophys Res A
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 110.2005 –
    Print: 110.2005 – 110.2005 (Location: A17, Kompaktmagazin, 42/2)
    Formerly as: Journal of Geophysical Research / G  (–)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: JGR: Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology.
    Print ISSN: 0148-0227 , 2169-8953
    Electronic ISSN: 2156-2202 , 2169-8961
    Topics: Biology , Geosciences
    Parallel titles: JGR Biogeosciences
    Acronym: JGR
    Abbreviation: J Geophys Res G
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 102(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0148-0227 , 2169-9275
    Electronic ISSN: 2156-2202 , 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 110(1).2005 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0148-0227 , 2169-8953
    Electronic ISSN: 2156-2202 , 2169-8961
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 1.1896 – 82.1977
    Print: 54.1949 – 82.1977 (Location: A17, Kompaktmagazin, 37/5 - 38/5)
    Print: 56.1951 – 86.1981 (Location: A62, MOP)
    Formerly as: Terrestrial Magnetism ; Terrestrial Magnetism and Atmospheric Electricity  (1899–1948)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: Journal of Geophysical Research (JGR) publishes original scientific research on the physical, chemical, and biological processes that contribute to the understanding of the Earth, Sun, and solar system and all of their environments and components. JGR is currently organized into seven disciplinary sections (Atmospheres, Biogeosciences, Earth Surface, Oceans, Planets, Solid Earth, Space Physics). Sections may be added or combined in response to changes in the science.
    Print ISSN: 0022-1406 , 0096-8013 , 0148-0227 , 0272-7528
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Acronym: JGR
    Abbreviation: J Geophys Res
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 96.1991 –
    Print: 96.1991 – 110.2005 (Location: A17, Kompaktmagazin, 42/1-2)
    Formerly as: Journal of Geophysical Research / E  (–)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: JGR: Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration, or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method.
    Print ISSN: 0148-0227 , 2169-9097
    Electronic ISSN: 2156-2202 , 2169-9100
    Topics: Geosciences , Physics
    Parallel titles: JGR Planets
    Acronym: JGR
    Abbreviation: J Geophys Res E
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 102(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0148-0227 , 2169-9380
    Electronic ISSN: 2156-2202 , 2169-9402
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 108(1).2003 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0148-0227 , 2169-9003
    Electronic ISSN: 2156-2202 , 2169-9011
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 102(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0148-0227 , 2169-9313
    Electronic ISSN: 2156-2202 , 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 102(1).1997 –
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0148-0227 , 2169-897X
    Electronic ISSN: 2156-2202 , 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 102(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0148-0227 , 2169-9097
    Electronic ISSN: 2156-2202 , 2169-9100
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Journal cover
    Unknown
    International Union of Crystallography (IUCr)
    Online: 1(1).2014 –
    Publisher: International Union of Crystallography (IUCr)
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 83.1978 –
    Print: 83.1978 – 110.2005 (Location: A17, Kompaktmagazin, 39/4 - 40/4)
    Formerly as: Journal of Geophysical Research / B  (–)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: JGR: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
    Print ISSN: 0148-0227 , 2169-9313
    Electronic ISSN: 2156-2202 , 2169-9356
    Topics: Geosciences , Physics
    Parallel titles: JGR Solid Earth
    Acronym: JGR
    Abbreviation: J Geophys Res B
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 11(1).1997 –
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Journal cover
    Unknown
    American Geophysical Union (AGU)
    Print: 1(1).1978 – 2(2).1983 (Location: A17, Kompaktmagazin, s. Katalog)
    Publisher: American Geophysical Union (AGU)
    Print ISSN: 0162-0118
    Topics: Geosciences
    Parallel titles: Earthquake Research in China
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Journal cover
    Unknown
    American Geophysical Union (AGU)
    Online: 1(1).1998 – 8(1).2008
    Publisher: American Geophysical Union (AGU)
    Print ISSN: 1524-4423
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Journal cover
    Unknown
    American Geophysical Union (AGU) | Wiley-Blackwell
    Online: 1(1).2014 –
    Publisher: American Geophysical Union (AGU) , Wiley-Blackwell
    Corporation: American Geophysical Union, AGU 〈Washington, DC〉
    Electronic ISSN: 2333-5084
    Topics: Geosciences , Physics
    Keywords: Geophysik ; Planetologie ; Astronomie
    Acronym: ESS
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 78(1).1997 – 95(51).2014
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.1974 –
    Print: 1.1974 – 32.2005 (Location: A17, Kompaktmagazin, 30/5 - 31/1)
    Print: 16.1989 – 29.2002 (Location: A43, LZ 9 Mitte)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU (Washington, DC)
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Acronym: GRL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 24(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 1(1).2000 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.2000 –
    Online: 1.2000 –
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU , Geochemical Society
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Keywords: Geochemie ; geochemistry ; Geophysik ; geophysics ; United States of America ; USA
    Acronym: G-cubed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.1987 –
    Print: 7.1993 – 19.2005 (Location: A17, Kompaktmagazin, 32/3)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Acronym: GBC
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 1(1).2013 –
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Journal cover
    Unknown
    American Geophysical Union (AGU) | Association of American Geographers (AAG) | American Meteorological Society | Allen Press
    Online: 1(1).1997 –
    Publisher: American Geophysical Union (AGU) , Association of American Geographers (AAG) , American Meteorological Society , Allen Press
    Electronic ISSN: 1087-3562
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 35(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0034-6853 , 0096-1043 , 8755-1209
    Electronic ISSN: 1944-9208
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Journal cover
    Unknown
    American Geophysical Union (AGU) | European Geosciences Union (EGU) | Copernicus
    Online: 1.1994 –
    Print: 1.1994 – 17.2010 (Location: A17, Kompaktmagazin, 54/1)
    Publisher: American Geophysical Union (AGU) , European Geosciences Union (EGU) , Copernicus
    Corporation: European Geosciences Union, EGU
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Keywords: Geophysik, Meteorologie, Ozeanographie
    Acronym: NPG
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 1.2009 –
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU 〈Washington, DC〉
    Electronic ISSN: 1942-2466
    Topics: Geography , Geosciences
    Keywords: Umweltmodellierung ; Meteorologie ; Klimatologie
    Acronym: JAMES
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Journal cover
    Unknown
    Wiley-Blackwell - STM | International Union of Crystallography (IUCr)
    Online: 1(1).1968 –
    Print: 26.1993 – 30.1997 (Location: A17, Archiv, Magazin, 30/5)
    Publisher: Wiley-Blackwell - STM , International Union of Crystallography (IUCr)
    Print ISSN: 0021-8898
    Electronic ISSN: 1600-5767
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1(1).1986 –
    Formerly as: Paleoceanography  (1986–2017)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Print ISSN: 0883-8305 , 2572-4517
    Electronic ISSN: 1944-9186 , 2572-4525
    Topics: Geosciences
    Keywords: Paläontologie ; Ozeanographie ; Klimatologie
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.1963 –
    Print: 3.1965 – 43.2005 (Location: A17, Kompaktmagazin, 62/3-5)
    Formerly as: Reviews of Geophysics and Space Physics  (1970–1984)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Print ISSN: 0034-6853 , 0096-1043 , 8755-1209
    Electronic ISSN: 1944-9208
    Topics: Geosciences
    Acronym: RG
    Abbreviation: Rev Geophys
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 16(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 89.1984 –
    Print: 89.1984 – 110.2005 (Location: A17, Kompaktmagazin, 41/2 - 42/1)
    Print: 94.1989 – 107.2002 (Location: A43, Büro Bibliothek)
    Formerly as: Journal of Geophysical Research / D  (–)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system, as well as their roles in climate variability and change.
    Print ISSN: 0148-0227 , 2169-897X
    Electronic ISSN: 2156-2202 , 2169-8996
    Topics: Geosciences , Physics
    Parallel titles: JGR Atmospheres
    Acronym: JGR
    Abbreviation: J Geophys Res D
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 108.2003 –
    Print: 108.2003 – 110.2005 (Location: A17, Kompaktmagazin, 42/2)
    Formerly as: Journal of Geophysical Research / F  (–)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: JGR: Earth Surface focuses on the physical, chemical, and biological processes that affect the form and function of the surface of the solid Earth over all temporal and spatial scales, including fluvial, eolian, and coastal sediment transport; hillslope mass movements; glacial and periglacial activity; weathering and pedogenesis; and surface manifestations of volcanism and tectonism.
    Print ISSN: 0148-0227 , 2169-9003
    Electronic ISSN: 2156-2202 , 2169-9011
    Topics: Geosciences , Physics
    Parallel titles: JGR Earth Surface
    Acronym: JGR
    Abbreviation: J Geophys Res F
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.1966 –
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 83.1978 –
    Print: 83.1978 – 110.2005 (Location: A17, Kompaktmagazin, 40/4 - 41/1)
    Print: 98.1993 – 107.2002 (Location: A43, Büro Bibliothek)
    Formerly as: Journal of Geophysical Research / C  (–)
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU
    Description: JGR: Oceans embraces the application of physics, chemistry, biology, and geology to the study of the oceans and their interaction with other components of the Earth system. Deepening the integrated knowledge of the sea utilizes new observational, analytical, computational and modeling capabilities to build upon established approaches in all areas of marine science.
    Print ISSN: 0148-0227 , 2169-9275
    Electronic ISSN: 2156-2202 , 2169-9291
    Topics: Geosciences , Physics
    Parallel titles: JGR Oceans
    Acronym: JGR
    Abbreviation: J Geophys Res C
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 32(1).1997 – (older than 24 months)
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Journal cover
    Unknown
    Wiley-Blackwell - STM | International Union of Crystallography (IUCr)
    Online: 1(1).1994 –
    Publisher: Wiley-Blackwell - STM , International Union of Crystallography (IUCr)
    Print ISSN: 0909-0495
    Electronic ISSN: 1600-5775
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Journal cover
    Unknown
    Wiley-Blackwell | American Geophysical Union (AGU)
    Online: 12(1).1997 –
    Publisher: Wiley-Blackwell , American Geophysical Union (AGU)
    Print ISSN: 0883-8305 , 2572-4517
    Electronic ISSN: 1944-9186 , 2572-4525
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(17), ISSN: 0094-8276
    Publication Date: 2023-09-08
    Description: We quantify sea ice concentration (SIC) changes related to synoptic cyclones separately for each month of the year in the Greenland, Barents and Kara Seas for 1979–2018. We find that these SIC changes can be statistically significant throughout the year. However, their strength varies from region to region and month to month, and their sign strongly depends on the considered time scale (before/during vs. after cyclone passages). Our results show that the annual cycle of cyclone impacts on SIC is related to varying cyclone intensity and traversed sea ice conditions. We further show that significant changes in these cyclone impacts have manifested in the last 40 years, with the strongest changes occurring in October and November. For these months, SIC decreases before/during cyclones have more than doubled in magnitude in the Barents and Kara Seas, while SIC increases following cyclones have weakened (intensified) in the Barents Sea (Kara Sea).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(23), ISSN: 0094-8276
    Publication Date: 2023-09-19
    Description: The strong cooling during the Last Glacial Maximum (LGM, 21 ka BP) provides a rigorous test of climate models' ability to simulate past and future climate changes. We force an atmospheric general circulation model with two recent global LGM sea surface temperature (SST) reconstructions, one suggesting a weak and the other a more pronounced cooling, and compare the simulated land surface temperatures (LSTs) to reconstructed data. Our results do not confirm either SST reconstruction. The cold SST data set leads to good agreement between simulated and observed LSTs at low latitudes, but is systematically too cold at mid-latitudes. The opposite is true for the warm SST data set. Differences between the simulated LSTs are caused by varying land surface albedos, which is lower for the warmer SST reconstruction. The inconsistency between reconstructed and simulated climate points to a potentially significant bias in the proxy reconstructions and/or the climate sensitivity of current climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Reviews of Geophysics, American Geophysical Union (AGU), 61(3), ISSN: 8755-1209
    Publication Date: 2023-10-09
    Description: Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(22), ISSN: 0094-8276
    Publication Date: 2023-11-25
    Description: Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the long‐term variability of Antarctic sea ice, and the limited attention given to model‐dependent parameters in current sea ice data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern Ocean in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the sea ice volume anomaly modeling reveals the importance of the sea ice‐ocean interaction in the SIC assimilation, implying the necessity of assimilating more oceanic and sea‐ice observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(21), ISSN: 0094-8276
    Publication Date: 2023-11-01
    Description: Molybdenum (Mo) is a trace element sensitive to oceanic redox conditions. The fidelity of sedimentary Mo as a paleoredox proxy of coeval seawater depends on the extent of Mo remobilization during postdepositional processes. Here we present the Mo content and isotope profiles for deep sediments from the Nankai Trough, Japan. The Mo signature suggests that these sediments have experienced extensive early diagenesis and hydrothermal alteration at depth. Iron (Fe)‐manganese (Mn) (oxyhydr)oxide alteration combined with Mo thiolation leads to a more than twenty‐fold enrichment of Mo within the sulfate reduction zone. Hydrothermal fluids and Mo adsorption onto Fe‐Mn (oxyhydr)oxides cause extremely negative Mo‐isotope values at the underthrust zone. These postdepositional Mo signals might be misinterpreted as expanded anoxia in the water column. Our findings highlight the importance of constraining postdepositional effects on Mo‐based proxies during paleoredox reconstruction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-12-19
    Description: As a contribution to the Regional Carbon Cycle Assessment and Processes phase 2 (RECCAP2) project, we present synthesized estimates of Arctic Ocean sea-air CO2 fluxes and their uncertainties from surface ocean pCO2-observation products, ocean biogeochemical hindcast and data assimilation models, and atmospheric inversions. For the period of 1985–2018, the Arctic Ocean was a net sink of CO2 of 116 ± 4 TgC yr−1 in the pCO2 products, 92 ± 30 TgC yr−1 in the models, and 91 ± 21 TgC yr−1 in the atmospheric inversions. The CO2 uptake peaks in late summer and early autumn, and is low in winter when sea ice inhibits sea-air fluxes. The long-term mean CO2 uptake in the Arctic Ocean is primarily caused by steady-state fluxes of natural carbon (70% ± 15%), and enhanced by the atmospheric CO2 increase (19% ± 5%) and climate change (11% ± 18%). The annual mean CO2 uptake increased from 1985 to 2018 at a rate of 31 ± 13 TgC yr−1 dec−1 in the pCO2 products, 10 ± 4 TgC yr−1 dec−1 in the models, and 32 ± 16 TgC yr−1 dec−1 in the atmospheric inversions. Moreover, 77% ± 38% of the trend in the net CO2 uptake over time is caused by climate change, primarily due to rapid sea ice loss in recent years. Furthermore, true uncertainties may be larger than the given ensemble standard deviations due to common structural biases across all individual estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-12-20
    Description: We assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) and pCO2-observation-based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-01-06
    Description: The seasonal cycle is the dominant mode of variability in the air-sea CO2 flux in most regions of the global ocean, yet discrepancies between different seasonality estimates are rather large. As part of the Regional Carbon Cycle Assessment and Processes Phase 2 project (RECCAP2), we synthesize surface ocean pCO2 and air-sea CO2 flux seasonality from models and observation-based estimates, focusing on both a present-day climatology and decadal changes between the 1980s and 2010s. Four main findings emerge: First, global ocean biogeochemistry models (GOBMs) and observation-based estimates (pCO2 products) of surface pCO2 seasonality disagree in amplitude and phase, primarily due to discrepancies in the seasonal variability in surface DIC. Second, the seasonal cycle in pCO2 has increased in amplitude over the last three decades in both pCO2 products and GOBMs. Third, decadal increases in pCO2 seasonal cycle amplitudes in subtropical biomes for both pCO2 products and GOBMs are driven by increasing DIC concentrations stemming from the uptake of anthropogenic CO2 (Cant). In subpolar and Southern Ocean biomes, however, the seasonality change for GOBMs is dominated by Cant invasion, whereas for pCO2 products an indeterminate combination of Cant invasion and climate change modulates the changes. Fourth, biome-aggregated decadal changes in the amplitude of pCO2 seasonal variability are largely detectable against both mapping uncertainty (reducible) and natural variability uncertainty (irreducible), but not at the gridpoint scale over much of the northern subpolar oceans and over the Southern Ocean, underscoring the importance of sustained high-quality seasonally resolved measurements over these regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-01-06
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-02-23
    Description: Comparing helicopter-borne surface temperature maps in winter and optical orthomosaics in summer from the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one-dimensional steady-state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold-based classification achieves a correct classification for 41% of the melt ponds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(1), ISSN: 2169-9275
    Publication Date: 2023-05-10
    Description: We assessed the spatial and temporal variability of the Arctic Boundary Current (ABC) using seven oceanographic moorings, deployed across the continental slope north of Severnaya Zemlya in 2015–2018. Transports and individual water masses were quantified based on temperature and salinity recorders and current profilers. Our results were compared with observations from the northeast Svalbard and the central Laptev Sea continental slopes to evaluate the hydrographic transformation along the ABC pathway. The highest velocities (〉0.30 m s−1) of the ABC occurred at the upper continental slope and decreased offshore to below 0.03 m s−1 in the deep basin. The ABC showed seasonal variability with velocities two times higher in winter than in summer. Compared to upstream conditions in Svalbard, water mass distribution changed significantly within 20 km of the shelf edge due to mixing with- and intrusion of shelf waters. The ABC transported 4.15 ± 0.3 Sv in the depth range 50–1,000 m, where 0.88 ± 0.1, 1.5 ± 0.2, 0.61 ± 0.1 and 1.0 ± 0.15 Sv corresponded to Atlantic Water (AW), Dense Atlantic Water (DAW), Barents Sea Branch Water (BSBW) and Transformed Atlantic Water (TAW). 62–70% of transport was constrained to within 30–40 km of the shelf edge, and beyond 84 km, transport increases were estimated to be 0.54 Sv. Seasonality of TAW derived from local shelf-processes and advection of seasonal-variable Fram Strait waters, while BSBW transport variability was dominated by temperature changes with maximum transport coinciding with minimum temperatures. Further Barents Sea warming will likely reduce TAW and BSBW transport leading to warmer conditions along the ABC pathway.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-06-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), ISSN: 2572-4517
    Publication Date: 2023-02-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), 38, 22 p., pp. e2022PA004439-e2022PA004439, ISSN: 2572-4517
    Publication Date: 2023-08-30
    Description: Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio-Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B-based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B-based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B-based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under-constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 〉 0.9) related to equatorial surface-ocean pH, which can be used for consistency checks. Long-term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio-Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(12), ISSN: 0094-8276
    Publication Date: 2023-09-01
    Description: Aquatic ecosystems play an important role in global methane cycling and many field studies have reported methane supersaturation in the oxic surface mixed layer (SML) of the ocean and in the epilimnion of lakes. The origin of methane formed under oxic condition is hotly debated and several pathways have recently been offered to explain the “methane paradox.” In this context, stable isotope measurements have been applied to constrain methane sources in supersaturated oxygenated waters. Here we present stable carbon isotope signatures for six widespread marine phytoplankton species, three haptophyte algae and three cyanobacteria, incubated under laboratory conditions. The observed isotopic patterns implicate that methane formed by phytoplankton might be clearly distinguished from methane produced by methanogenic archaea. Comparing results from phytoplankton experiments with isotopic data from field measurements, suggests that algal and cyanobacterial populations may contribute substantially to methane formation observed in the SML of oceans and lakes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 15(9), ISSN: 1942-2466
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Most viscous‐plastic sea ice models use the elliptical yield curve. This yield curve has a fundamental flaw: it excludes acute angles between deformation features at high resolution. Conceptually, the teardrop (TD) and parabolic lens (PL) yield curves offer an attractive alternative. These yield curves feature a non‐symmetrical shape, a Coulombic behavior for the low‐medium compressive stress, and a continuous transition to the ridging‐dominant mode, but their published formulation leads to negative or zero bulk and shear viscosities and, consequently, poor numerical convergence with stress states at times outside the yield curve. These issues are a consequence of the original assumption that the constitutive equations of the commonly used elliptical yield curve are also applicable to non‐symmetrical yield curves and yield curves with tensile strength. We derive a corrected formulation for the constitutive relations of the TD and PL yield curves. Results from simple uni‐axial loading experiments show that with the new formulation the numerical convergence of the solver improves and much smaller nonlinear residuals after a smaller number of total solver iterations can be reached, resulting in significant improvements in numerical efficiency and representation of the stress and deformation fields. The TD and PL yield curves lead to smaller angles of failure that better agree with observations. They are promising candidates to replace the elliptical yield curve in high‐resolution pan‐Arctic sea ice simulations.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-06-23
    Description: Climate change in the Arctic has substantial impacts on human life and ecosystems both within and beyond the Arctic. Our analysis of CMIP6 simulations shows that some climate models project much larger Arctic climate change than other models, including changes in sea ice, ocean mixed layer, air-sea heat flux, and surface air temperature in wintertime. In particular, dramatic enhancement of Arctic Ocean convection down to a few hundred meters is projected in these models but not in others. Interestingly, these models employ the same ocean model family (NEMO) while the choice of models for the atmosphere and sea ice varies. The magnitude of Arctic climate change is proportional to the strength of the increase in poleward ocean heat transport, which is considerably higher in this group of models. Establishing the plausibility of this group of models with high Arctic climate sensitivity to anthropogenic forcing is imperative given the implied ramifications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 14(12), ISSN: 1942-2466
    Publication Date: 2023-06-23
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea-surface salinity and sea-level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea-ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere-ocean-ice interaction occurs. One-year-long sea-ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea-ice concentration from 2011 to 2019 is calibrated by trend-adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational global subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea-ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2023-06-23
    Description: Sea ice leads play an important role in energy exchange between the ocean and atmosphere in polar regions, and therefore must be considered in weather and climate models. As sea ice leads are not explicitly resolved in such models, lead-averaged surface heat flux is of considerable interest for the parameterization of energy exchange. Measurements and numerical studies have established that the lead-averaged surface heat flux depends not only on meteorological parameters, but also on lead width. Nonetheless, few studies to date have investigated the dependency of surface heat flux on lead width. Most findings on that dependency are based on observations with lead widths smaller than a few hundred meters, but leads can have widths from a few meters to several kilometers. In this parameter study, we present the results of three series of large-eddy simulations of turbulent exchange processes above leads. We varied the lead width and air temperature, as well as the roughness length. As this study focused on conditions without background wind, ice-breeze circulation occurred, and was the main driver of the adjustment of surface heat flux. A previous large-eddy simulation study with uncommonly large roughness length found that lead-averaged surface heat flux exhibited a distinct maximum at lead widths of about 3 km, while our results show the largest heat fluxes for the smallest leads simulated (lead width of 50 m). At more realistic roughness lengths, we observed monotonously increasing heat fluxes with increasing lead width. Further, new scaling laws for the ice-breeze circulation are proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(3), ISSN: 2169-9275
    Publication Date: 2023-06-23
    Description: The Arctic is warming much faster than the global average. This is known as Arctic Amplification and is caused by feedbacks in the local climate system. In this study, we explore a previously proposed hypothesis that an associated wind feedback in the Barents Sea could play an important role by increasing the warm water inflow into the Barents Sea. We find that the strong recent decrease in Barents Sea winter sea ice cover causes enhanced ocean-atmosphere heat flux and a local air temperature increase, thus a reduction in sea level pressure and a local cyclonic wind anomaly with eastward winds in the Barents Sea Opening. By investigating various reanalysis products and performing high-resolution perturbation experiments with the ocean and sea ice model FESOM2.1, we studied the impact of cyclonic atmospheric circulation changes on the warm Atlantic Water import into the Arctic via the Barents Sea and Fram Strait. We found that the observed wind changes do not significantly affect the warm water transport into the Barents Sea, which rejects the wind-feedback hypothesis. At the same time, the cyclonic wind anomalies in the Barents Sea increase the amount of Atlantic Water recirculating westwards in Fram Strait by a downslope shift of the West Spitsbergen Current, and thus reduce Atlantic Water reaching the Arctic basin via Fram Strait. The resulting warm-water anomaly in the Greenland Sea Gyre drives a local anticyclonic circulation anomaly.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), 124(8), pp. 5503-5528, ISSN: 2169-9275
    Publication Date: 2022-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Earth's Future, American Geophysical Union (AGU), 10(9), ISSN: 2328-4277
    Publication Date: 2022-11-06
    Description: In this study we assessed the representation of the sea surface salinity (SSS) and liquid freshwater content (LFWC) of the Arctic Ocean in the historical simulation of 31 CMIP6 models with comparison to 39 Coupled Model Intercomparison Project phase 5 (CMIP5) models, and investigated the projected changes in Arctic liquid and solid freshwater content and freshwater budget in scenarios with two different shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5). No significant improvement was found in the SSS and LFWC simulation from CMIP5 to CMIP6, given the large model spreads in both CMIP phases. The overestimation of LFWC continues to be a common bias in CMIP6. In the historical simulation, the multi-model mean river runoff, net precipitation, Bering Strait and Barents Sea Opening (BSO) freshwater transports are 2,928 ± 1,068, 1,839 ± 3,424, 2,538 ± 1,009, and −636 ± 553 km3/year, respectively. In the last decade of the 21st century, CMIP6 MMM projects these budget terms to rise to 4,346 ± 1,484 km3/year (3,678 ± 1,255 km3/year), 3,866 ± 2,935 km3/year (3,145 ± 2,651 km3/year), 2,631 ± 1,119 km3/year (2,649 ± 1,141 km3/year) and 1,033 ± 1,496 km3/year (449 ± 1,222 km3/year) under SSP5-8.5 (SSP2-4.5). Arctic sea ice is expected to continue declining in the future, and sea ice meltwater flux is likely to decrease to about zero in the mid-21st century under both SSP2-4.5 and SSP5-8.5 scenarios. Liquid freshwater exiting Fram and Davis straits will be higher in the future, and the Fram Strait export will remain larger. The Arctic Ocean is projected to hold a total of 160,300 ± 62,330 km3 (141,590 ± 50,310 km3) liquid freshwater under SSP5-8.5 (SSP2-4.5) by 2100, about 60% (40%) more than its historical climatology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 45(23), pp. 12972-12981, ISSN: 0094-8276
    Publication Date: 2023-01-30
    Description: The Arctic Ocean is known to be contaminated by various persistent organic pollutants (POPs). The Fram Strait, the only deepwater passage to the Arctic Ocean (from the Atlantic Ocean), represents an unquantified gateway for POPs fluxes into and out of the Arctic. Polyethylene passive samplers were deployed in vertical profiles in the Fram Strait and in air and surface water in the Canadian Archipelago to determine the concentrations, profiles, and mass fluxes of dissolved polychlorinated biphenyls (PCBs) and organochlorine pesticides. In the Fram Strait, higher concentrations of ΣPCBs (1.3–3.6 pg/L) and dichlorodiphenyltrichloroethanes (ΣDDTs, 5.2–9.1 pg/L) were observed in the deepwater masses (below 1,000 m), similar to nutrient-like vertical profiles. There was net southward transport of hexachlorobenzene and hexachlorocyclohexanes (ΣHCHs) of 0.70 and 14 Mg/year but a net northward transport of ΣPCBs at 0.16 Mg/year through the Fram Strait.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-03-31
    Description: Coeval changes in atmospheric CO2 and 14C contents during the last deglaciation are often attributed to ocean circulation changes that released carbon stored in the deep ocean during the Last Glacial Maximum (LGM). Work is being done to generate records that allow for the identification of the exact mechanisms leading to the accumulation and release of carbon from the oceanic reservoir, but these mechanisms are still the subject of debate. Here we present foraminifera 14C data from five cores in a transect across the Chilean continental margin between ~540 and ~3,100 m depth spanning the last 20,000 years. Our data reveal that during the LGM, waters at ~2,000 m were 50% to 80% more depleted in Δ14C than waters at ~1,500 m when compared to modern values, consistent with the hypothesis of a glacial deep ocean carbon reservoir that was isolated from the atmosphere. During the deglaciation, our intermediate water records reveal homogenization in the Δ14C values between ~800 and ~1,500 m from ~16.5–14.5 ka cal BP to ~14–12 ka cal BP, which we interpret as deeper penetration of Antarctic Intermediate Water. While many questions still remain, this process could aid the ventilation of the deep ocean at the beginning of the deglaciation, contributing to the observed ~40 ppm rise in atmospheric pCO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 12(12), ISSN: 1942-2466
    Publication Date: 2023-06-21
    Description: Ocean models at eddy-permitting resolution are generally overdissipative, damping the intensity of the mesoscale eddy field. To reduce overdissipation, we propose a simplified, kinematic energy backscatter parametrization built into the viscosity operator in conjunction with a new flow-dependent coefficient of viscosity based on nearest neighbor velocity differences. The new scheme mitigates excessive dissipation of energy and improves global ocean simulations at eddy-permitting resolution. We find that kinematic backscatter substantially raises simulated eddy kinetic energy, similar to an alternative, previously proposed dynamic backscatter parametrization. While dynamic backscatter is scale aware and energetically more consistent, its implementation is more complex. Furthermore, it turns out to be computationally more expensive, as it applies, among other things, an additional prognostic subgrid energy equation. The kinematic backscatter proposed here, by contrast, comes at no additional computational cost, following the principle of simplicity. Our primary focus is the discretization on triangular unstructured meshes with cell placement of velocities (an analog of B-grids), as employed by the Finite-volumE Sea ice-Ocean Model (FESOM2). The kinematic backscatter scheme with the new viscosity coefficient is implemented in FESOM2 and tested in the simplified geometry of a zonally reentrant channel as well as in a global ocean simulation on a 1/4° mesh. This first version of the new kinematic backscatter needs to be tuned to the specific resolution regime of the simulation. However, the tuning relies on a single parameter, emphasizing the overall practicality of the approach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 13(10), ISSN: 1942-2466
    Publication Date: 2023-06-21
    Description: We propose to make the damping time scale, which governs the decay of pseudo-elastic waves in the Elastic Viscous Plastic (EVP) sea-ice solvers, independent of the external time step and large enough to warrant numerical stability for a moderate number of internal time steps. A necessary condition is that the forcing on sea ice varies slowly on the damping time scale, in which case an EVP solution may still approach a Viscous Plastic one, but on a time scale longer than a single external time step. In this case, the EVP method becomes very close to the recently proposed modified EVP (mEVP) method in terms of stability and simulated behavior. In a simple test case dealing with sea ice breaking under the forcing of a moving cyclone, the EVP method with an enlarged damping time scale can simulate linear kinematic features which are very similar to those from the traditional EVP implementation, although a much smaller number of internal time steps is used. There is more difference in sea-ice thickness and linear kinematic features simulated in a realistic Arctic configuration between using the traditional and our suggested choices of EVP damping time scales, but it is minor considering model uncertainties associated with choices of many other parameters in sea-ice models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(22), ISSN: 0094-8276
    Publication Date: 2023-06-21
    Description: Based on the ERA5 reanalysis, we report on statistically significant impacts of transient cyclones on sea ice concentration (SIC) in the Atlantic sector of the Arctic Ocean in winter under “New Arctic” conditions (2000–2020). This includes a pattern of reduced SIC prior to and during cyclones for the whole study domain, while a regional difference between increased SIC in the Barents Sea and reduced SIC in the Greenland Sea is found as the net effect from 3 days prior to 5 days after the cyclone passage. Generally, locally low to medium SIC conditions combined with intense cyclones drive highest SIC changes. There are indications that both thermodynamic and dynamic effects contribute to the SIC changes, but a detailed quantification is required in future research. We provide evidence that cyclone impacts on SIC have amplified compared to the “Old Arctic” (1979–1999), particularly in the Barents Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 127(10), ISSN: 2169-8953
    Publication Date: 2023-06-21
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro-, meso- and macrozooplankton) in the ocean biogeochemical model FESOM-REcoM. In the presented model, microzooplankton is a fast-growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow-growing group with a low temperature optimum. Meso- and macrozooplankton produce fast-sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light-controlled Sverdrup system to a dilution-controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on-going and future environmental change in model projections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-01-18
    Description: The North Atlantic Basin is a major sink for atmospheric carbon dioxide (CO2) due in part to the extensive plankton blooms which form there supported by nutrients supplied by the three-dimensional ocean circulation. Hence, changes in ocean circulation and/or stratification may influence primary production and biological carbon export. In this study, we assess this possibility by evaluating inorganic nutrient budgets for 2004 and 2010 in the North Atlantic based on observations from the transatlantic A05-24.5°N and the Greenland-Portugal OVIDE hydrographic sections, to which we applied a box inverse model to solve the circulation and estimate the across-section nutrient transports. Full water column nutrient budgets were split into upper and lower meridional overturning circulation (MOC) limbs. According to our results, anomalous circulation in early 2010, linked to extreme negative NAO conditions, led to an enhanced northward advection of more nutrient-rich waters by the upper overturning limb, which resulted in a significant nitrate and phosphate convergence north of 24.5°N. Combined with heaving of the isopycnals, this anomalous circulation event in 2010 favored an enhancement of the nutrient consumption (5.7 ± 4.1 kmol-P s−1) and associated biological CO2 uptake (0.25 ± 0.18 Pg-C yr−1, upper-bound estimate), which represents a 50% of the mean annual sea–air CO2 flux in the region. Our results also suggest a transient state of deep silicate divergence in both years. Both results are indicative of a MOC-driven modulation of the biological carbon uptake (by the upper MOC limb) and nutrient inventories (by the lower MOC limb) in the North Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2024-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 24(12), ISSN: 1525-2027
    Publication Date: 2024-01-22
    Description: In the Fram Strait, mid-ocean ridge spreading is represented by the ultra-slow system of the Molloy Ridge, the Molloy Transform Fault and the Knipovich Ridge. Sediments on oceanic and continental crust are gas charged and there are several locations with documented seafloor seepage. Sedimentary faulting shows recent stress release in the sub-surface, but the drivers of stress change and its influence on fluid flow are not entirely understood. We present here the results of an 11-month-long ocean bottom seismometer survey conducted over the highly faulted sediment drift northwards from the Knipovich Ridge to monitor seismicity and infer the regional state of stress. We obtain a detailed earthquake catalog that improves the spatial resolution of mid-ocean ridge seismicity compared with published data. Seismicity at the Molloy Transform Fault is occurring southwards from the bathymetric imprint of the fault, as supported by a seismic profile. Earthquakes in the northern termination of the Knipovich Ridge extend eastwards from the ridge valley, which together with syn-rift faulting identified in seismic reflection data, suggests that a portion of the currently active spreading center is buried under sediments away from the bathymetric expression of the rift valley. This hints at the direct link between crustal rifting processes and faulting in shallow sediments. Two earthquakes occur close to the seepage system of the Vestnesa Ridge further north from the network. We suggest that deeper rift structures, reactivated by gravity and/or post-glacial subsidence, may lead to accommodation of stress through shallow extensional faults, therefore impacting seepage dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(20), ISSN: 0094-8276
    Publication Date: 2023-11-20
    Description: Surface processes alter the water stable isotope signal of the surface snow after deposition. However, it remains an open question to which extent surface post-depositional processes should be considered when inferring past climate information from ice core records. Here, we present simulations for the Greenland Ice Sheet, combining outputs from two climate models with an isotope-enabled snowpack model. We show that surface vapor exchange and associated fractionation imprint a climate signal into the firn, resulting in an increase in the annual mean value of δ18O by +2.3‰ and a reduction in d-excess by −6.3‰. Further, implementing isotopic fractionation during surface vapor exchange improves the representation of the observed seasonal amplitude in δ18O from 65.0% to 100.2%. Our results stress that surface vapor exchange is important in the climate proxy signal formation and needs consideration when interpreting ice core climate records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 125(2), ISSN: 2169-8953
    Publication Date: 2024-01-30
    Description: Climate change in the Arctic leads to permafrost degradation and to associated changes infreshwater geochemistry. There is a limited understanding of how disturbances such as active layerdetachments or retrogressive thaw slumps impact water quality on a catchment scale. This study investigateshow permafrost degradation affects concentrations of dissolved organic carbon (DOC), total dissolvedsolids (TDS), suspended sediment, and stable water isotopes in adjacent Low Arctic watersheds. Weincorporated data on disturbance between 1952 and 2015, as well as sporadic runoff and geochemistry dataof streams nearby. Our results show that the total disturbed area decreased by 41% between 1952 and 2015,whereas the total number of disturbances increased by 66% in all six catchments. The spatial variabilityof hydrochemical parameters is linked to catchment properties and not necessarily reflected at the outflow.Degrading ice‐wedge polygons were found to increase DOC concentrations upstream in Ice Creek West,whereas hydrologically connected disturbances were linked to increases in TDS and suspended sediment.Although we found a great spatial variability of hydrochemical concentrations along the paired watershed,there was a linear relationship between catchment size and daily DOC, total dissolved nitrogen, and TDSfluxes for all six streams. Suspended sedimentflux on the contrary did not show a clear relationship as onehydrologically connected retrogressive thaw slump impacted the overallflux in one of the streams.Understanding the spatial variability of water quality will help to model the lateral geochemicalfluxes fromArctic catchments
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(1), ISSN: 2169-9275
    Publication Date: 2024-01-31
    Description: We assessed the spatial and temporal variability of the Arctic Boundary Current (ABC) using seven oceanographic moorings, deployed across the continental slope north of Severnaya Zemlya in 2015–2018. Transports and individual water masses were quantified based on temperature and salinity recorders and current profilers. Our results were compared with observations from the northeast Svalbard and the central Laptev Sea continental slopes to evaluate the hydrographic transformation along the ABC pathway. The highest velocities (〉0.30 m s−1) of the ABC occurred at the upper continental slope and decreased offshore to below 0.03 m s−1 in the deep basin. The ABC showed seasonal variability with velocities two times higher in winter than in summer. Compared to upstream conditions in Svalbard, water mass distribution changed significantly within 20 km of the shelf edge due to mixing with- and intrusion of shelf waters. The ABC transported 4.15 ± 0.3 Sv in the depth range 50–1,000 m, where 0.88 ± 0.1, 1.5 ± 0.2, 0.61 ± 0.1 and 1.0 ± 0.15 Sv corresponded to Atlantic Water (AW), Dense Atlantic Water (DAW), Barents Sea Branch Water (BSBW) and Transformed Atlantic Water (TAW). 62–70% of transport was constrained to within 30–40 km of the shelf edge, and beyond 84 km, transport increases were estimated to be 0.54 Sv. Seasonality of TAW derived from local shelf-processes and advection of seasonal-variable Fram Strait waters, while BSBW transport variability was dominated by temperature changes with maximum transport coinciding with minimum temperatures. Further Barents Sea warming will likely reduce TAW and BSBW transport leading to warmer conditions along the ABC pathway.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-01-31
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-01-26
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Erosion of permafrost coasts due to climate warming releases large quantities of organic carbon (OC) into the Arctic Ocean. While burial of permafrost OC in marine sediments potentially limits degradation, resuspension of sediments in the nearshore zone potentially enhances degradation and greenhouse gas production, adding to the “permafrost carbon feedback.” Recent studies, focusing on bulk sediments, suggest that permafrost OC derived from coastal erosion is predominantly deposited close to shore. However, bulk approaches disregard sorting processes in the coastal zone, which strongly influence the OC distribution and fate. We studied soils and sediments along a transect from the fast‐eroding shoreline of Herschel Island—〈jats:italic〉Qikiqtaruk〈/jats:italic〉 (Yukon, Canada) to a depositional basin offshore. Sample material was fractionated by density (1.8 g cm〈jats:sup〉−3〈/jats:sup〉) and size (63 μm), separating loose OC from mineral‐associated OC. Each fraction was analyzed for element content (TOC, TN), carbon isotopes (δ〈jats:sup〉13〈/jats:sup〉C, Δ〈jats:sup〉14〈/jats:sup〉C), molecular biomarkers (〈jats:italic〉n〈/jats:italic〉‐alkanes, 〈jats:italic〉n〈/jats:italic〉‐alkanoic acids, lignin phenols, cutin acids), and mineral surface area. The OC partitioning between fractions changes considerably along the transect, highlighting the importance of hydrodynamic sorting in the nearshore zone. Additionally, OC and biomarker loadings decrease along the land‐ocean transect, indicating significant loss of OC during transport. However, molecular proxies for degradation show contrasting trends, suggesting that OC losses are not always well reflected in its degradation state. This study, using fraction partitioning that crosses land‐ocean boundaries in a way not done before, aids to disentangle sorting processes from degradation patterns, and provides quantitative insight into losses of thawed and eroded permafrost OC.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-02-08
    Description: Shells of the giant clam Tridacna can provide decade-long records of past environmental conditions via their geochemical composition and structurally through growth banding. Counting the daily bands can give an accurate internal age model with high temporal resolution, but daily banding is not always visually retrievable, especially in fossil specimens. We show that daily geochemical cycles (e.g., Mg/Ca) are resolvable via highly spatially resolved laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS; 3 \xc3\x97 33 \xce\xbcm laser slit) in our Miocene (\xe2\x88\xbc10 Ma) specimen, even in areas where daily banding is not visually discernible. By applying wavelet transformation on the measured daily geochemical cycles, we quantify varying daily growth rates throughout the shell. These growth rates are thus used to build an internal age model independent of optical daily band countability. Such an age model can be used to convert the measured elemental ratios from a function of distance to a function of time, which helps evaluate paleoenvironmental proxy data, for example, regarding the timing of sub-seasonal events. Furthermore, the quantification of daily growth rates across the shell facilitates the evaluation of (co)dependencies between growth rates and corresponding elemental compositions.
    Keywords: Tridacna
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-02-13
    Description: The availability of silicon (Si) in the ocean plays an important role in regulating biogeochemical and ecological processes. The Si budget of the Arctic Ocean appears balanced, with inputs equivalent to outputs, though it is unclear how a changing climate might aggravate this balance. In this study, we focus on Si cycling in Arctic coastal areas and continental shelf sediments to better constrain the Arctic Ocean Si budget. We provide the first estimate of amorphous Si (ASi) loading from erosion of coastal Yedoma deposits (30–90 Gmol yr−1), demonstrating comparable rates to particulate Si loading from rivers (10–90 Gmol yr−1). We found a positive relationship between surface sediment ASi and organic matter content on continental shelves. Combining these values with published Arctic shelf sediment properties and burial rates we estimate 70 Gmol Si yr−1 is buried on Arctic continental shelves, equivalent to 4.5% of all Si inputs to the Arctic Ocean. Sediment dissolved Si fluxes increased with distance from river mouths along cruise transects of shelf regions influenced by major rivers in the Laptev and East Siberian seas. On an annual basis, we estimate that Arctic shelf sediments recycle approximately up to twice as much DSi (680 Gmol Si) as is loaded from rivers (340–500 Gmol Si).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Global Biogeochemical Cycles, American Geophysical Union (AGU), 38(1), ISSN: 0886-6236
    Publication Date: 2024-02-13
    Description: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year−1 in observational product and +0.54 PgCO2-e year−1 in model median) and CH4 (+0.21 PgCO2-e year−1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%–60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-27
    Description: Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO〈jats:sub〉2〈/jats:sub〉 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO〈jats:sub〉2〈/jats:sub〉 sink with lower net CO〈jats:sub〉2〈/jats:sub〉 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO〈jats:sub〉2〈/jats:sub〉 sink was located in western Canada (median: −52 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH〈jats:sub〉4〈/jats:sub〉 m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO〈jats:sub〉2〈/jats:sub〉 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-03-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-03-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-03-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 25(1), ISSN: 1525-2027
    Publication Date: 2024-03-04
    Description: Mineral dust accumulated on the ocean floor is an important archive for reconstructing past atmospheric circulation changes and climatological conditions in the source areas. Dust emitted from Southern Hemisphere dust sources is widely deposited over the oceans. However, there are few records of dust deposition over the open ocean, and a large need for extended geographical coverage exists. We present a large data set (134 surface sediment samples) of Late Holocene dust deposition from seafloor surface sediments covering the entire South Atlantic Ocean. Polymodal grain-size distributions of the lithogenic fraction indicate that the sediments are composed of multiple sediment components. By using end-member modeling, we attempt to disentangle the dust signal from non-aeolian sediments. Combined with 230Th-normalized lithogenic fluxes, we quantified the specific deposition fluxes for mineral dust, crrent-sorted sediments and ice-rafted debris (IRD). Although the method could not completely separate the different components in every region, it shows that dust deposition off the most prominent dust source for the South Atlantic Ocean—southern South America—amounts up to approximately 0.7 g cm−2 Kyr−1 and decreases downwind. Bottom-current-sorted sediments and IRD are mostly concentrated around the continental margins. The ratio of the coarse to fine dust end members reveals input from north African dust sources to the South Atlantic. The majority of the observations are in good agreement with new model simulations. This extensive and relevant data set of dust grain size and deposition fluxes to the South Atlantic could be used to calibrate and validate further model simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...