ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering  (28)
  • beach nourishment  (4)
  • University of Florida, Coastal and Oceanographic Engineering Department  (21)
  • University of Florida Coastal and Oceanographic Engineering Department
  • 1
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainsville, FL
    In:  http://aquaticcommons.org/id/eprint/540 | 3 | 2020-08-24 03:04:56 | 540 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report is the second annual report in a continuing series documenting a fieldproject within the Gulf Islands National Seashore at Perdido Key, Florida. The field projectincludes the monitoring of a number of physical parameters related to the evolution of thePerdido Key beach nourishment project. Approximately 4.1 million m3 of dredge spoilfrom Pensacola Pass were placed upon approximately 7 km of the Gulf of Mexico beachesof Perdido Key between November, 1989, and September, 1990.Beach profile data describing the evolution of the nourished beach are included, aswell as wave, current, tide, wind, temperature, and rainfall data to describe the forces influencingthe evolution. Data describing the sediment sizes throughout the project areaare also included. A brief discussion of the data is included; a more detailed analysis andinterpretation will be presented in the lead author's Ph.D. dissertation. (313 pp.)
    Description: Submitted to: Department of the Navy Southern Division Naval Facilities Engineering Command Charleston, SC 29411-0068
    Keywords: Conservation ; Oceanography ; Engineering ; Beach nourishment ; Sediment transport ; Shoreline response
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/428 | 3 | 2020-08-24 02:56:50 | 428 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: The shoaling and bank erosion at Ponce de Leon channel, Punta Gorda, Florida, havecaused concern of harming the mangrove community along the channel. Three factorswere identified that could contribute to the bank erosion of Ponce channel. Theyare tidal induced current, wind waves penetrating from the Charlotte Harbor, andwakes caused by boat traffic. According to the field experiments and numericalmodeling studies, it was determined that the combined wind wave and tidal currentforce is the major cause to the bank erosion. Wind wave appears to play a moreimportant role because of its dynamic nature. For the present cross-sectionalchannel condition the tidal current alone is only a moderate erosional force.It was also found that reopening the barge canal would cut the tidal currentstrength in the Ponce channel by a half. This current reduction would reduce butnot eliminate bank erosion in the lower reach as the wind-wave induced force willremain to be an important erosional factor.A number of remedial alternatives were given in the report. The most direct methodis to provide bank protection. The extent of the protection depends upon theextent of wind wave penetration which could be as deep as 150 m into the channelunder the present channel entrance condition. (This document has 49 pages. )
    Keywords: Oceanography ; Engineering ; tidal current ; erosion ; channels ; Ponce de Leon channel ; Florida ; mangroves ; Punta Gorda
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/533 | 3 | 2021-02-27 20:20:10 | 533 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report presents results of the experiments of the existing inlet and eightstructural alternatives to the Sebastian Inlet from a movable bed model. It is intendedto find solutions for improvement of boating safety and protection of beaches adjacentto the inlet. Based upon the experimental results from here and the fixed bed modelstudy, which is summarized in Part I report, an optimum structural modification planwas then recommended providing a general frame of improvement scheme.The research in this report was authorized by the Sebastian Inlet District Commissionof September 15, 1989. The University of Florida was notified to proceedon November 14, 1989. The study and report were prepared by the Department ofCoastal and Oceanographic Engineering, University of Florida. Coastal TechnologyCorporation was the technical monitor representing the Sebastian Inlet District. (Document has 109 pages.)
    Keywords: Oceanography ; Engineering ; Planning ; Erosion ; Sediment transport ; Shore erosion ; Structural alternative ; Sebastian Inlet ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/542 | 3 | 2020-08-24 03:05:43 | 542 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report presents results of field measurements and numerical modeling of thehydrodynamic and sedimentary behaviors at a boat lock located in Section 15, BurntStore Isles of Punta Gorda, Florida. The purpose of the study is to establish thequantities of tidal flows through the lock in comparison with the flows bypassing thelock through other outlets between Section 15 and the Alligator Creek. The amountof sediment and pollutant transporting through the lock are also estimated in thestudy. (68 pp.)
    Description: Prepared for City of Punta Gorda, Florida
    Keywords: Engineering ; Boat lock ; flow exchange ; pollutant transport ; Punta Gorda ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    University of Florida Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/212 | 3 | 2020-08-24 02:56:19 | 212 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-27
    Description: This study was carried out to examine the effects of seawalls on the adjacentbeach by three dimensional model test. The results obtained from model test wereanalyzed in terms of volumetric changes and shoreline and hydrographic change toquantify the effects of seawalls.The experiments were carried out in the wave basin of Coastal and OceanographicEngineering department, University of Florida. A model seawall was installedon the test beach (19mxl4m) which was initially molded into equilibriumshapes. During the test, hydrographic surveys were conducted at regular time intervals.The main variable in the experiment is the wave angle. Cases both withand without seawall were tested. (141pp.)
    Description: Sea Grant Project No. R/C-S-26; Grant No. NA86AA-D-SG068
    Keywords: Engineering ; seawalls ; models ; beaches
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/536 | 3 | 2020-08-24 03:04:36 | 536 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This is the first of a pair of reports documenting the effects of storms on barrier island systems.The present report (Volume 1) investigates storm effects on natural island conditions whereasVolume 2 addresses the effects of seawalls. With the aim of simulating the effects of overwashon barrier islands and characterizing their response, a series of nine experiments was conductedat the Coastal Engineering Laboratory of the University of Florida. The barrier island wassimulated by a 400 feet wide (prototype units) horizontal crest and an initially planar (1:19)beach. The effects of various storm surge levels and accompanying overtopping were investigated.Experiments were conducted with both regular and irregular storm waves. Regularwaves without overtopping caused the formation of a substantial berm in the swash zone and aprominent longshore bar offshore. Increasing degrees of overtopping resulted in substantial lossof sand from the barrier island system. The longshore bar was considerably more subtle for thehighest water level tested (11.5 ft. above mean sea level). Simulation of a storm-surge hydrographwith rising and falling water levels indicated that the presence of the bar tends to occuronly during a relatively steady or slowly changing water level. The experiments with irregularwaves were conducted with reasonably similar wave heights and carrier periods as those withregular waves. The major difference was in the characteristics of the longshore bar response. Incomparison with cases with regular waves, the bar was less distinct without overtopping, subtlewith minimal overtopping and absent in cases with substantial overtopping. These experimentsseem to indicate that offshore bars are simply break-point bars which require a fairly steadybreak-point and undertow (return of mass transport) for optimal formation. (Document has 84 pages.)
    Description: Department of Civil and Coastal Engineering, University of Florida
    Description: Prepared for: Beaches and Shores Resource Center Innovation Park, Morgan Building Box 9 2035 East Paul Dirac Drive Tallahassee, Fl 32304
    Keywords: Oceanography ; Engineering ; Earth Sciences ; Barrier Island ; Storm Effects ; Beach Erosion ; Overwash ; Washover
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/541 | 3 | 2020-08-24 03:05:18 | 541 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This is the second of a pair of reports documenting the effects of storms on beach systemsincluding the presence of seawalls. With the aim of simulating the effects of overwash onbarrier islands with seawalls and characterizing their response, a series of eight experimentswas conducted at the Coastal Engineering Laboratory of the University of Florida. The barrierisland was simulated by a 400 feet wide horizontal crest and an initially uniform mildly-sloped(1:19) beach. The effects of positioning the seawall at two different locations as well as the effectsof various storm surge levels and accompanying overtopping were investigated. Experimentswere conducted with both regular and irregular storm waves. With the seawall located at theslope break between the crest and the sloping beach of the barrier island, and the crest of theseawall just submerged in sand, the effects on the sediment transport process were found to beminimal. For the same position of the seawall but with the crest of the seawall raised above thesurrounding ground level, overtopping caused washover of sand indicating substantial transportin suspension. Increased levels of overtopping tended to accentuate bed profile changes butsupress bar formation (as did irregular waves). Positioning the seawall at the Mean Sea Levelshoreline caused significant scour both immediately landward as well as immediately seawardof the seawall. A prominent scour trough developed further seaward. The longshore bar washighly three-dimensional. It appears that seawalls need to be located adequately landward of theshoreline to discharge their function effectively without adverse effect to the beach. In addition,concerns for safety warrant the presence of an adequate buffer-zone between the seawall andthe upland property. (61 pp.)
    Description: Prepared for: Beaches and Shores Resource Center Innovation Park, Morgan Building Box 9 2035 East Paul Dirac Drive Tallahassee, Fl 32304
    Keywords: Oceanography ; Engineering ; Earth Sciences ; Barrier island ; seawalls ; storm effects ; beach erosion ; overwash
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/479 | 3 | 2020-08-24 03:00:10 | 479 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: The objectives of this study were 1) to determine the maximum structure-inducedlocal sediment scour depths for the proposed bridge piers for the Merrill BarberBridge over Indian River on.State Road 60 in Indian River County, Florida and 2) todetermine the feasibility of predicting equilibrium local scour depths near complexmultiple pile bridge piers from bottom shear stresses on the prescoured bed. Aseries of hydrodynamic tests were conducted in a laboratory flume (100 ft long x 8 ftwide x 2 ft deep) where flow velocities near model piers were measured with a twocomponent constant temperature anemometer at a height of 3 mm above the bed. Bottomshear stresses were then estimated from the flow measurements. The piers (which are1/15 scale models of proposed Merrill Barber Bridge piers) consisted of thirtysixsquare piles (3 columns of 12) and a pile cap that was positioned at differentelevations above the bottom. Two different pile cap shapes were also considered. Asimple relationship between the prescoured bottom shear stress and the equilibriumlocal scour depth was postulated.Sediment scour tests were then conducted in the same flume with the samemodels. The average duration of these tests was 28 hours. Scour depths weremeasured periodically throughout these tests using an acoustic transponder. Thescour measurements were used 1) to establish the maximum scour depths for the MerrillBarber Bridge piers and 2) to calibrate and test the scour-shear stress relationship.Even though the range of conditions tested was somewhat limited, the approach appearspromising and should be pursued further. A number of interesting findings were maderegarding the rate at which scour occurs in these complex structures. (Document contains 134 pages.)
    Keywords: Engineering ; Earth Sciences ; scouring ; bridges ; Florida ; Merril P Barber Bridge
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    University of Florida Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/472 | 3 | 2020-08-24 02:58:29 | 472 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: One and two-dimensional, second order turbulence plant canopy flowmodels were developed for the purpose of estimating the effect ofcoastal vegetation on wind blown sand transport. The computer programthat solves the governing differential equations uses measured leafarea density profiles and drag coefficients for crop plants similar inshape and size to the more common coastal vegetation in Florida. (Document has 57 pages.)
    Keywords: Atmospheric Sciences ; Engineering ; Earth Sciences ; coastal vegetation ; dunes ; winds ; sediment transport
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department
    In:  http://aquaticcommons.org/id/eprint/475 | 3 | 2020-08-24 03:09:11 | 475 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: A method of predicting equilibrium scour depths around multiple pile structuresbased on pre-scoured bottom shear stress was developed in this study. It washypothesized that a relationship exists between the pre-scoured bottom shear stress andthe equilibrium scour depth. A series of hydrodynamic tests were conducted in whichnear-bottom flow measurements were made in the vicinity of a variety of multiple pilestructures. The distribution of bottom shear stress was estimated from these flowmeasurements. Scour tests were then made in the same flume using the same structures.A simple relationship between the equilibrium scour depth and the pre-scoured bottomshear stress was formulated and the data from the two sets of experiments were used tocalibrate and test the formulation. The formulation gives reasonable predictions for therange of conditions tested. The approach appears promising as an alternative way of estimating equilibrium local scour depths for complex multiple pile structures. Inaddition, a number of interesting and useful findings were made regarding the rate atwhich a local scour hole forms near complex structures. (Document contains 146 pages.)
    Description: Masters
    Description: UFL/COEL/93/003
    Keywords: Engineering ; Scouring ; models
    Repository Name: AquaDocs
    Type: thesis
    Format: application/pdf
    Format: application/pdf
    Format: 146
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...