ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology  (3)
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (3)
  • 04.06. Seismology  (2)
  • Wiley  (7)
Collection
Years
  • 1
    Publication Date: 2024-02-07
    Description: A catalogue of precisely located micro-seismicity is fundamental for investigating seismicity and rock physical properties in active tectonic and volcanic regions and for the definition of a ‘baseline’ seismicity, required for a safe future exploitation of georesource areas. In this study, we produce the first manually revised catalogue of micro-seismicity for Co. Donegal region (Ireland), an area of about 50K M2 of on-going deformation, aimed at localizing natural micro-seismic events occurred between 2012 and 2015. We develop a stochastic method based on a Markov chain Monte Carlo (McMC) sampling approach to compute earthquake hypocentral location parameters. Our results indicates that micro-seismicity is present with magnitudes lower than 2 (the highest magnitude is 2.8).The recorded seismicity is almost clustered along previously mapped NE-SW trending, steeply dipping faults and confined within the upper crust (focal depth less than 10 km). We also recorded anthropogenic seismicity mostly related to quarries' activity in the study area.
    Description: Published
    Description: 62-76
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-25
    Description: We explore the three‐dimensional structure of the 2016–2017 Central Italy sequence using ~34,000 ML ≥ 1.5 earthquakes that occurred between August 2016 and January 2018. We applied cross‐correlation and double‐difference location methods to waveform and parametric data routinely produced at the Italian National Institute of Geophysics and Volcanology. The sequence activated an 80 km long system of normal faults and near‐horizontal detachment faults through the MW 6.0 Amatrice, the MW 5.9 Visso, and the MW 6.5 Norcia mainshocks and aftershocks. The system has an average strike of N155°E and dips 38°–55° southwestward and is segmented into 15–30 km long faults individually activated by the cascade of MW ≥ 5.0 shocks. The two main normal fault segments, Mt. Vettore‐Mt. Bove to the North and Mt. della Laga to the South, are separated by an NNE‐SSW‐trending lateral ramp of the Sibillini thrust, a regional structure inherited from the previous compressional tectonic phase putting into contact diverse lithologies with different seismicity patterns. Space‐time reconstruction of the fault system supports a composite rupture scenario previously proposed for the MW 6.5 Norcia earthquake, where the rupture possibly propagated also along an oblique portion of the Sibillini thrust. This dissected set of normal fault segments is bounded at 8–10 km depth by a continuous 2 km thick seismicity layer of extensional nature slightly dipping eastward and interpreted as a shear zone. All three mainshocks in the sequence nucleated along the high‐angle planes at significant distance from the shear zone, thus complicating the interpretation of the mechanisms driving strain partitioning between these structures.
    Description: Published
    Description: e2019JB018440
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: normal fault ; shear zone ; fault segmentation ; apennines ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Rapid extension and active normal faulting in the western extremity of the Corinth Gulf are accompanied by fast coastal uplift.We investigate Pleistocene uplift west of Aigion, by attempting to date remains of marine terraces and sedimentary sequences by calcareous nannoplankton and U-series analyses. Net uplift initiated recently, due to abandonment of an older rift-bounding fault zone and increase in activity on the presently active, coastal fault zone. This change apparently coincides with an abrupt slow down (or, termination) of secondary fault block tilting within the broader hangingwall block of the older zone, indicated by an angular unconformity that dates in the early part ofMIS10 ( 390–350 ka BP, preferably, in the earlier part of this period). Net uplift driven by the coastal zone resulted in the formation of MIS9c (330 ka) and younger terraces. The formation of the unconformity and the initiation of net uplift coincide temporally with a 300–400 ka unconformity recognized by recent studies in a wide area offshore Aigion i.e. they could be part of an evolutionary event that affected the entirewestern part of the Corinth Rift or, a large area therein. Uplift rate estimates at four locations are discussed with reference to the morphotectonic context of differential uplift of secondary fault blocks, and the context of possible increase in uplift ratewith time. Themost reliable and most useful estimate for uplift rate at the longitude of the studied transect is 1.74–1.85mm/year (time-averaged estimate for the last 240 ka, based on calcareous nannoplankton and sequence-stratigraphic interpretation)
    Description: ‘3HAZ Corinth’ E.U. research project 004043 (GOCE)-3HAZ-Corinth
    Description: Published
    Description: 78 - 104
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: coastal uplift ; marine terraces ; marine sequences ; deformation rate ; Pleistocene ; Corinth Gulf Reef ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the UPb age of detrital zircon and the 40Ar39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence. Copyright © 2010 John Wiley & Sons, Ltd.
    Description: Published
    Description: 288-310
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the U-Pb age of detrital zircon and the 40Ar-39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The elevation of the Capo Vaticano coastal terraces (Tyrrhenian coast, central Calabria) is the combination of regional uplift and repeated coseismic displacement. We subtract the regional uplift from the total uplift (maximum average uplift rates 0.81-0.97 mm/yr since ~0.7 Ma) and obtain a residual fault-related displacement. Then, we model the residual displacement to provide constraints to the location and geometry of the seismogenic source of the 1905 M7 earthquake, the strongest – and still poorly understood – earthquake of the instrumental era in this area. We test four different potential sources for the dislocation modelling and find that 1) three sources are not compatible with the displacement observed along the terraces, and 2) the only source consistent with the local deformation is the 100°-striking Coccorino Fault. We calculate average long-term vertical slip rates of 0.2-0.3 mm/yr on the Coccorino Fault and estimate an average recurrence time of ~one millennium for a 1905-type earthquake
    Description: Published
    Description: 378-389
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: marine terrace ; fault ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...