ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
  • AGU  (6)
  • American Association for the Advancement of Science  (1)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002–January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (Q4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and shortand midterm eruption forecasting of explosive activity.
    Description: Published
    Description: 821-823
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 727523 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: During the December 2005-January 2006 non-eruptive period, the tremor amplitude at Etna markedly increased and negatively correlated with the gravity signal from one of the two summit station, over 2-3 hour periods. No correlation was found with the signal from the other gravity station. We locate the tremor source by inverting the spatial distribution of seismic amplitudes. Relying on the relative position of the two stations, we define a volume within which the gravity source must lie. During the period of marked anti-correlation, the tremor sources intersect this volume in a region located 1 km S-SE of the summit craters and about 2 km beneath the surface. This finding suggests that the anti-correlation marks the activation of a joint source process, possibly related to the arrival of fresh magma and the consequent gas separation. Our study has implications for the early recognition of gas segregation processes at active volcanoes.
    Description: Published
    Description: L06305
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic tremor ; Etna volcano ; gravity changes ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A thermal modeling of the Vesuvius is presented, based on its magmatic and volcanic history. A 2D numerical scheme has been developed to evaluate the heat transfer inside and around a magma body, the latent heat of crystallization and the inputs of magma from the asthenosphere to a crustal reservoir. Assuming a ratio 〉1 between velocities of magma ascending in the conduit and magma laterally displaced in the reservoir, the results indicate that, after 40 ka, the reservoir is vertically thermally zoned. As a consequence it hosts magma batches that can individually differentiate, mix and be contaminated by the crust, and produce the spectrum of isotopic compositions of the Vesuvian products. The thermal model reproduces the geothermal gradient and the brittle-ductile transition (250– 300 C) at 6 km of depth (the maximum depth of earthquake foci) only after 0.5–1 Ma, implying a long lived magma chamber below the volcano.
    Description: Published
    Description: L17302
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 244766 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We propose a 3-D crust–upper mantle seismic attenuation (QP) model of the southern Apennines–Calabrian Arc subduction zone together with a 3-D velocity (VP) model. The QP model is calculated from relative t* using the spectral ratio method and the VP from traveltime data. The final data set used for the inversion of the VP model consists of 2400 traveltime arrivals recorded by 34 short-period stations that are part of the Italian National Seismic Network, and for the QP model, 2178 Pn phases recorded by a subset of 32 stations. Traveltimes and waveforms come from 272 intermediate-depth Calabrian slab events. This 3-D model of attenuation, together with the 3-D velocity model, improves our knowledge of the slab/mantle wedge structure and can be a starting point in determining the physical state of the asthenosphere (i.e., its temperature, the presence of melt and/or fluids) and its relation to volcanism found in the study area. Main features of the QP and VP models show that the mantle wedge/slab, in particular, the area of highest attenuation, is located in a volume underlying the Marsili Basin. The existence and shape of this main low-QP (and low-VP) anomaly points to slab dehydration and fluid/material flow, a process that may explain the strong geochemical affinities between the subduction-related magmas from Stromboli and Vesuvius. Other interesting features in the models are strong lateral variations in QP and VP that are put in relation with known important tectonic structures and volcanic centers in the area.
    Description: Published
    Description: B06304
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: seismic attenuation tomography ; Calabrian Arc subduction zone ; fluids and melts ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union
    Description: The Vrancea seismogenic zone in Romania exhibits an intense intermediate-depth seismicity, confined to a relatively small, roughly cylindrical and elongated region, whose origin is still under debate. Our three-dimensional P and S wave velocity and density images put additional physical constraints on the existing tectonic models to a depth of 200 km. The results appear to substantiate a combination of lithospheric delamination and oceanic subduction. For our analysis, we apply the tomographic inversion method of sequential integrated inversion (SII) to P and S first arrivals from active source data collected during the VRANCEA99 and VRANCEA2001 seismic refraction experiments, local earthquake data collected during the Carpathian Arc Lithosphere X-Tomography (CALIXTO) experiment and recent gravity measurements of the studied area. The reconstructed models, which explain both travel times and gravity data, show a subducting slab which exhibits fast Vp, fast Vs, high density, and a low Vp/Vs ratio consistent with the cold downgoing plate. We associate intermediate-depth seismicity with the observed sharp lateral Vp/Vs variations presumably generated by contact between the dense and cold slab and the lithospheric mantle in the shallower part or the asthenosphere in the deeper part. This contrast is particularly evident between 100 and 150 km depth, where the maximum historical seismic energy release is concentrated. Our results indicate the diagnostic power of a combined interpretation of 3-D Vp, Vs, Vp/Vs, and density models.
    Description: Published
    Description: B11307
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: joint inversion ; density ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Accepted for publication in Tectonics. Copyright (2010) American Geophysical Union
    Description: The study of geodynamics relies on an understanding of the strength of the lithosphere. However, our knowledge of kilometer-scale rheology has generally been obtained from centimeter-sized laboratory samples or from microstructural studies of naturally deformed rocks. In this study, we present a method that allows rheological examination at a larger scale. Utilizing forward numerical modeling, we simulated lithospheric deformation as a function of heat flow and rheological parameters and computed several testable predictions including horizontal velocities, stress directions, and the tectonic regime. To select the best solutions, we compared the model predictions with experimental data. We applied this method in Italy and found that the rheology shows significant variations at small distances. The strength ranged from 0.60.2 TN/m within the Apennines belt to 216 TN/m in the external Adriatic thrust. These strength values correspond to an aseismic mantle in the upper plate and to a strong mantle within the Adriatic lithosphere, respectively. With respect to the internal thrust, we found that strike-slip or transpressive, but not compressive, earthquakes can occur along the deeper portion of the thrust. The differences in the lithospheric strength are greater than our estimated uncertainties and occur across the Adriatic subduction margin. Using the proposed method, the lithospheric strength can be also determined when information at depth is scarce but sufficient surface data are available.
    Description: DPC-INGV project S1 (2008-2010)
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: Continental neotectonics ; Rheology and friction of fault zones ; Rheology: crust and lithosphere ; Mechanics, theory and modeling ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Accepted for publication in Journal of Geophysical Researches. Copyright (2010) American Geophysical Union
    Description: Two critical items in the energetic budget of a seismic province are the strain rate, which is measured geodetically on the Earth’s surface, and the yearly number of earthquakes exceeding a given magnitude. Our study is based on one of the most complete and recent seismic catalogs of Italian earthquakes and on the strain rate map implied by a multi-year velocity solution for permanent GPS stations. For 36 homogeneous seismic zones, we used the appropriate Gutenberg Richter relation based on the seismicity catalog to estimate a seismic strain rate, which is the strain rate associated with the mechanical work due to a co-seismic displacement. The volume storing most of the elastic energy is associated with the long-term deformation of each seismic zone, and therefore, the seismic strain rate is inversely proportional to the static stress drop. The GPS-derived strain rate for each seismic zone limits the corresponding seismic strain rate, and an upper bound for the average stress drop is estimated. These results demonstrated that the implied regional static stress drop ranged from 0.1 to 5.7 MPa for catalog earthquakes in the moment magnitude range [4.5–7.3]. These results for stress drop are independent of the “a” and “b” regional parameters and heat flow but are very sensitive to the assumed maximum magnitude of a seismic province. The data do not rule out the hypothesis that the stress drop positively correlates with the time elapsed after the largest earthquake recorded in each seismic zone.
    Description: The research was supported by Project S1 2007-2009 of Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento della Protezione Civile, Rome.
    Description: In press
    Description: 1.9. Rete GPS nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: earthquakes ; seismic hazard ; geodesy ; b-value ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...