ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (176)
  • Articles (OceanRep)  (176)
  • AMS (American Meteorological Society)  (124)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (38)
  • American Meteorological Society
  • Springer Nature
  • 2015-2019  (102)
  • 1995-1999  (74)
Collection
  • Other Sources  (176)
Source
  • Articles (OceanRep)  (176)
Publisher
Years
Year
  • 1
    Publication Date: 2020-06-24
    Description: Nitrogen fixation — the reduction of dinitrogen (N2) gas to biologically available nitrogen (N) — is an important source of N for terrestrial and aquatic ecosystems. In terrestrial environments, N2-fixing symbioses involve multicellular plants, but in the marine environment these symbioses occur with unicellular planktonic algae. An unusual symbiosis between an uncultivated unicellular cyanobacterium (UCYN-A) and a haptophyte picoplankton alga was recently discovered in oligotrophic oceans. UCYN-A has a highly reduced genome, and exchanges fixed N for fixed carbon with its host. This symbiosis bears some resemblance to symbioses found in freshwater ecosystems. UCYN-A shares many core genes with the 'spheroid bodies' of Epithemia turgida and the endosymbionts of the amoeba Paulinella chromatophora. UCYN-A is widely distributed, and has diversified into a number of sublineages that could be ecotypes. Many questions remain regarding the physical and genetic mechanisms of the association, but UCYN-A is an intriguing model for contemplating the evolution of N2-fixing organelles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-30
    Description: Anthropogenic atmospheric loading of CO2 raises concerns about combined effects of increasing ocean temperature and acidification, on biological processes. In particular, the response of appendicularian zooplankton to climate change may have significant ecosystem implications as they can alter biogeochemical cycling compared to classical copepod dominated food webs. However, the response of appendicularians to multiple climate drivers and effect on carbon cycling are still not well understood. Here, we investigated how gelatinous zooplankton (appendicularians) affect carbon cycling of marine food webs under conditions predicted by future climate scenarios. Appendicularians performed well in warmer conditions and benefited from low pH levels, which in turn altered the direction of carbon flow. Increased appendicularians removed particles from the water column that might otherwise nourish copepods by increasing carbon transport to depth from continuous discarding of filtration houses and fecal pellets. This helps to remove CO2 from the atmosphere, and may also have fisheries implications.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-23
    Description: Nitrogen (N) is the major limiting nutrient for phytoplankton growth and productivity in large parts of the world's oceans. Differential preferences for specific N substrates may be important in controlling phytoplankton community composition. To date, there is limited information on how specific N substrates influence the composition of naturally occurring microbial communities. We investigated the effect of nitrate ( math formula), ammonium ( math formula), and urea on microbial and phytoplankton community composition (cell abundances and 16S rRNA gene profiling) and functioning (photosynthetic activity, carbon fixation rates) in the oligotrophic waters of the North Pacific Ocean. All N substrates tested significantly stimulated phytoplankton growth and productivity. Urea resulted in the greatest (〉300%) increases in chlorophyll a (〈0.06 μg L−1 and ∼0.19 μg L−1 in the control and urea addition, respectively) and productivity (〈0.4 μmol C L−1 d−1 and ∼1.4 μmol C L−1 d−1 in the control and urea addition, respectively) at two experimental stations, largely due to increased abundances of Prochlorococcus (Cyanobacteria). Two abundant clades of Prochlorococcus, High Light I and II, demonstrated similar responses to urea, suggesting this substrate is likely an important N source for natural Prochlorococcus populations. In contrast, the heterotrophic community composition changed most in response to math formula. Finally, the time and magnitude of response to N amendments varied with geographic location, likely due to differences in microbial community composition and their nutrient status. Our results provide support for the hypothesis that changes in N supply would likely favor specific populations of phytoplankton in different oceanic regions and thus, affect both biogeochemical cycles and ecological processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 9321-9337.
    Publication Date: 2020-08-04
    Description: In the present study, the influence of some major tropical modes of variability on northern hemisphere regional blocking frequency variability during boreal winter is investigated. Reanalysis data and an ensemble experiment with the ECMWF model using relaxation towards the ERA-Interim reanalysis data inside the tropics are used. The tropical modes under investigation are El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO) and the upper tropospheric equatorial zonal-mean zonal wind . An early (late) MJO phase refers to the part of the MJO cycle when enhanced (suppressed) precipitation occurs over the western Indian Ocean and suppressed (enhanced) precipitation occurs over the Maritime Continent and the western tropical Pacific. Over the North Pacific sector, it is found that enhanced (suppressed) high latitude blocking occurs in association with El Niño (La Niña) events, late (early) MJO phases and westerly (easterly) . Over central to southern Europe and the east Atlantic, it is found that late MJO phases, as well as a suppressed MJO are leading to enhanced blocking frequency. Furthermore, early (late) MJO phases are followed by blocking anomalies over the western North Atlantic region, similar to those associated with a positive (negative) North Atlantic Oscillation. Over northern Europe, the easterly (westerly) phase of is associated with enhanced (suppressed) blocking. These results are largely confirmed by both the reanalysis and the model experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 48 (4). pp. 757-771.
    Publication Date: 2021-02-08
    Description: The Eddy Kinetic Energy (EKE) associated with the Subtropical Countercurrent (STCC) in the western subtropical South Pacific is known to exhibit substantial seasonal and decadal variability. Using an eddy-permitting ocean general circulation model, which is able to reproduce the observed, salient features of the seasonal cycles of shear, stratification, baroclinic production and the associated EKE, we investigate the decadal changes of EKE. We show that the STCC region exhibits, uniquely among the subtropical gyres of the world’s oceans, significant, atmospherically forced, decadal EKE variability. The decadal variations are driven by changing vertical shear between the STCC in the upper 300 m and the South Equatorial Current below, predominantly caused by variations in STCC strength associated with a changing meridional density gradient. In the 1970s, an increased meridional density gradient results in EKE twice as large as in later decades in the model. Utilizing sensitivity experiments, decadal variations in the wind field are shown to be the essential driver. Local wind stress curl anomalies associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling of the thermocline, inducing strengthening or weakening of the STCC and the associated EKE. Additionally, remote wind stress curl anomalies in the eastern subtropical South Pacific, which are not related to the IPO, generate density anomalies that propagate westward as Rossby waves and can account for up to 30–40 % of the density anomalies in the investigated region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (8) (8). AMS (American Meteorological Society), Si-S280, 277 pp.
    Publication Date: 2020-10-21
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (S1). S300-S323.
    Publication Date: 2019-09-23
    Description: Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during 11 surveys spanning the years of 1992–1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 mg CH4 m−2 d−1 to 0.43 mg CH4 m−2 d−1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m−2 d−1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 mg CH4 m−2 d−1 to 1.01 mg CH4 m−2 d−1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr−1 and 0.30 Tg CH4 yr−1, respectively to maximum fluxes of 0.18 Tg CH4 yr−1 and 2.2 Tg CH4 yr−1, respectively. A methane flux of 0.36 Tg CH4 yr−1 from the deep Arctic Ocean was estimated using data from 1993 to 1994. The flux can be as much as 2.35 Tg CH4 yr−1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ∼ 560 Tg CH4 yr−1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    In:  Limnology and Oceanography, 63 (2). pp. 968-984.
    Publication Date: 2021-06-23
    Description: Overfishing, excess nutrient load, and invasion of Mnemiopsis leidyi acted on the Black Sea from 1960s to 1990s. Under the effect of these drivers, the ecosystem underwent several transformations that culminated in the shift from a planktonic food chain to a network with most of the energy diverted to jellyfish. The interplay between multiple stressors and the intricate web of trophic interactions make it difficult to understand which causative mechanisms linked the sources of change to the observed variations. To study such interplay, we focused on the structure of the trophic interactions and applied loop analysis to qualitatively predict the response of variables to stressors. Significant variations in biomass trends were identified with statistical analysis and considered as benchmark to validate loop analysis predictions. The results of the comparisons were used to select the most influential trophic interactions that explain the changes observed between 1960 and 1990. The models were applied to test (1) the importance of various environmental drivers and (2) the mechanisms that produced the observed changes. The results suggested that the changes observed before M. leidyi invasion were strongly influenced by the excess nutrient addition, an outcome that challenges the relevance of the trophic cascade as described in literature. The concurrent effect of overfishing, climate, and nutrient enrichment likely triggered the outburst of M. leidyi in the late 1980s. Our work shows the potential of loop analysis to grasp the causal relationships between the drivers, the structure of the interactions, and the responses of the variables.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...