ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (1,037,334)
Collection
Language
Years
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 127(3), pp. 1-18, ISSN: 0148-0227
    Publication Date: 2022-02-28
    Description: Fram Strait in the northern North Atlantic is a key region for marine cold air outbreaks (MCAOs), southward discharges of polar air under northerly air flow, which have a strong impact on air-sea heat fluxes, boundary layer processes and severe weather. This study investigates climatologies and decadal trends of Fram Strait MCAOs of different intensity classes based on the ERA5 reanalysis product for 1979–2020. Among striking interannual variability, it is shown that the main MCAO season is December through March, when MCAOs occur around 2/3 of the time. We report on significant decadal MCAO decreases in December and January, and a significant increase in March. While the mid-winter decrease is mainly related to the different paces of warming between the surface and the lower atmosphere, the increase in March can be related to changes in synoptic circulation patterns. As an explanation for the latter, a possible feedback between retreating Barents Sea sea ice, enhanced cyclonic activity and Fram Strait MCAOs is postulated. Exemplifying the trend toward stronger MCAOs during March, the study details the recordbreaking MCAO season in early 2020, and an observational case study of an extreme MCAO event in March 2020 is conducted. Thereby, radiosonde observations are combined with kinematic air back-trajectories to provide rare observational evidence for the diabatic cooling and drying during the MCAO preconditioning phase.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-09
    Description: Previous field studies in the Southern Ocean (SO) indicated an increased occurrence and dominance of cryptophytes over diatoms due to climate change. To gain a better mechanistic understanding of how the two ecologically important SO phytoplankton groups cope with ocean acidification (OA) and iron (Fe) availability, we chose two common representatives of Antarctic waters, the cryptophyte Geminigera cryophila and the diatom Pseudo-nitzschia subcurvata. Both species were grown at 2°C under different pCO2 (400 vs. 900 μatm) and Fe (0.6 vs. 1.2 nM) conditions. For P. subcurvata, an additional high pCO2 level was applied (1400 μatm). At ambient pCO2 under low Fe supply, growth of G. cryophila almost stopped while it remained unaffected in P. subcurvata. Under high Fe conditions, OA was not beneficial for P. subcurvata, but stimulated growth and carbon production of G. cryophila. Under low Fe supply, P. subcurvata coped much better with OA than the cryptophyte, but invested more energy into photoacclimation. Our study reveals that Fe limitation was detrimental for the growth of G. cryophila and suppressed the positive OA effect. The diatom was efficient in coping with low Fe, but was stressed by OA while both factors together strongly impacted its growth. The distinct physiological response of both species to OA and Fe limitation explains their occurrence in the field. Based on our results, Fe availability is an important modulator of OA effects on SO phytoplankton, with different implications on the occurrence of cryptophytes and diatoms in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-24
    Description: Hillaire‐Marcelet al. bring forward several physical and geochemical arguments against our finding of an Arctic glaciolacustrine system in the past. In brief, we find that a physical approach to further test our hypothesis should additionally consider the actual bathymetry of the Greenland–Scotland Ridge (GSR), the density maximum of freshwater at 3–4°C, the sensible heat flux from rivers, and the actual volumes that are being mixed and advected. Their geochemical considerations acknowledge our original argument, but they also add a number of assumptions that are neither required to explain the observations, nor do they correspond to the lithology of the sediments. Rather than being additive in nature, their arguments of high particle flux, low particle flux, export of 230Th and accumulation of 230Th, are mutually exclusive. We first address the arguments above, before commenting on some misunderstandings of our original claim in their contribution, especially regarding our dating approach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-03
    Description: Shallow seabed depressions attributed to focused fluid seepage, known as pock- marks, have been documented in all continental margins. In this study, we dem- onstrate how pockmark formation can be the result of a combination of multiple factors— fluid type, overpressures, seafloor sediment type, stratigraphy and bot- tom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwa- ter and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shal- low to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and fresh- ened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea- level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coin- cides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Multi‐Scale Biogeochemical Processes in Soil Ecosystems, Multi‐Scale Biogeochemical Processes in Soil Ecosystems, Hoboken, NJ, Wiley, pp. 157-181, ISBN: 9781119480471
    Publication Date: 2022-05-19
    Description: Tundra is experiencing more intense warming than any other ecosystem on earth. While warming is the most direct effect of climate change on tundra, warming leads to a cascade of environmental changes such as permafrost thaw, altered precipitation regimes, and increased wildfires. This chapter will first focus on how climate change is changing the environment of Arctic and subarctic tundra and then focus on how climate change is altering tundra's carbon, nitrogen, and phosphorus cycles with a focus on soils. Overall, tundra soils are shifting from being a carbon sink into a carbon source as rising temperatures increase microbial activity—a positive feedback to climate change. However, those rising temperatures are also increasing nutrient mineralization rates, which could increase ecosystem carbon storage via enhanced plant productivity as well as increase emissions of nitrous oxide, a powerful greenhouse gas. There is currently a disconnect between the large soil carbon losses measured in many in situ experiments and the strong plant carbon gains predicted by models. Ultimately, more research is needed on the interplay between tundra soils, nutrients, and plants to determine the magnitude of tundra's feedback to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-15
    Description: Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-16
    Description: Tectono-stratigraphic interpretation and sequential restoration modelling was performed over two high-resolution seismic profiles crossing the Western Ionian Basin of southern Italy. This analysis was undertaken in order to provide greater insights and a more reliable assessment of the deformation rate affecting the area. Offshore seismic profiling illuminates the sub-seafloor setting where a belt of active normal faults slice across the foot of the Malta Escarpment, a regional-scale structural boundary inherited from the Permo-Triassic palaeotectonic setting. A sequential restoration workflow was established to back-deform the entire investigated sector with the primary aim of analysing the deformation history of the three major normal faults affecting the area. Restoration of the tectono-stratigraphic model reveals how deformation rates evolved through time. In the early stage, the studied area experienced a significant deformation with the horizontal component prevailing over the vertical element. In this context, the three major faults contribute to only one third of the total deformation. The overall throw and extension then notably reduced through time towards the present day and, since the middle Pliocene, ongoing crustal deformation is accommodated almost entirely by the three major normal faults. Unloading and decompaction indicate that when compared to the unrestored seismic sections, a revision and a reduction of roughly one third of the vertical displacement of the faults offset is required. This analysis ultimately allows us to better understand the seismic potential of the region.
    Description: Published
    Description: 321-341
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Limnology and Oceanography Letters, Wiley, 7(2), pp. 167-174, ISSN: 2378-2242
    Publication Date: 2022-03-25
    Description: The end of the polar night with the concurrent onset of photosynthetic biomass production ultimately leads to the spring bloom, which represents the most important event of primary production for the Arctic marine ecosystem. This dataset shows, for the first time, significant in situ biomass accumulation during the dark–light transition in the high Arctic, as well as the earliest recorded positive net primary production rates together with constant chlorophyll a-normalized potential for primary production through winter and spring. The results indicate a high physiological capacity to perform photosynthesis upon re-illumination, which is in the same range as that observed during the spring bloom. Put in context with other data, the results of this study indicate that also active cells originating from the low winter standing stock in the water column, rather than solely resting stages from the sediment, can seed early spring bloom assemblages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-17
    Description: Free access at https://onlinelibrary.wiley.com/doi/10.1111/1755-6724.14824
    Description: Earthquake is a sudden release of energy due to fault motions. The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment, microzonation studies and appropriate building codes. Earthquake risk assessment methods require seismo tectonic information usually organized in earthquake catalogues utilized in Probabilistic Seismic Hazard Assessment (PSHA) based on initial work by Cornell (1968), where probability distributions for magnitudes and source site distances reported in earthquake catalogues were utilized for the first time. In following years the method furtherly improved reporting an upper bound on the earthquake magnitude in each region avoiding the inclusion of unrealistically big earthquakes. A different approach has been followed in Countries characterized by significant incompletenesses in available earthquake catalogues. In these places the Deterministic Seismic Hazard Assessment (DSHA) methods have been often utilized. In particular the DSHA takes into account the maximum possible earthquake to evaluate the intensity of seismic ground motion distribution at a site by taking account the seismotectonic setup of the area. A deepening in the knowledge of seismotectonics and of morphostructural features of the studied area has been carried out in pattern recognition studies (Gelfand et al., 1976 and references therein). More updated applications named Neo-Deterministic Seismic Hazard Assessment (NDSHA) proposed by Wang et al. (2021) also consider morphostructural zoning which, in turn, considers nodes (fractured areas), lineaments and topographical features like the maximal elevation and the minimal elevation of the studied area. The steepness of topographic surfaces and sharp variations in morphostructural parameters indicate high tectonic activity. Some geological features are also presently utilized in PSHA methods in some Countries and considers basic parameters like the top and the bottom of seismogenic layers deduced by faults geometry within the frame of the Earthquake Rupture Forecasting (Bird and Liu, 2007).
    Description: Published
    Description: 31-33
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: probabilistic seismic hazard assessment, deterministic seismic hazard assessment, helium isotopes, geochemical prospection, earthquake precursors ; seismic hazard estimation by geochemical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-21
    Description: Relative sea‐level (RSL) evolution during Marine Isotopic Stage (MIS) 5 in the Mediterranean basin is still not fully understood despite a plethora of morphological, stratigraphic and geochronological studies carried out on highstand deposits of this area. In this review we assembled a database of 323 U/Th‐dated samples (e.g. corals, molluscs, speleothems) which were used to chronologically constrain RSL evolution within MIS 5. The application of strict geochemical criteria to the U/Th samples indicates that only ~33% of data available for the Mediterranean Sea can be considered ‘reliable’. Most of these data (~65%) refer to the MIS 5e highstand, while only ~17% could be related to the MIS 5a. No attribution to MIS 5c can be unequivocally supported. Nevertheless, the resulting framework does not allow us to define a satisfactory RSL trend during the MIS 5e highstand and subsequent MIS 5 substages. Overall, the proposed selection of reliable/unreliable data would be useful for detecting areas where MIS 5 substage attributions are not supported by confident U/Th chronological data and thus the related reconstructions need to be revised. In this regard, the resulting framework calls for a reappraisal and re‐examination of the Mediterranean records with advanced geochronological methodologies.
    Description: Published
    Description: 1174-1189
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-02-25
    Description: The Apennines are a retreating collisional belt where the foreland basin system, across large domains, is floored by a subaerial forebulge unconformity developed due to forebulge uplift and erosion. This unconformity is overlain by a diachronous sequence of three lithostratigraphic units made of (a) shallow-water carbonates, (b) hemipelagic marls and shales and (c) siliciclastic turbidites. Typically, the latter two have been interpreted regionally as the onset of syn-orogenic deposition in the foredeep depozone, whereas little attention has been given to the underlying unit. Accordingly, the rate of migration of the central-southern Apennine fold-thrust beltforeland basin system has been constrained, so far, exclusively considering the age of the hemipelagites and turbidites, which largely post-date the onset of foredeep depozone. In this work, we provide new high-resolution ages obtained by strontium isotope stratigraphy applied to calcitic bivalve shells sampled at the base of the first syn-orogenic deposits overlying the Eocene-Cretaceous pre-orogenic substratum. Integration of our results with published data indicates progressive rejuvenation of the strata sealing the forebulge unconformity towards the outer portions of the foldthrust belt. In particular, the age of the forebulge unconformity linearly scales with the pre-orogenic position of the analysed sites, pointing to an overall constant migration velocity of the forebulge wave in the last 25 Myr.
    Description: Published
    Description: 2817-2836
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: central-southern Apennines (Italy) ; fold-thrust belt ; forebulge ; foredeep
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-01-11
    Description: Mt Etna has made headlines over the last weeks and months with spectacular eruptions, some of them highly explosive. This type of paroxysmal eruptive behaviour is characteristic of Etna’s activity over the past few decades and so it is no surprise that Etna is among the most active volcanoes worldwide. Etna is well-known for its extraordinary geology and due to its repeated eruptive activity it provides a continuous supply of new scientific opportunities to understand the inner workings of large basaltic volcanic systems. In addition to its scientific value, Etna is also a world famous tourist attraction and has been listed as a UNESCO World Heritage site in 2013 for its geological and cultural value and not least for its fine agricultural products. Etna’s status as an iconic volcano is not a recent phenomenon; in fact, Etna has been a literary fixture for at least 3000 years, giving rise to many ancient myths and legends that mark it as a special place, deserving of human respect. From the ancient eruptions to the latest events in February–April 2021, people try to explain and understand the processes that occur within and beneath the volcano. In this article, we briefly summarize the recent eruptive activity of Etna as well as the ancient myths and legends that surround this volcano, from the underground forge of Hephaestus to the adventures of Odysseus, all the way to the benefits and dangers the volcano provides to those living on its flanks today.
    Description: Published
    Description: 141-149
    Description: 2TM. Divulgazione Scientifica
    Description: N/A or not JCR
    Keywords: Etna, mythology, 2021 paroxysms, economy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jenouvrier, S., Long, M. C., Coste, C. F. D., Holland, M., Gamelon, M., Yoccoz, N., & Saether, B.-E. Detecting climate signals in populations across life histories. Global Change Biology, 28, (2022): 2236– 2258, https://doi.org/10.1111/gcb.16041.
    Description: Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. Here, we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. Specifically, we present a theoretical assessment of the time of emergence of climate-driven signals in population dynamics (ToEpop). We identify the dependence of (ToEpop)on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on (ToEpop). We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction), and the relationships between climate and demographic rates yield population dynamics that filter climate trends and variability differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.
    Description: We acknowledge the support of NASA 80NSSC20K1289 to SJ, ML, and MH; NSF OPP 1744794 to SJ and NSF OPP 2037561 to SJ and MH.
    Keywords: climate change ; emperor penguin ; life histories ; population trend ; population variability ; signal to noise ; time of emergence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-27
    Description: Author Posting. © The Author(s), 2022. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in . Journal of Phycology (2022), https://doi.org/10.1111/jpy.13230.
    Description: The marine green alga Brilliantia kiribatiensis gen. et sp. nov. is described from samples collected from the coral reefs of the Southern Line Islands, Republic of Kiribati, Pacific Ocean. Phylogenetic analysis of sequences of the large- and small-subunit rDNA and the rDNA internal transcribed spacer region revealed that Brilliantia is a member of the Boodleaceae (Cladophorales), containing the genera Apjohnia, Boodlea, Cladophoropsis, Chamaedoris, Phyllodictyon, and Struvea. Within this clade it formed a distinct lineage, sister to Struvea elegans, but more distantly related to the bona fide Struvea species (including the type S. plumosa). Brilliantia differs from the other genera by having a very simple architecture forming upright, unbranched, single-celled filaments attached to the substratum by a rhizoidal mat. Cell division occurs by segregative cell division only at the onset of reproduction. Based on current sample collection, B. kiribatiensis seems to be largely restricted to the Southern Line Islands, although it was also observed on neighboring islands, including Orona Atoll in the Phoenix Islands of Kiribati, and the Rangiroa and Takapoto Atolls in the Tuamotus of French Polynesia. This discovery highlights the likeliness that there is still much biodiversity yet to be discovered from these remote and pristine reefs of the central Pacific.
    Description: National Geographic Society
    Description: 2022-12-12
    Keywords: 18S nuclear ribosomal DNA ; Chlorophyta ; Cladophorales ; molecular phylogeny ; Siphonocladales ; Ulvophyceae
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuehn, E., Clausen, D. S., Null, R. W., Metzger, B. M., Willis, A. D., & Ozpolat, B. D. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, (2021.): 1-16, https://doi.org/10.1002/jez.b.23100.
    Description: Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth-reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free-roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion.
    Description: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM138008 (to BDÖ) and R35GM133420 (to ADW) and Hibbitt Startup Funds (to BDÖ).
    Keywords: annelida ; critical size ; developmental transition ; gametogenesis ; sexual reproduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-06-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walter, J. A., Castorani, M. C. N., Bell, T. W., Sheppard, L. W., Cavanaugh, K. C., & Reuman, D. C. Tail-dependent spatial synchrony arises from nonlinear driver-response relationships. Ecology Letters, 25, (2022): 1189– 1201, https://doi.org/10.1111/ele.13991.
    Description: Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, ‘tail-dependent’ follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.
    Description: This research was supported by NSF-OCE awards 2023555, 2023523, 2140335, 2023474, and the James S McDonnell Foundation. This project used data developed through the Santa Barbara Coastal Long Term Ecological Research project, funded through NSF-OCE 1831937.
    Keywords: copula ; disturbance ; giant kelp ; Macrocystis pyrifera ; nutrients ; stability ; synchrony ; waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-06-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suca, J., Ji, R., Baumann, H., Pham, K., Silva, T., Wiley, D., Feng, Z., & Llopiz, J. Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31(3), (2022): 333– 352, https://doi.org/10.1111/fog.12580.
    Description: Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation.
    Description: Funding came from the National Oceanic and Atmospheric Administration Woods Hole Sea Grant Program (Woods Hole Sea Grant, Woods Hole Oceanographic Institution, NA18OAR4170104, Project No. R/O-57; RJ, HB, and JKL), the Bureau of Ocean Energy Management (IA agreement M17PG0019; DNW, HB, and JKL) including a subaward via the National Marine Sanctuary Foundation (18-11-B-203), and a National Science Foundation Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE 1655686; RJ and JKL). JJS was funded by the National Science Foundation Graduate Research Fellowship program.
    Keywords: Gulf of Maine ; larval retention ; otolith microstructure ; particle tracking ; population connectivity ; sand lance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-06-29
    Description: Rapid and profound climatic and environmental changes have been predicted for the Antarctic Peninsula with so far unknown impact on the biogeochemistry of the continental shelves. In this study, we investigate benthic carbon sedimentation, remineralization and iron cycling using sediment cores retrieved on a 400 mile transect with contrasting sea ice conditions along the eastern shelf of the Antarctic Peninsula. Sediments at comparable water depths of 330-450 m showed sedimentation and remineralization rates of organic carbon, ranging from 2.5-13 and 1.8-7.2 mmol C m-2 d-1, respectively. Both rates were positively correlated with the occurrence of marginal sea ice conditions (5-35% ice cover) along the transect, suggesting a favorable influence of the corresponding light regime and water column stratification on algae growth and sedimentation rates. From south to north, the burial efficiency of organic carbon decreased from 58% to 27%, while bottom water temperatures increased from -1.9 to -0.1 °C. Net iron reduction rates, as estimated from pore-water profiles of dissolved iron, were significantly correlated with carbon degradation rates and contributed 0.7-1.2% to the total organic carbon remineralization. Tightly coupled phosphate-iron recycling was indicated by significant covariation of dissolved iron and phosphate concentrations, which almost consistently exhibited P/Fe flux ratios of 0.26. Iron efflux into bottom waters of 0.6-4.5 µmol Fe m-2 d-1 was estimated from an empirical model. Despite the deep shelf waters, a clear bentho-pelagic coupling is indicated, shaped by the extent and duration of marginal sea ice conditions during summer, and likely to be affected by future climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-24
    Description: Pyroclastic currents are described as gravity currents, and the classic conceptual model gives a first-order importance to the density of such currents. This directs quantitative models to assume specific flow structures (shallow water or equilib rium turbulent boundary layer), which may apply to restricted volcanic areas inde pendently of source dynamics or may correspond to source dynamics separate from topographic interaction. The recent introduction of two end-members of pyroclastic currents, inertial and forced, is further developed here, leading to a global conceptual model in which source dynamics and topographic interaction are both taken into account. The concept of energy facies is defined here as the ensemble of the first order indicators of pyroclastic currents (topological aspect ratio, competence ratio and emplacement temperature) that are proxies of the energy of such currents. Nine energy facies are introduced with general applicability and with the goal to globally characterize pyroclastic currents from vent to deposit.
    Description: Published
    Description: 1-11
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Energy facies ; pyroclastic currents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-06-24
    Description: A variety of tectonic processes spread along the circum-Mediterranean orogenic belts driven by the convergence of major plates, episodes of slab retreat and lateral and vertical mantle flows. Here, we provide an updated view of crustal stress and strain-rate fields for the Albanides belt in the eastern Adria-Eurasia convergence boundary. We framed a new geodetic-based source model for the 2019 Mw6.4 Durrёs earthquake in light of the regional deformation, propending for a transpressional west-dipping seismogenic fault. Our results highlight a fault-scale complexity which mirrors the long-time scale deformation of the Albanides plate boundary, where the rotation induced by the fast Hellenic rollback is accommodated also by transpression on inherited structures.
    Description: Published
    Description: 244–252
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
  • 22
    Publication Date: 2022-01-01
    Electronic ISSN: 2096-3955
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
  • 24
    Publication Date: 2022-01-01
    Electronic ISSN: 2096-3955
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-01-01
    Electronic ISSN: 2096-3955
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-01-19
    Description: Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches and even achieve human-like performance under certain circumstances. However, as most studies differ in the datasets and exact evaluation tasks studied, it is yet unclear how the different approaches compare to each other. Furthermore, there are no systematic studies how the models perform in a cross-domain scenario, i.e., when applied to data with different characteristics. Here, we address these questions by conducting a large-scale benchmark study. We compare six previously published deep learning models on eight datasets covering local to teleseismic distances and on three tasks: event detection, phase identification and onset time picking. Furthermore, we compare the results to a classical Baer-Kradolfer picker. Overall, we observe the best performance for EQTransformer, GPD and PhaseNet, with EQTransformer having a small advantage for teleseismic data. Furthermore, we conduct a cross-domain study, in which we analyze model performance on datasets they were not trained on. We show that trained models can be transferred between regions with only mild performance degradation, but not from regional to teleseismic data or vice versa. As deep learning for detection and picking is a rapidly evolving field, we ensured extensibility of our benchmark by building our code on standardized frameworks and making it openly accessible. This allows model developers to easily compare new models or evaluate performance on new datasets, beyond those presented here. Furthermore, we make all trained models available through the SeisBench framework, giving end-users an easy way to apply these models in seismological analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-12-13
    Description: The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for 〉40% of the global total emissions (their anthropogenic and natural sources together totaling 〉270 Tg CH4 yr−1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (〉75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by 〉20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-01-07
    Description: When organic matter from thawed permafrost is released, the sources and sinks of greenhouse gases (GHGs), like carbon dioxide (CO2) and methane (CH4) in Arctic rivers will be influenced in the future. However, the temporal variation, environmental controls, and magnitude of the Arctic riverine GHGs are largely unknown. We measured in situ high temporal resolution concentrations of CO2, CH4, and oxygen (O2) in the Ambolikha River in northeast Siberia between late June and early August 2019. During this period, the largely supersaturated riverine CO2 and CH4 concentrations decreased steadily by 90% and 78%, respectively, while the O2 concentrations increased by 22% and were driven by the decreasing water temperature. Estimated gas fluxes indicate that during late June 2019, significant emissions of CO2 and CH4 were sustained, possibly by external terrestrial sources during flooding, or due to lateral exchange with gas-rich downstream-flowing water. In July and early August, the river reversed its flow constantly and limited the water exchange at the site. The composition of dissolved organic matter and microbial communities analyzed in discrete samples also revealed a temporal shift. Furthermore, the cumulative total riverine CO2 emissions (36.8 gC-CO2 m−2) were nearly five times lower than the CO2 uptake at the adjacent floodplain. Emissions of riverine CH4 (0.21 gC-CH4 m−2) were 16 times lower than the floodplain CH4 emissions. Our study revealed that the hydraulic connectivity with the land in the late freshet, and reversing flow directions in Arctic streams in summer, regulate riverine carbon replenishment and emissions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-01-10
    Description: The seasonal variation in concentration of transparent exopolymer particles (TEPs), particulate organic carbon (POC) and particulate organic nitrogen (PON) were investigated together with floc size and the concentration of suspended particulate matter (SPM) along the cross-shore gradient, from the high turbid nearshore toward the low-turbid offshore waters in the Southern Bight of the North Sea. Our data demonstrate that biophysical flocculation cannot be explained by these heterogeneous parameters, but requires a distinction between a more reactive labile (“fresh”) and a less reactive refractory (“mineral-associated”) fraction. Based on all data, we separated the labile and mineral-associated POC, PON, and TEP using a semi-empirical model approach. The model's estimates of fresh and mineral-associated organic matter (OM) show that great parts of the POC, PON, and TEP are associated with suspended minerals, which are present in the water column throughout the year, whereas the occurrence of fresh TEP, POC, and PON is restricted to spring and summer months. In spite of a constantly high abundance of total TEP throughout the entire year, it is its fresh fraction that promotes the formation of larger and faster sinking biomineral flocs, thereby contributing to reducing the SPM concentration in the water column over spring and summer. Our results show that the different components of the SPM, such as minerals, extracellular OM and living organisms, form an integrated dynamic system with direct interactions and feedback controls.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-17
    Description: Biological invasions are a major driver of biodiversity loss and socioeconomic burden globally. As invasion rates accelerate worldwide, understanding past invasion dynamics is essential to inform predictions of future invaders and impacts. Owing to a high diversity of pathways and current biosecurity gaps, aquatic systems near urban centres are especially susceptible to alien species establishments. Here, we compiled and compared alien species lists for three different aquatic recipient regions spanning the North Atlantic: Chesapeake Bay, Great Lakes-St. Lawrence River and North and Baltic Seas. Each system is a major trade centre, with a history of invasions, and characterised by a strong natural salinity gradient. Our goal was to compare the alien species across systems, to test for similarities in the taxonomic composition and geographic origin as well as species overlap among the three regions. We selected specific macroinvertebrate, algae and fish taxa for analysis, to control for uneven taxonomic and biogeographic resolution across regions. Cumulatively, we identified 326 individual alien species established in these aquatic systems, with the North and Baltic Seas most invaded overall (163), followed by Great Lakes-St. Lawrence River (84) and Chesapeake Bay (79). Most invasions were from Ponto-Caspian, Eurasian, Northwest Pacific, Northwest Atlantic and North American origins, and mostly comprised Arthropoda, Chordata, Mollusca and Annelida. However, origins and taxonomies differed significantly among destinations, with Ponto-Caspian species particularly successful invaders to the North and Baltic Seas then Great Lakes-St. Lawrence River, but less so to Chesapeake Bay. Nevertheless, approximately eight tenths of invaders established in only one region, indicating disparate invasion patterns and a high potential for future aliens to accrue from increasingly diverse source pools and pathways. These results support biosecurity strategies that consider a broad range of geographic origins and taxonomic groups to limit the translocation, arrival and spread of alien species worldwide.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-01-21
    Description: During the 2010s, Atlantic cod Gadus morhua L. in the eastern Baltic Sea experienced increasing infection loads of the parasitic nematode Contracaecum osculatum (Rudolphi) in their livers. Starting in 2021, a mandatory part of the routine sampling protocol on Baltic monitoring surveys is to assign a liver category to individual cod livers, based on the number of nematodes visible on the liver surface, to follow spatiotemporal changes in nematode infection loads. The validity of the liver category method has never been evaluated. Based on data from 642 cod livers, the method was verified and found to be a good predictor of the total number of nematodes. Moreover, the probability of cod being in a critical condition increased with the parasite load. In addition to their direct applicability to Baltic cod, the present findings may inspire others working with disease in fish stocks to include parasite monitoring.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-02-04
    Description: Invasive alien species continue to spread and proliferate in waterways worldwide, but environmental drivers of invasion dynamics lack assessment. Knowledge gaps are pervasive in the Global South, where the frequent heavy human-modification of rivers provides high opportunity for invasion. In southern Africa, the spatio-temporal ecology of a widespread and high-impact invasive alien snail, Tarebia granifera, and its management status is understudied. Here, an ecological assessment was conducted at seven sites around Nandoni Reservoir on the Luvuvhu River in South Africa. The distribution and densities of T. granifera were mapped and the potential drivers of population structure were explored. T. granifera was widespread at sites impacted to varying extents due to anthropogenic activity, with densities exceeding 500 individuals per square meter at the most impacted areas. T. granifera predominantly preferred shallow and sandy environments, being significantly associated with sediment (i.e., chlorophyll-a, Mn, SOC, SOM) and water (i.e., pH, conductivity, TDS) variables. T. granifera seemed to exhibit two recruitment peaks in November and March, identified via size-based stock assessment. Sediment parameters (i.e., sediment organic matter, sediment organic carbon, manganese) and water chemistry (i.e., pH, total dissolved solids, conductivity) were found to be important in structuring T. granifera populations, with overall snail densities highest during the summer season. We provide important autecological information and insights on the distribution and extent of the spread of T. granifera. This may help in the development of invasive alien snail management action plans within the region, as well as modelling efforts to predict invasion patterns elsewhere based on environmental characteristics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 127 (2). Art.Nr. e2021JC018115.
    Publication Date: 2022-02-07
    Description: Key Points: • Observed Atlantic western boundary mean transport of the upper 1,200 m at 11°S is realistically reproduced from high-resolution Argo data • Diapycnal transport estimates from high-resolution Argo data show upwelling of ∼2 Sv into the tropical Atlantic thermocline layer • By combining shipboard measurements with Argo data, we provide an overview of the individual water mass pathways within the Atlantic Meridional Overturning Circulation return flow Abstract: The upper-ocean circulation of the tropical Atlantic is a complex superposition of thermohaline and wind-driven flow components. The resulting zonally and vertically integrated upper-ocean meridional flow is referred to as the upper branch of the Atlantic Meridional Overturning Circulation (AMOC)—a major component and potential tipping element of the global climate system. Here, we investigate the tropical part of the northward AMOC branch, that is, the return flow covering the upper 1,200 m, based on Argo data and repeated shipboard velocity measurements. The western boundary mean circulation at 11°S is realistically reproduced from high-resolution Argo data showing a remarkably good representation of the volume transport of the return flow water mass layers when compared to results from direct velocity measurements along a repeated ship section. The AMOC return flow through the inner tropics (11°S–10°N) is found to be associated with a diapycnal upwelling of lower central water into the thermocline layer of ∼2 Sv. This is less than half the magnitude of previous estimates, likely due to improved horizontal resolution. The total AMOC return flow at 11°S and 10°N is derived to be similar in strength with 16–17 Sv. At 11°S, northward transport is concentrated at the western boundary, where the AMOC return flow enters the inner tropics at all vertical levels above 1,200 m. At 10°N, northward transport is observed both at the western boundary and in the interior predominantly in the surface and intermediate layer indicating recirculation and transformation of thermocline and lower central water within the inner tropics.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-02-14
    Description: Climate change is especially strong in the region of the Arctic Ocean, and will have an important impact on its thermo-haline structure. We analyze the results of a hindcast simulation of a new 3D ocean model of the Arctic and North Atlantic oceans for the period 1970–2019. We compared the time period 1970–1999 with the time period 2010–2019. The comparison showed that there is a decrease of stratification between the two periods over most of the shallow Arctic shelf seas and in the core of the Transpolar Ice Drift. Fresh water inputs to the ocean surface decline, and inputs of momentum to the ocean increase, which can explain the decrease in stratification. The comparison also showed that the mixed layer becomes deeper during winter, in response to the weakened stratification owing to increased vertical mixing. The comparison of summer mixed layer depths between the two time periods follows a deepening pattern that is less evident. Regional exceptions include the Nansen Basin and the part of the Canadian Basin bordering the Canadian Archipelago, where the mixed layer shoals. Trends of freshwater fluxes imply that the changes of haline stratification in these regions are also influenced by other processes, for example, horizontal advection of fresh water, increased mixing and changes in the underlaying water masses. Runoff increase toward the Arctic Ocean can locally decrease but also increase salinity, and has an impact on stratification which can be explained by coastal dynamics. The results emphasize the non-linear nature of Arctic Ocean dynamics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-02-15
    Description: Invasive aquatic macrophytes tend to reproduce and spread through vegetative means, often via fragmentary propagules. Dispersal among aquatic sites may occur overland via attachment to various vectors, or within river systems by directional water currents. However, for many species the relationship between fragment size and resumption of growth is unknown. Here, we assessed resumption of growth of apical and mid-stem fragments of invasive Crassula helmsii, Elodea canadensis and Lagarosiphon major. Proportionally, apical fragments tended to more readily resume growth than mid-stem sections, especially for E. canadensis and L. major (80–100%). However, viability did not scale linearly with increasing fragment size, which suggests that fragment size is not a singular determinant of propagule fitness. Nevertheless, longer fragments generally produced greater numbers of shoots and roots, but root production significantly differed among species and was determined through an interaction between plant section, species and fragment length. Overall, all species produced new shoots and roots from fragments as small as 10 mm. C. helmsii mid-stem fragments standardised by node counts did not display new growth (up to 10 nodes), while E. canadensis tended to show greater shoot and root production with increasing node counts. It is evident that a medium to high proportion of small fragmentary propagules of these invasive macrophytes can retain viability. These data have clear implications for understanding the dispersal of these invasive species and their management. Specifically, cutting and dredging may increase rather than decrease infestations, especially in downstream directions. Thus, in the absence of adequate fragment containment, current short-term control strategies may in fact be counterproductive.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-02-21
    Description: Plankton is a massive and phylogenetically diverse group of thousands of prokaryotes, protists (unicellular eukaryotic organisms), and metazoans (multicellular eukaryotic organisms; Fig. 1). Plankton functional diversity is at the core of various ecological processes, including productivity, carbon cycling and sequestration, nutrient cycling (Falkowski 2012), interspecies interactions, and food web dynamics and structure (D'Alelio et al. 2016). Through these functions, plankton play a critical role in the health of the coastal and open ocean and provide essential ecosystem services. Yet, at present, our understanding of plankton dynamics is insufficient to project how climate change and other human-driven impacts affect the functional diversity of plankton. That limits our ability to predict how critical ecosystem services will change in the future and develop strategies to adapt to these changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-02-28
    Description: Mechanisms of fluid flow localization and pockmark formation remain an open question. Many conceptual models have been proposed, but very few predictive models exist. We propose a model based on erosive fluidization where seepage induced erosion, fluidization, and transport of granular material leads the formation of fluid escape structures (FES) like pipes, chimneys and pockmarks. The model predicts: 1) formation of conical focused flow conduits with brecciated core and annular gas channels encased within a halo of low permeability sediment, 2) pockmarks of diverse shapes and sizes, including W-, U-, and ring-shapes, and 3) pulsed gas release. Results show that the morphology of FES depends on properties related to sediment-fluid interactions (like erodibility and flow anisotropy), not on intrinsic sediment properties (like permeability). Although the study is theoretical, we show that our predicted FES have many real world analogs, highlighting the broad scope of the predictive capability of our model.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-03-01
    Description: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high-resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure-shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple-shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick-skinned, fully thin-skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure-shear shortening mode whereas the others require a simple-shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin-skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one-third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-03-07
    Description: Oceanic mesoscale eddies constitute ephemeral hotspots for marine life and are pivotal for the lateral transport of nutrients and organic matter. Here, we use a high-resolution coupled physical-biogeochemical model to study the processes sustaining biological production and export in long-living cyclonic (CE) and anticyclonic (AE) eddies of the northern Canary Upwelling System (CanUS). We track the eddies for 18 months as they propagate offshore, and study their composite properties in time in a Lagrangian manner. Our model shows that long-living CEs sustain their production with the nitrogen that they initially trap in the nearshore nutrient-rich waters and keep isolated in their cores. The vertical input of nitrate from below tends to be comparatively small, and is mostly driven by mixing. In contrast, AEs tend to start with low nutrient concentrations in their core as they do not trap coastal waters, but have elevated concentrations at their periphery. In AEs, stirring is responsible for both the building up of the positive nitrate anomaly at depth and the enhanced lateral input of organic nitrogen in the near-surface. Compared to CEs, the input of nitrate into the euphotic zone by vertical mixing is substantially more important. Though regenerated production dominates in both types of eddies, new production is higher than the regional average in CE cores and at the rim of AEs, partially compensating for the intense losses due to sinking. Both cyclonic trapping and transport and anticyclonic stirring shape the regional pattern of organic matter and nutrients in the northern CanUS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-03-08
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen and nutrient concentrations to characterize the coastal (71-78 °W) and an oceanic (82-98 °W) water masses (SAAW-Subantarctic Surface Water; STW-Subtropical Water; ESSW-Equatorial Subsurface water; AAIW-Antarctic Intermediate Water; PDW-Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-03-09
    Description: The Atlantic Subtropical Cells (STCs) consist of poleward Ekman transport in the surface layer, subduction in the subtropics, and equatorward transport in the thermocline layer that largely compensates the surface Ekman divergence and closes the STCs via equatorial upwelling. As a result, the STCs play an important role in connecting the tropical and subtropical Atlantic Ocean, in terms of heat, freshwater, oxygen, and nutrients exchange. However, their representation in state-of-the-art coupled models has not been systematically evaluated. In this study, we investigate the performance of the Coupled Model Intercomparison Project Phase 6 climate models in simulating the Atlantic STCs. Comparing model results with observations, we first present the simulated mean state with respect to ensembles of the key components participating in the STC loop, that is, the meridional Ekman and geostrophic flow across 10°N and 10°S, and the Equatorial Undercurrent (EUC) at 23°W. We find that the model ensemble reveals biases toward weak Southern Hemisphere Ekman transport and interior geostrophic transports, as well as a weak EUC. We then investigate the large inter-model spread of these key components and find that models with strong Ekman divergence between 10°N and 10°S tend to have strong mixed layer and thermocline interior convergence and strong EUC. The inter-model spread of the EUC strength is primarily associated with the intensity of the southeasterly trade winds in the models. Since the trade-wind-induced poleward Ekman transports are regarded as the drivers of the STCs, our results highlight the necessity to improve skills of coupled models to simulate the Southern Hemisphere atmospheric forcing.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-03-10
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-03-10
    Description: The last deglaciation was characterized by drastic climate changes, most prominently melting ice sheets. Melting ice sheets have a significant impact on the atmospheric and oceanic circulation, due to changes in the topography and meltwater release into the ocean. In a set of transient simulations of the last deglaciation with the Max Planck Institute for Meteorology Earth System Model we explore differences in the climate response that arise from different boundary conditions and implementations suggested within the Paleoclimate Modeling Intercomparison Project - Phase 4 (PMIP4) deglaciation protocol. The underlying ice-sheet reconstruction dominates the simulated deglacial millennial-scale climate variability in terms of timing and occurrence of observed climate events. Sensitivity experiments indicate that the location and timing of meltwater release from the ice sheets into the ocean are crucial for the ocean response. The results will allow a better interpretation of inter-model differences that arise from different implementations proposed within the PMIP4 protocol.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-03-10
    Description: Since it is currently not understood how changes in 14C production rate (Q), and in the carbon cycle, can be combined to explain the reconstructed atmospheric Δ14C record, we discuss possible reasons for this knowledge gap. Reviewing the literature, we exclude that changes in the content of atoms in the atmosphere, which produce cosmogenic 14C after being hit by galactic cosmic rays, might be responsible for parts of the observed differences. When combining Q with carbon cycle changes, one needs to understand the changes in the atmospheric 14C inventory, which are partially counterintuitive. For example, during the Last Glacial Maximum, Δ14C was ∼400‰ higher compared with preindustrial times, but the 14C inventory was 10% smaller. Some pronounced changes in atmospheric Δ14C do not correspond to any significant changes in the atmospheric 14C inventory, since CO2 was changing simultaneously. Using two conceptually different models (BICYCLE-SE and LSG-OGCM), we derive hypothetical Qs by forcing the models with identical atmospheric CO2 and Δ14C data. Results are compared with the most recent data-based estimates of Q derived from cosmogenic isotopes. Millennial-scale climate change connected to the bipolar seesaw is missing in the applied models, which might explain some, but probably not all, of the apparent model-data disagreement in Q. Furthermore, Q based on either data from marine sediments or ice cores contains offsets, suggesting an interpretation deficit in the current data-based approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-03-11
    Description: The carbon isotope 13C is commonly used to attribute the last deglacial atmospheric CO2 rise to various processes. Here we show that the growth of the world's largest reef system, the Great Barrier Reef (GBR), is marked by a pronounced decrease in δ13C in absolutely dated fossil coral skeletons between 12.8 and 11.7 ka, which coincides with a prominent minimum in atmospheric δ13CO2 and the Younger Dryas. The event follows the flooding of a large shelf platform and initiation of an extensive barrier reef system at 13 ka. Carbon cycle simulations show the coral δ13C decrease was mainly caused by the combination of isotopic fractionation during reef carbonate production and the decomposition of organic land carbon on the newly flooded shallow-water platform. The impacts of these processes on atmospheric CO2 and δ13CO2, however, are marginal. Thus, the GBR was not contributing to the last deglacial δ13CO2 minimum at ∼12.4 ka.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-03-16
    Description: In nature, insects concurrently face multiple environmental stressors, a scenario likely increasing with climate change. Integrated stress resistance (ISR) thus often improves fitness and could drive invasiveness, but how physiological mechanisms influence invasion has lacked examination. Here, we investigated cross tolerance to abiotic stress factors which may influence range limits in the South American tomato pinworm – a global invader that is an ecologically and socially damaging crop pest. Specifically, we tested the effects of prior rapid cold- and heat-hardening (RCH and RHH), fasting and desiccation on cold and heat tolerance traits, as well as starvation and desiccation survivability between T. absoluta life stages. Acclimation effects on critical thermal minima (CTmin) and maxima (CTmax) were inconsistent, showing significantly deleterious effects of RCH on adult CTmax and CTmin and, conversely, beneficial acclimation effects of RCH on larval CTmin. While no beneficial effects of desiccation acclimation were recorded for desiccation tolerance, fasted individuals had significantly higher survival in adults, whereas fasting negatively affected larval tolerances. Furthermore, fasted and desiccation acclimated adults had significantly higher starvation tolerance, showing strong evidence for cross-tolerance. Our results show context-dependent ISR traits that may promote T. absoluta fitness and competitiveness. Given the frequent overlapping occurrence of these divergent stressors, ISR reported here may thus partly elucidate the observed rapid global spread of T. absoluta into more stressful environments than expected. This information is vital in determining the underpinnings of multi-stressor responses, which are fundamental in forecasting species responses to changing environments and management responses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-03-18
    Description: Shallow seabed depressions attributed to focused fluid seepage, known as pockmarks, have been documented in all continental margins. In this study we demonstrate how pockmark formation can be the result of a combination of multiple factors – fluid type, overpressures, seafloor sediment type, stratigraphy, and bottom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwater and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shallow to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and freshened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea-level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coincides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-03-21
    Description: A growing literature demonstrates the impact of helminths on their host gut microbiome. We investigated whether the stickleback host microbiome depends on ecoevolutionary variables by testing the impact of exposure to the cestode parasite Schistocephalus solidus with respect to infection success, host genotype, parasite genotype, and parasite microbiome composition. We observed constitutive differences in the microbiome of sticklebacks of different origin, and those differences increased when sticklebacks exposed to the parasite resisted infection. In contrast, the microbiome of successfully infected sticklebacks varied with parasite genotype. More specifically, we revealed that the association between microbiome and immune gene expression increased in infected individuals and varied with parasite genotype. In addition, we showed that S. solidus hosts a complex endomicrobiome and that bacterial abundance in the parasite correlates with expression of host immune genes. Within this comprehensive analysis we demonstrated that (i) parasites contribute to modulating the host microbiome through both successful and unsuccessful infection, (ii) when infection is successful, the host microbiome varies with parasite genotype due to genotype-dependent variation in parasite immunomodulation, and (iii) the parasite-associated microbiome is distinct from its host and impacts the host immune response to infection
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-03-21
    Description: Phytoplankton stand at the base of the marine food-web, and play a major role in global carbon cycling. Rising CO2 levels and temperatures are expected to enhance growth and alter carbon:nutrient stoichiometry of marine phytoplankton, with possible consequences for the functioning of marine food-webs and the oceanic carbon pump. To date, however, the consistency of phytoplankton stoichiometric responses remains unclear. We therefore performed a meta-analysis on data from experimental studies on stoichiometric responses of marine phytoplankton to elevated pCO2 and 3–5° warming under nutrient replete and limited conditions. Our results demonstrate that elevated pCO2 increased overall phytoplankton C:N (by 4%) and C:P (by 9%) molar ratios under nutrient replete conditions, as well as phytoplankton growth rates (by 6%). Nutrient limitation amplified the CO2 effect on C:N and C:P ratios, with increases to 27% and 17%, respectively. In contrast to elevated pCO2, warming did not consistently alter phytoplankton elemental composition. This could be attributed to species- and study-specific increases and decreases in stoichiometry in response to warming. While our observed moderate CO2-driven changes in stoichiometry are not likely to drive marked changes in food web functioning, they are in the same order of magnitude as current and projected estimations of oceanic carbon export. Therefore, our results may indicate a stoichiometric compensation mechanism for reduced oceanic carbon export due to declining primary production in the near future
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-03-23
    Description: In the marine realm, microorganisms are responsible for the bulk of primary production, thereby sustaining marine life across all trophic levels. Longhurst provinces have distinct microbial fingerprints; however, little is known about how microbial diversity and primary productivity change at finer spatial scales. Here, we sampled the Atlantic Ocean from south to north (~50°S–50°N), every ~0.5° latitude. We conducted measurements of primary productivity, chlorophyll-a and relative abundance of 16S and 18S rRNA genes, alongside analyses of the physicochemical and hydrographic environment. We analysed the diversity of autotrophs, mixotrophs and heterotrophs, and noted distinct patterns among these guilds across provinces with high and low chlorophyll-a conditions. Eukaryotic autotrophs and prokaryotic heterotrophs showed a shared inter-province diversity pattern, distinct from the diversity pattern shared by mixotrophs, cyanobacteria and eukaryotic heterotrophs. Additionally, we calculated samplewise productivity-specific length scales, the potential horizontal displacement of microbial communities by surface currents to an intrinsic biological rate (here, specific primary productivity). This scale provides key context for our trophically disaggregated diversity analysis that we could relate to underlying oceanographic features. We integrate this element to provide more nuanced insights into the mosaic-like nature of microbial provincialism, linking diversity patterns to oceanographic transport through primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-03-24
    Description: A new matrix-matched reference material has been developed – NFHS-2-NP (NIOZ Foraminifera House Standard-2-Nano-Pellet) – with element mass fractions, and isotope ratios resembling that of natural foraminiferal calcium carbonate. A 180–355 µm size fraction of planktic foraminifera was milled to nano-particles and pressed to pellets. We report reference and information values for mass fractions of forty-six elements measured by six laboratories as well as for 87Sr/86Sr (three laboratories), δ13C, δ18O (five laboratories), and 206,207,208Pb/204Pb isotope ratios (one laboratory) determined by ICP-MS, ICP-OES, MC-ICP-MS, IRMS, WD-XRF and TIMS. Inter- and intra-pellet elemental homogeneity was tested using multiple LA-ICP-MS analyses in two laboratories applying spot sizes of 60 and 70 µm. The LA-ICP-MS results for most of the elements relevant as proxies for palaeoclimate research show RSD values 〈 3%, demonstrating a satisfactory homogeneous composition. Homogeneity of 87Sr/86Sr ratios of the pellet was verified by repeated LA-MC-ICP-MS by two laboratories. Information values are reported for Pb isotope ratios and δ13C, δ18O values. The homogeneity for these isotope systems remains to be tested by LA-MC-ICP-MS and SIMS. Overall, our results confirm the suitability of NFHS-2-NP for calibration or monitoring the quality of in situ geochemical techniques.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-03-28
    Description: Storstrømmen and L. Bistrup Bræ are 20- and 10-km wide, surge type glaciers in North Greenland in quiescent phase that terminate in the southernmost floating ice tongue in East Greenland. Novel multi-beam echo sounding data collected in August 2020 indicate a seabed at 350–400 m depth along a relatively uniform ice shelf front, 100 m deeper than expected, but surrounded by shallower terrain (〈100 m) over a 30-km wide region that blocks the access of warm, salty, subsurface Atlantic Intermediate Water (AIW) at +1.6°C. Conductivity temperature depth data reveal waters in front of the glaciers at −1.8°C not connected to AIW in the outer fjord, Dove Bugt. The recent grounding line retreat of the glaciers is attributed to glacier thinning at its ablation rate, with little influence of ocean waters, which illustrates the fundamental importance of knowing the bathymetry of glacial fjords.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-03-28
    Description: Abundant volcanic activity occurs in the back-arc region of the northern Tofua island arc where the Northeast Lau Spreading Centre (NELSC) propagates southwards into older crust causing the formation of numerous seamounts at the propagating rift tip. An off-axis volcanic diagonal ridge (DR) occurs at the eastern flank of the NELSC, linking the large rear-arc volcano Niuatahi with the NELSC. New geochemical data from the NELSC, the southern propagator seamounts, and DR reveal that the NELSC lavas are tholeiitic basalts whereas the rear-arc volcanoes typically erupt lavas with boninitic composition. The sharp geochemical boundary probably reflects the viscosity contrast between off-axis hydrous harzburgitic mantle and dry fertile mantle beneath the NELSC. The new data do not indicate an inflow of Samoa plume mantle into the NELSC, confirming previously published He isotope data. The NELSC magmas form by mixing of an enriched and a depleted Indian Ocean-type upper mantle end-member implying a highly heterogeneous upper mantle composition in this area. Most NELSC lavas are little affected by a slab component implying that melting is adiabatic beneath the spreading center. The DR lavas show the influence of a component from the subducted Louisville Seamount Chain, which was previously thought to be restricted to the nearby arc volcanoes Niuatoputapu and Tafahi. This signature is rarely detected along the NELSC implying little mixing of melts from the low-viscosity hydrous portion of the mantle wedge beneath the rear-arc volcanoes into the melting region of the dry mantle beneath the NELSC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-04-04
    Description: Warming of the North Atlantic region in climate history often was associated with massive melting of the Greenland Ice Sheet. To identify the meltwater’s impacts and isolate these from internal variability and other global warming factors, we run single-forcing simulations including small ensembles using three complex climate models differing only in their ocean components. In 200-year long pre-industrial climate simulations, we identify robust consequences of abruptly increasing Greenland runoff by 0.05 Sv: sea-level rise of 44±10 cm, subpolar North Atlantic surface cooling of 0.7˚C and a moderate AMOC decline of 1.1–2.0 Sv. The latter two emerge in under three decades—and reverse on the same timescale after the perturbation ends in year 100. The ocean translates the step-change perturbation into a multi-decadal to centennial signature in the deep overturning circulation. In all simulations, internal variability creates notable uncertainty in estimating trends, time of emergence and duration of the response.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-04-08
    Description: Subsurface flows, particularly hyporheic exchange fluxes, driven by streambed topography, permeability, channel gradient and dynamic flow conditions provide prominent ecological services such as nitrate removal from streams and aquifers. Stream flow dynamics cause strongly nonlinear and often episodic contributions of nutrient concentrations in river-aquifer systems. Using a fully coupled transient flow and reactive transport model, we investigated the denitrification potential of hyporheic zones during peak-flow events. The effects of streambed permeability, channel gradient and bedform amplitude on the spatio-temporal distribution of nitrate and dissolved organic carbon in streambeds and the associated denitrification potential were explored. Distinct peak-flow events with different intensity, duration and hydrograph shape were selected to represent a wide range of peak-flow scenarios. Our results indicated that the specific hydrodynamic characteristics of individual flow events largely determine the average positive or negative nitrate removal capacity of hyporheic zones, however the magnitude of this capacity is controlled by geomorphological settings (i.e. channel slope, streambed permeability and bedform amplitude). Specifically, events with longer duration and higher intensity were shown to promote higher nitrate removal efficiency with higher magnitude of removal efficiency in the scenarios with higher slope and permeability values. These results are essential for better assessment of the subsurface nitrate removal capacity under the influence of flow dynamics and particularly peak-flow events in order to provide tailored solutions for effective restoration of interconnected river-aquifer systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-04-12
    Description: Oceanic gabbros are the most abundant rocks close to Earth’s surface. Here we present new data from a consistent profile through the paleocrust of the Samail ophiolite (Oman), which is thought to provide the best analogue for modern fast-spreading oceanic crust. Incompatible trace elements of co-existing plagioclase and clinopyroxene fractionate from the mineral core to rim and up section from layered to foliated to varitextured gabbros. Layered gabbro parental melts correspond to mid-ocean-ridge basalts (MORB), and plagioclase Ca# shows a pronounced inverse zonation. Likely, they crystallized in situ from hydrous melts, compositionally buffered by replenishment at equilibrium to MORB and near steady-state boundary conditions. Further upsection, the compositional variability increases. Foliated gabbro rim and core compositions indicate increased fractionation and disequilibrium to MORB, triggered by open-system fractional crystallization within a heterogeneous magma plumbing structure, characterized by magma mixing, varying ambient water activities, and boundary conditions. Varitextured gabbros are chemically diverse with parental melts partially more primitive than MORB, suggesting that primitive melts directly reach the axial melt lens (AML). REE-in-plagioclase-clinopyroxene thermometry compared to and supported by anorthite-in-plagioclase thermometry reveals a relationship of urn:x-wiley:21699313:media:jgrb55525:jgrb55525-math-0001 [°C]=6.1±0.2*An+706±19. Crystallization temperatures of the layered gabbros cover a narrow range of 1216±14°C. Considerable temperature variability of 1077-1231°C is observed further upsection, featuring a thermal minimum within the foliated gabbros. This minimum is assumed to represent a zone where the fractionated descending crystal mushes originating from the AML meet with evolved liquids expelled from deeper crustal levels. Our findings suggest hybrid accretion of fast-spread crust.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-04-19
    Description: Volcanic island sector collapses have the potential to trigger devastating tsunamis and volcanic eruptions that threaten coastal communities and infrastructure. Considered one of the most hazardous volcano-tectonic regions in the world, the Christiana-Santorini-Kolumbo Volcanic Field (CSKVF) lies in the South Aegean Sea in an active rift zone. Previous studies identified an enigmatic voluminous mass-transport deposit west and east of Santorini emplaced during the early evolution of the edifice. However, the distribution and volume as well as the nature and emplacement dynamics of this deposit remained unknown up to now. In this study, we use an extensive dataset of high-resolution seismic profiles to unravel the distribution and internal architecture of this deposit. We show that it is located in all basins surrounding Santorini and has a bulk volume of up to 125 km3, thus representing the largest known volcanic island mass-transport deposit in the entire Mediterranean Sea. We propose that the deposit is the result of a complex geohazard cascade that was initiated by an intensive rift pulse. This rifting event triggered a series of smaller precursory mass-transport events before large-scale sector collapses occurred on the northeastern flank of the extinct Christiana Volcano and on the southeastern flank of the nascent Santorini. This was followed by the emplacement of large-scale secondary sediment failures on the slopes of Santorini, which transitioned into debris and turbidity flows that traveled far into the neighboring rift basins. Following this cascade, a distinct change in the volcanic behavior of the CSKVF occurred, suggesting a close relationship between crustal extension, mass transport, and volcanism. Cascading geohazards seem to be more common in the evolution of marine volcanic systems than previously appreciated. Wider awareness and a better understanding of cascading effects are crucial for more holistic hazard assessments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-04-21
    Description: Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation. But, what controls the distribution of barium (Ba) in the oceans? Here, we investigated the Arctic Ocean Ba cycle through a one-of-a-kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1 on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean-derived waters and Baffin Bay-derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-04-26
    Description: Whereas fungal symbionts of terrestrial plants are among the most widespread and well-studied symbioses, relatively little is known about fungi that are associated with macroalgae. To fill the gap in marine fungal taxonomy, we combined simple culture methods with amplicon sequencing to characterize the fungal communities associated with three brown (Sargassum muticum, Pelvetia canaliculata, Himanthalia elongata) and two red (Mastocarpus stellatus, Chondrus crispus) macroalgae from one intertidal zone. In addition to characterizing novel fungal diversity, we tested three hypotheses: fungal diversity and community composition vary (i) among species distributed at different tidal heights, (ii) among tissue types (apices, mid-thallus, and stipe), and (iii) among ‘isomorphic’ C. crispus life cycle stages. Almost 70% of our reads were classified as Ascomycota, 29% as Basidiomycota, and 1% that could not be classified to phylum. Thirty fungal isolates were obtained, 18 of which were also detected with amplicon sequencing. Fungal communities differed by host and tissue type. Interestingly, P. canaliculata, a fucoid at the extreme high intertidal, did not show differences in fungal diversity across the thallus. As found in filamentous algal endophytes, fungal diversity varied among the three life cycle stages in C. crispus. Female gametophytes were also compositionally more dispersed as compared to the less variable tetrasporophytes and male gametophytes. We demonstrate the power of combining relatively simple cultivation and sequencing approaches to characterize and study macroalgal-fungal associations and highlight the need to understand the role of fungi in near-shore marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-04-26
    Description: The green seaweed Ulva is a model system to study seaweed–bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed-associated bacteria across the Atlantic–Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva-associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5–8 PSU, known as the transition zone from freshwater to marine conditions). Low-salinity communities especially contained high relative abundances of Luteolibacter, Cyanobium, Pirellula, Lacihabitans and an uncultured Spirosomaceae, whereas high-salinity communities were predominantly enriched in Litorimonas, Leucothrix, Sulfurovum, Algibacter and Dokdonia. We identified a small taxonomic core community (consisting of Paracoccus, Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic–Baltic Sea gradient. Our results contradict earlier statements that Ulva-associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-04-26
    Description: The Amazon forests are one of the largest ecosystem carbon pools on Earth. Although more frequent and prolonged future droughts have been predicted, the impacts have remained largely uncertain, as most land surface models (LSMs) fail to capture the vegetation drought responses. In this study, the ability of the LSM JSBACH to simulate the drought responses of leaf area index (LAI) and leaf litter production in the Amazon forests is evaluated against artificial drought experiments. Based on the evaluation, improvements are implemented, including a dependency of leaf growth on leaf carbon allocation and a better representation of drought-dependent leaf shedding. The modified JSBACH is shown to capture the drought responses at two sites and across different regions of the basin. It is then coupled with an atmospheric model to simulate the carbon and biogeophysical feedbacks of drought under future climate. We separate the drought impacts into (a) the direct effect, resulting from drier soil and stomatal closure, which does not involve a change in canopy structure, and (b) the LAI effect, resulting from leaf shedding and involving canopy response. We show that the latter accounts for 35% of reduced land carbon uptake (9 ± 10 vs. 26 ± 7 g/m2/yr; mean ± 1 sd) and 12% of surface warming (0.09 ± 0.03 vs. 0.7 ± 0.07 K) during the late 21st century. A north-south dipole of precipitation change is found, which is largely attributable to the direct effect. The results highlight the importance of incorporating drought deciduousness of tropical rainforests in LSMs to better simulate land-atmosphere interactions in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-04-25
    Description: Multiyear turbulence measurements from oceanographic moorings in equatorial Atlantic and Pacific cold tongues reveal similarities in deep cycle turbulence (DCT) beneath the mixed layer (ML) and above the Equatorial Undercurrent (EUC) core. Diurnal composites of turbulence kinetic energy dissipation rate, ϵ, clearly show the diurnal cycles of turbulence beneath the ML in both cold tongues. Despite differences in surface forcing, EUC strength and core depth DCT occurs, and is consistent in amplitude and timing, at all three sites. Time-mean values of ϵ at 30 m depth are nearly identical at all three sites. Variations of averaged values of ϵ in the deep cycle layer below 30 m range to a factor of 10 between sites. A proposed scaling in depth that isolates the deep cycle layers and of ϵ by the product of wind stress and current shear collapses vertical profiles at all sites to within a factor of 2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-04-25
    Description: Deep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules. To accommodate for habitat loss, we deployed 〉2000 artificial ceramic nodules to study the possible effect of substrate provision on the recovery of biota and its impact on sediment biogeochemistry. Seventy-five nodules were recovered after eight weeks and had not been colonized by any sessile epifauna. All other nodules will remain on the seafloor for several years before recovery. Furthermore, to account for habitat modification of the top sediment layer, sediment in an epibenthic sledge track was loosened by a metal rake to test the feasibility of sediment decompaction to facilitate soft-sediment recovery. Analyses of granulometry and nutrients one month after sediment decompaction revealed that sand fractions are proportionally lower within the decompacted samples, whereas total organic carbon values are higher. Considering the slow natural recovery rates of deep-sea communities, these experiments represent the beginning of a ~30-year study during which we expect to gain insights into the nature and timing of the development of hard-substrate communities and the influence of nodules on the recovery of disturbed sediment communities. Results will help us understand adverse long-term effects of nodule removal, providing an evidence base for setting criteria for the definition of “serious harm” to the environment. Furthermore, accompanying research is needed to define a robust ecosystem baseline in order to effectively identify restoration success.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-04-29
    Description: In recent decades, the increase in terrestrial inputs to freshwater and coastal ecosystems, especially occurring at northern latitudes, has led to a process of water color darkening known as “brownification.” To assess how brownification affects plankton community composition and functioning in northern coastal areas, an in situ mesocosm experiment using a highly colored humic substance to simulate a brownification event was performed in a North Atlantic bay (Hopavågen, Norway) in August 2019. Manual sampling for analyses of nutrient concentrations, phytoplankton pigments and zooplankton abundances was combined with high-frequency (every 15 min) monitoring of key environmental variables to investigate the response of the plankton community in terms of oxygen metabolism and community composition. In response to brownification, the oxygen gross primary production (GPP) and community respiration (R) slowed down significantly, by almost one-third. However, GPP and R both decreased to the same extent; thus, the oxygen metabolic balance was not affected. Moreover, the chlorophyll-a concentration significantly decreased under brownification, by 9% on average, and the chemotaxonomic pigment composition of the phytoplankton changed, indicating their acclimation to the reduced light availability. In addition, brownification seemed to favor appendicularians, the dominant mesozooplankton group in the mesocosms, which potentially contributed to lowering the phytoplankton biomass. In conclusion, the results of this in situ mesocosm experiment suggest that brownification could induce significant changes in phytoplankton and zooplankton community composition and significantly alter the overall oxygen metabolism of plankton communities in a northern Atlantic bay.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-05
    Description: Blue-green light is known to maximize the degree of fatty acid (FA) unsaturation in microalgae. However, knowledge on the particular waveband responsible for this stimulation of FA desaturation and its impact on the pigment composition in microalgae remains limited. In this study, Acutodesmus obliquus was cultivated for 96 h at 15 degrees C with different light spectra (380-700 nm, 470-700 nm, 520-700 nm, 600-700 nm, and dark controls). Growth was monitored daily, and qualitative characterization of the microalgal FA composition was achieved via gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS). Additionally, a quantitative analysis of microalgal pigments was performed using high-performance liquid chromatography with diode array detection (HPLC-DAD). Spectra that included wavelengths between 470 and 520 nm led to a significantly higher percentage of the polyunsaturated fatty acids (PUFA) 18:3 and 16:4, compared to all other light conditions. However, no significant differences between the red light cultivations and the heterotrophic dark controls were observed for the FA 18:3 and 16:4. These results indicate, that exclusively the blue-green light waveband between 470 and 520 nm is responsible for a maximized FA unsaturation in A. obliquus. Furthermore, the growth and production of pigments were impaired if blue-green light (380-520 nm) was absent in the light spectrum. This knowledge can contribute to achieving a suitable microalgal pigment and FA composition for industrial purposes and must be considered in spectrally selective microalgae cultivation systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...