ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (41)
  • Engineering  (41)
  • Chemical Engineering
  • University of Florida, Coastal and Oceanographic Engineering Department  (21)
  • Solomons, MD  (15)
  • University of Florida. Department of Coastal and Oceanographic Engineering  (5)
  • 1
    facet.materialart.
    Unknown
    University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/4861 | 130 | 2011-09-29 15:47:49 | 4861 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-06
    Description: The possible ecological effects of suspended sediments are manifold. Briefly, suspended sediments may cause an increased surface for microorganism growth, fewer temperature fluctuations, chemical adsorption orabsorption, blanketing, mechanical-abrasive actions, and light penetration reduction (Cairns, 1968). Sherk and Cronin (1970) have pointed out that the above effects have been little studied in the estuarine environment. The ecological effects of suspended sediments on fish eggs and larvae may be of prime importance t o the C and D Canal area, an important spawning and primary nursery area for a variety of estuary: e species (Johnson,1972). This section discusses the effects of suspended sediment on the eggs and larvae of striped bass and white perch.
    Description: Army Corps of Engineers, Philadelphia District
    Keywords: Conservation ; Ecology ; Engineering ; Fisheries ; Chesapeake ; Canal ; Natural Resources Institute ; Striped Bass ; White Perch ; Delaware
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/428 | 3 | 2020-08-24 02:56:50 | 428 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: The shoaling and bank erosion at Ponce de Leon channel, Punta Gorda, Florida, havecaused concern of harming the mangrove community along the channel. Three factorswere identified that could contribute to the bank erosion of Ponce channel. Theyare tidal induced current, wind waves penetrating from the Charlotte Harbor, andwakes caused by boat traffic. According to the field experiments and numericalmodeling studies, it was determined that the combined wind wave and tidal currentforce is the major cause to the bank erosion. Wind wave appears to play a moreimportant role because of its dynamic nature. For the present cross-sectionalchannel condition the tidal current alone is only a moderate erosional force.It was also found that reopening the barge canal would cut the tidal currentstrength in the Ponce channel by a half. This current reduction would reduce butnot eliminate bank erosion in the lower reach as the wind-wave induced force willremain to be an important erosional factor.A number of remedial alternatives were given in the report. The most direct methodis to provide bank protection. The extent of the protection depends upon theextent of wind wave penetration which could be as deep as 150 m into the channelunder the present channel entrance condition. (This document has 49 pages. )
    Keywords: Oceanography ; Engineering ; tidal current ; erosion ; channels ; Ponce de Leon channel ; Florida ; mangroves ; Punta Gorda
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department
    In:  http://aquaticcommons.org/id/eprint/478 | 3 | 2020-08-24 02:59:47 | 478 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: Abstract of Thesis Presented to the Graduate Schoolof the University of Florida in Partial Fulfillment of theRequirements for the Degree of Master of EngineeringVIDEO MONITORING TECHNIQUES IN THECOASTAL ENVIRONMENTByThe field of coastal engineering has primarily utilized traditional measurementtechniques such as boat surveys and beach profiles. Aerial photography has played amajor role in the mapping of coastlines and ocean currents. More recent technology hasprovided the ability to make field measurements with precision electronicinstrumentation, but the problem of making large-scale measurements within economicbounds remains. The video revolution and, in particular, desktop video has greatlyenhanced the ability of scientists and engineers to visualize events over greater periods oftime and larger scales than ever before.The uses of video, benefits, shortcomings, and future expectations are presentedas applicable to the field of coastal engineering. This feasibility study incorporates someapplications which have previously been explored, as well as others which result fromtwo unique video data sets that were collected between 1991 and the present.
    Description: Masters
    Description: UFL/COEL/93/006
    Keywords: Oceanography ; Engineering ; Earth Sciences ; coastal changes ; video monitoring
    Repository Name: AquaDocs
    Type: thesis
    Format: application/pdf
    Format: application/pdf
    Format: 105
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department
    In:  http://aquaticcommons.org/id/eprint/475 | 3 | 2020-08-24 03:09:11 | 475 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: A method of predicting equilibrium scour depths around multiple pile structuresbased on pre-scoured bottom shear stress was developed in this study. It washypothesized that a relationship exists between the pre-scoured bottom shear stress andthe equilibrium scour depth. A series of hydrodynamic tests were conducted in whichnear-bottom flow measurements were made in the vicinity of a variety of multiple pilestructures. The distribution of bottom shear stress was estimated from these flowmeasurements. Scour tests were then made in the same flume using the same structures.A simple relationship between the equilibrium scour depth and the pre-scoured bottomshear stress was formulated and the data from the two sets of experiments were used tocalibrate and test the formulation. The formulation gives reasonable predictions for therange of conditions tested. The approach appears promising as an alternative way of estimating equilibrium local scour depths for complex multiple pile structures. Inaddition, a number of interesting and useful findings were made regarding the rate atwhich a local scour hole forms near complex structures. (Document contains 146 pages.)
    Description: Masters
    Description: UFL/COEL/93/003
    Keywords: Engineering ; Scouring ; models
    Repository Name: AquaDocs
    Type: thesis
    Format: application/pdf
    Format: application/pdf
    Format: 146
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/535 | 3 | 2020-08-24 03:04:05 | 535 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report presents results of field measurements and numerical modeling of thehydrodynamic and sedimentary behaviors at a boat lock located in Section 15, BurntStore Isles of Punta Gorda, Florida. The purpose of the study is to establish thequantities of tidal flows through the lock in comparison with the flows bypassing thelock through other outlets between Section 15 and the Alligator Creek. The amountof sediment and pollutant transporting through the lock are also estimated in thestudy. (Document has 68 pages.)
    Keywords: Engineering ; Environment ; Punta Gorda ; Florida ; canals ; Alligator Creek ; Flow exchange ; Boat lock ; Pollutant transport
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/536 | 3 | 2020-08-24 03:04:36 | 536 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This is the first of a pair of reports documenting the effects of storms on barrier island systems.The present report (Volume 1) investigates storm effects on natural island conditions whereasVolume 2 addresses the effects of seawalls. With the aim of simulating the effects of overwashon barrier islands and characterizing their response, a series of nine experiments was conductedat the Coastal Engineering Laboratory of the University of Florida. The barrier island wassimulated by a 400 feet wide (prototype units) horizontal crest and an initially planar (1:19)beach. The effects of various storm surge levels and accompanying overtopping were investigated.Experiments were conducted with both regular and irregular storm waves. Regularwaves without overtopping caused the formation of a substantial berm in the swash zone and aprominent longshore bar offshore. Increasing degrees of overtopping resulted in substantial lossof sand from the barrier island system. The longshore bar was considerably more subtle for thehighest water level tested (11.5 ft. above mean sea level). Simulation of a storm-surge hydrographwith rising and falling water levels indicated that the presence of the bar tends to occuronly during a relatively steady or slowly changing water level. The experiments with irregularwaves were conducted with reasonably similar wave heights and carrier periods as those withregular waves. The major difference was in the characteristics of the longshore bar response. Incomparison with cases with regular waves, the bar was less distinct without overtopping, subtlewith minimal overtopping and absent in cases with substantial overtopping. These experimentsseem to indicate that offshore bars are simply break-point bars which require a fairly steadybreak-point and undertow (return of mass transport) for optimal formation. (Document has 84 pages.)
    Description: Department of Civil and Coastal Engineering, University of Florida
    Description: Prepared for: Beaches and Shores Resource Center Innovation Park, Morgan Building Box 9 2035 East Paul Dirac Drive Tallahassee, Fl 32304
    Keywords: Oceanography ; Engineering ; Earth Sciences ; Barrier Island ; Storm Effects ; Beach Erosion ; Overwash ; Washover
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/533 | 3 | 2021-02-27 20:20:10 | 533 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report presents results of the experiments of the existing inlet and eightstructural alternatives to the Sebastian Inlet from a movable bed model. It is intendedto find solutions for improvement of boating safety and protection of beaches adjacentto the inlet. Based upon the experimental results from here and the fixed bed modelstudy, which is summarized in Part I report, an optimum structural modification planwas then recommended providing a general frame of improvement scheme.The research in this report was authorized by the Sebastian Inlet District Commissionof September 15, 1989. The University of Florida was notified to proceedon November 14, 1989. The study and report were prepared by the Department ofCoastal and Oceanographic Engineering, University of Florida. Coastal TechnologyCorporation was the technical monitor representing the Sebastian Inlet District. (Document has 109 pages.)
    Keywords: Oceanography ; Engineering ; Planning ; Erosion ; Sediment transport ; Shore erosion ; Structural alternative ; Sebastian Inlet ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/534 | 3 | 2020-08-24 03:03:47 | 534 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This thesis examines the historical shoreline response to inlet modifications and sealevel rise. Inlet modifications are considered to be the geographic stabilization and training(through the use of structures) of natural inlets and the creation and further modification ofartificial inlets. Shoreline response to natural and artificial processes must be understood inorder to predict the performance of the coastline. The tendency for creating and modifyinginlets increases as industry and population growth demands. Sea level rise is a natural processwhich cannot be controlled at this time. Current theoretical approaches to predictingshoreline response indicate that sea level rise and inlet modifications can cause substantialshoreline impact. Florida, with roughly a century of shoreline position and relative sea leveldata, provides a basis for examining past trends and comparing them with theory.The shoreline of Florida was found to be accreting with the greatest accretion alongthe east coast. Shoreline responses within the boundaries of the erosional influence of inletsdue to their creation and/or modification were examined for 19 inlets around the coast ofFlorida. The differences in the shoreline response before and after the initial modification ofeach inlet show the erosional strain that inlets apply on the nearby shoreline. The effect onshoreline response due to the human intervention (unnatural processes) of modifying inletswas isolated and examined. The shoreline response due to this "human intervention" was erosional, thereby showing the negative impact that modified inlets have on shorelines. Thisinduced erosion is responsible for the loss of roughly 21.6 million cubic yards of sand from theshoreline that is within the erosional influence of Florida's east coast inlets. Combining theshoreline changes due only to natural processes with sea level rise data allows for comparisonwith the commonly accepted Bruun Rule for shoreline response as a result of a changingsea level. This comparison and the effects of including a lag time between a rise in sea leveland a change in shoreline along the east coast of Florida during the last century show noagreement with the Bruun Rule and no correlation with a specific lag time. (Document has 153 pages.)
    Keywords: Oceanography ; Engineering ; Earth Sciences ; Coasts ; Sea level changes ; Coastal inlets ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/541 | 3 | 2020-08-24 03:05:18 | 541 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This is the second of a pair of reports documenting the effects of storms on beach systemsincluding the presence of seawalls. With the aim of simulating the effects of overwash onbarrier islands with seawalls and characterizing their response, a series of eight experimentswas conducted at the Coastal Engineering Laboratory of the University of Florida. The barrierisland was simulated by a 400 feet wide horizontal crest and an initially uniform mildly-sloped(1:19) beach. The effects of positioning the seawall at two different locations as well as the effectsof various storm surge levels and accompanying overtopping were investigated. Experimentswere conducted with both regular and irregular storm waves. With the seawall located at theslope break between the crest and the sloping beach of the barrier island, and the crest of theseawall just submerged in sand, the effects on the sediment transport process were found to beminimal. For the same position of the seawall but with the crest of the seawall raised above thesurrounding ground level, overtopping caused washover of sand indicating substantial transportin suspension. Increased levels of overtopping tended to accentuate bed profile changes butsupress bar formation (as did irregular waves). Positioning the seawall at the Mean Sea Levelshoreline caused significant scour both immediately landward as well as immediately seawardof the seawall. A prominent scour trough developed further seaward. The longshore bar washighly three-dimensional. It appears that seawalls need to be located adequately landward of theshoreline to discharge their function effectively without adverse effect to the beach. In addition,concerns for safety warrant the presence of an adequate buffer-zone between the seawall andthe upland property. (61 pp.)
    Description: Prepared for: Beaches and Shores Resource Center Innovation Park, Morgan Building Box 9 2035 East Paul Dirac Drive Tallahassee, Fl 32304
    Keywords: Oceanography ; Engineering ; Earth Sciences ; Barrier island ; seawalls ; storm effects ; beach erosion ; overwash
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/542 | 3 | 2020-08-24 03:05:43 | 542 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report presents results of field measurements and numerical modeling of thehydrodynamic and sedimentary behaviors at a boat lock located in Section 15, BurntStore Isles of Punta Gorda, Florida. The purpose of the study is to establish thequantities of tidal flows through the lock in comparison with the flows bypassing thelock through other outlets between Section 15 and the Alligator Creek. The amountof sediment and pollutant transporting through the lock are also estimated in thestudy. (68 pp.)
    Description: Prepared for City of Punta Gorda, Florida
    Keywords: Engineering ; Boat lock ; flow exchange ; pollutant transport ; Punta Gorda ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3112 | 130 | 2011-09-29 17:51:50 | 3112 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The ACT workshop "Enabling Sensor Interoperability" addressed the need for protocols at thehardware, firmware, and higher levels in order to attain instrument interoperability within and betweenocean observing systems. For the purpose of the workshop, participants spoke in tern of "instruments" rather than "sensors," defining an instrument as a device that contains one or more sensors or actuators and can convert signals from analog to digital.An increase in the abundance, variety, and complexity of instruments and observing systems suggeststhat effective standards would greatly improve "plug-and-work" capabilities. However, there are few standards or standards bodies that currently address instrument interoperability and configuration.Instrument interoperability issues span the length and breadth of these systems, from the measurementto the end user, including middleware services. There are three major components of instrumentinteroperability including physical, communication, and application/control layers. Participantsidentified the essential issues, current obstacles, and enabling technologies and standards,then came up with a series of short and long term solutions.The top three recommended actions, deemed achievable within 6 months of the release of thisreport are:A list of recommendations for enabling instrument interoperability should be put togetherand distributed to instrument developers.A recommendation for funding sources to achieve instrument interoperability should bedrafted. Funding should be provided (for example through NOPP or an IOOS request forproposals) to develop and demonstrate instrument interoperability technologies involvinginstrument manufacturers, observing system operators, and cyberinfrastructure groups.Program managers should be identified and made to understand that milestones for achievinginstrument interoperability include a) selection of a methodology for uniquely identifyingan instrument, b) development of a common protocol for automatic instrumentdiscovery, c) agreement on uniform methods for measurements, d) enablement of end usercontrolled power cycling, and e) implementation of a registry component for IDS and attributes.The top three recommended actions, deemed achievable within S years of the release of this reportare:An ocean observing interoperability standards body should be established that addresses standards for a) metadata, b) commands, c) protocols, d) processes, e) exclusivity, and f)naming authorities.[PDF contains 48 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3115 | 130 | 2011-09-29 17:52:01 | 3115
    Publication Date: 2021-07-01
    Description: The co-organized Alliance for Coastal Technologies (ACT) and National Data Buoy Center (NDBC)Workshop "Meteorological Buoy Sensors Workshop" convened in Solomons, Maryland, April 19to 21,2006, sponsored by the University of Maryland Center for Environmental Science (UMCES)Chesapeake Bay Laboratory (CBL), an ACT partner institution. Participants from various sectorsincluding resource managers and industry representatives collaborated to focus on technologies andsensors that measure the near surface variables of wind speed and direction, barometric pressure,humidity and air temperature. The vendor list was accordingly targeted at companies that producedthese types of sensors. The managers represented a cross section of federal, regional and academicmarine observing interests from around the country. Workshop discussions focused on the challengesassociated with making marine meteorological observations in general and problems that werespecific to a particular variable. Discussions also explored methods to mitigate these challengesthrough the adoption of best practices, improved technologies and increased standardization. Someof the key workshop outcomes and recommendations included:0cean.US should establish a committee devoted to observations. The committee wouldhave a key role in developing observing standards.The community should adopt the target cost, reliability and performance standards draftedfor a typical meteorological package to be used by a regional observing system.A forum should be established to allow users and manufacturers to share best practicesfor the employment of marine meteorological sensors. The ACT website would host theforum.Federal activities that evaluate meteorological sensors should make their results publiclyavailable.ACT should extend their evaluation process to include meteorological sensors.A follow on workshop should be conducted that covers the observing of meteorologicalvariables not addressed by this workshop. (pdf contains 18 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3114 | 130 | 2011-09-29 17:51:58 | 3114 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore themost appropriate approaches to estimating mass loading; and 3) evaluate the current status of thesensor technology. To meet these objectives, a mixture of leading research scientists, resourcemanagers, and industry representatives were brought together for a focused two-day workshop.The workshop featured four plenary talks followed by breakout sessions in which arranged groupsof participants where charged to respond to a series of focused discussion questions.At present, there are major concerns about the inadequacies in approaches and technologies forquantifying mass emissions and detection of organic contaminants for protecting municipal watersupplies and receiving waters. Managers use estimates of land-based contaminant loadings torivers, lakes, and oceans to assess relative risk among various contaminant sources, determinecompliance with regulatory standards, and define progress in source reduction. However, accuratelyquantifying contaminant loading remains a major challenge. Loading occurs over a range ofhydrologic conditions, requiring measurement technologies that can accommodate a broad rangeof ambient conditions. In addition, in situ chemical sensors that provide a means for acquiringcontinuous concentration measurements are still under development, particularly for organic contaminantsthat typically occur at low concentrations. Better approaches and strategies for estimatingcontaminant loading, including evaluations of both sampling design and sensor technologies,need to be identified. The following general recommendations were made in an effort to advancefuture organic contaminant monitoring:1. Improve the understanding of material balance in aquatic systems and the relationship betweenpotential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents.2. Develop continuous real-time sensors to be used by managers as screening measures and triggersfor more intensive monitoring.3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM,turbidity, or non-equilibrium partitioning.4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminantsof concern and develop strategies that couple sampling approaches with tools that incorporatesensor synergy (i.e., measure appropriate surrogates along with the dissolved organics toallow full mass emission estimation).[PDF contains 20 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Earth Sciences ; Environment ; Chemistry
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3123 | 130 | 2011-09-29 17:52:46 | 3123 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: (pdf contains 23 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3118 | 130 | 2011-09-29 17:52:37 | 3118 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen MeasurementsRoutine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. Thisevent was sponsored by the University of South Florida (USF) College of Marine Science, anACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks(ORION). Participants from researcldacademia, resource management, industry, and engineeringsectors collaborated with the aim to foster ideas and information on how to make measuringdissolved oxygen a routine part of a coastal or open ocean observing system.Plans are in motion to develop large scale ocean observing systems as part of the US IntegratedOcean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative(001; see http://www.orionprogram.org/00I/default.hl). These systems will require biologicaland chemical sensors that can be deployed in large numbers, with high reliability, and forextended periods of time (years). It is also likely that the development cycle for new sensors issufficiently long enough that completely new instruments, which operate on novel principles,cannot be developed before these complex observing systems will be deployed. The most likelypath to development of robust, reliable, high endurance sensors in the near future is to movethe current generation of sensors to a much greater degree of readiness. The ACT OxygenSensor Technology Evaluation demonstrated two important facts that are related to the need forsensors. There is a suite of commercially available sensors that can, in some circumstances,generate high quality data; however, the evaluation also showed that none of the sensors were ableto generate high quality data in all circumstances for even one month time periods due tobiofouling issues.Many groups are attempting to use oxygen sensors in large observing programs; however, thereoften seems to be limited communication between these groups and they often do not have accessto sophisticated engineering resources. Instrument manufacturers also do not have sufficientresources to bring sensors, which are marketable, but of limited endurance or reliability, to ahigher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bringtogether a group of experienced oceanographers who are now deploying oxygen sensors inextended arrays along with a core of experienced and interested academic and industrialengineers, and manufacturers. The intended direction for this workshop was for this group toexchange information accumulated through a variety of sensor deployments, examine failuremechanisms and explore a variety of potential solutions to these problems. One anticipatedoutcome was for there to be focused recommendations to funding agencies on development needsand potential solutions for 02 sensors. (pdf contains 19 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/469 | 3 | 2020-08-24 03:07:24 | 469 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: Current plant canopy wind flow models require three aerodynamic parametersto predict the effects of wind on sand transport--the plant drag coefficient, Cd, the leafarea density profile, LAD, and the turbulent eddy transfer coefficient, 6,. The LADand Cd characterize the plant canopy and its effects on air flow and, prior to thisstudy, data on these parameters for dune vegetation did not exist. The purpose of thisstudy was to design and test a methodology for measuring the wind drag coefficient ofcoastal dune plants. The objectives were 1) to measure and record the parametersneeded to calculate Cd, namely, the force, relative velocity and air temperature; 2) tomeasure the leaf area density of sea-oats; 3) to validate the method by measuring thequantities needed to compute the drag coefficient for a right circular data exists; and 4) to explore the Reynolds number dependence of the canopy dragcoefficient. (This document has 76 pages.)
    Description: Masters
    Description: UFL/COEL/92/017
    Keywords: Engineering ; Environment ; sea oats ; Uniola paniculata ; aerodynamic drag ; winds ; coastal vegetation
    Repository Name: AquaDocs
    Type: thesis
    Format: application/pdf
    Format: application/pdf
    Format: 76
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/468 | 3 | 2020-08-24 02:57:37 | 468 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: The following report presents wave data collected at two near shore locations off Hollywood Beach, Florida beginning inJanuary 1990 and ending May 1992. The methods used to collect and analyze the data are also presented. Significant waveheight, peak wave period, and peak wave direction are presented in time series plots, and summarized monthly in tables.Appendices include the time series plots, wave roses of each deployment period, an overall wave rose for each site and adiskette of the data in ASCII format. (Document has 68 pages; diskette lacking.)
    Keywords: Oceanography ; Engineering ; waves ; Florida ; Hollywood Beach
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department
    In:  http://aquaticcommons.org/id/eprint/470 | 3 | 2020-08-24 03:08:32 | 470 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: With the rapid growth and development of barrier islands, understanding the long-termstability of these islands is an integral part of future coastal planning. The overwash process isthe largest influence on the long-term stability of these islands and thus a correspondingunderstanding is of major importance. A laboratory experiment was undertaken to physicallymodel the wave and current forcing as they pertain to the overwash process. The physical modelwas subjected to various storm conditions common to the occurrence of the overwash.Combinations of wave height, wave period, and overwash depth were tested in an attempt toisolate the significant parameters. Water surface gradients were also applied to observe theirinfluence on the overwash process. Wave height, current, and bed profile measurements weretaken at different locations throughout the tank. In addition, wave height transformationmodeling and mean current prediction were performed and compared to the laboratory results inan attempt to model the overwash process through computer simulations.The experimental results demonstrate that the water surface gradient is the mechanismfor transporting large quantities of sand on to and over barrier islands. In addition, two otherconclusions were drawn about the overwash process: 1) the overwash depth plays an importantrole in determining the overwash velocity and hence the amount of sand deposited on the barrierisland. 2) There seems to exist a correlation between the strength of the return flow and barformation.It was also determined that modeling the wave height transformation during the overwashprocess is possible if the model is expressly written for the overwash process and not for nonoverwashingcases. The method utilized to predict the mean currents during overwash was notable to predict their strength but was able to substantiate the correlation between return flow andbar formation. As a result of overwash, the increased shoreward mass transport and reducedreturn flow in the water column are able to initiate and sustain a shoreward sediment transport.Finally, it was concluded that in all likelihood only "significant" overwash events affect the longtermstability of the barrier islands.
    Description: Masters
    Description: UFL/COEL/92/018
    Keywords: Oceanography ; Engineering ; Earth Sciences ; barrier islands ; overwash ; modeling ; beach erosion ; ocean waves
    Repository Name: AquaDocs
    Type: thesis
    Format: application/pdf
    Format: application/pdf
    Format: 132
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/471 | 3 | 2020-08-24 02:58:12 | 471 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: This report is to document the programs my colleague and I developed for computingtime-dependent nearshore hydrographic changes including beach profile responses.The time scale of the model is suitable for storm events to seasonalchanges, currently up to one year period. The model is very stable and is capableof handling complicated topographies including inlets and irregularly-shapedstructures such as curved jetties and breakwaters.The purpose of three-dimensional models is to predict the change of bottomtopography from the spatial distribution of the sediment transport rates, which areevaluated from the nearshore wave and current fields computed point by point insmall areas defined by a horizontal grid placed over the region of interest. Modelsof 3-D beach topography change require much fewer idealizations than do the linemodels. (Document has 43 pages.)
    Keywords: Oceanography ; Engineering ; Earth Sciences ; Coast changes ; models ; nearshore currents
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/474 | 3 | 2020-08-24 02:59:04 | 474 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: This data report contains measurements of turbidity obtained near Hollywood,Florida, during the period of January 1990 to April 1992. Data were obtainedwithin one meter of the seabed in depths of 5 m and 10 m. Turbidity was found tovary significantly under natural conditions, with values during storms sometimesexceeding 29 NTU. Tables and plots of turbidity data are presented. (Document contains 77 pages.)
    Description: Florida Sea Grant College Program
    Keywords: Oceanography ; Engineering ; beach nourishment ; Hollywood ; Florida ; turbidity
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/477 | 3 | 2020-08-24 02:59:30 | 477 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report is the third annual report in a continuing series documenting a field projectwithin the Gulf Islands National Seashore at Perdido Key, Florida. The field project includesthe monitoring of a number of physical parameters related to the evolution of the Perdido Keybeach nourishment project. Approximately 4.1 million m3 of dredge spoil from Pensacola Passwere placed upon approximately 7 km of the Gulf of Mexico beaches and 3 million m3 offshoreof Perdido Key between November, 1989, and October, 1991.Beach profile data describing the evolution of the nourished beach are included, as wellas wave, current, tide, wind, temperature, and rainfall data to describe the forces influencingthe evolution. Data describing the sediment sizes throughout the project area are also included. A brief discussion of the data is included with an emphasis on evolution of the beach andoffshore nourishment. (Document contains 249 pages.)
    Description: Department of the Navy, Southern Division, Naval Facilities Engineering Command
    Keywords: Conservation ; Engineering ; Beach nourishment ; Sediment transport ; Perdido Key ; Florida ; Gulf Islands National Seashore
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3106 | 130 | 2011-09-29 17:51:19 | 3106 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating PlatformsAs Tools for Mapping Coastal Processes and Water Quality Assessment was convenedFebruary 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-PacificCoast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshopwas co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLMLMarine Operations). Invited participants were selected to provide a uniform representation of theacademic researchers, private sector product developers, and existing and potential data productusers from the resource management community to enable development of broad consensus opinionson the application of TUV platforms in coastal resource assessment and management.The workshop was organized to address recognized limitations of point-based monitoring programs,which, while providing valuable data, are incapable of describing the spatial heterogeneityand the extent of features distributed in the bulk solution. This is particularly true as surveysapproach the coastal zone where tidal and estuarine influences result in spatially and temporallyheterogeneous water masses and entrained biological components. Aerial or satellite based remotesensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no informationregarding the third dimension of these features. Towed vehicles offer a cost-effectivesolution to this problem by providing platforms, which can sample in the horizontal, vertical, andtime-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platformsfor event-response characterization. This workshop reviewed the current status of towed vehicletechnology focusing on limitations of depth, data telemetry, instrument power demands, and shiprequirements in an attempt to identify means to incorporate such technology more routinely inmonitoring and event-response programs. Specifically, the participants were charged to addressthe following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUVplatforms are used and how they can assist coastal managers in fulfilling their regulatory and managementresponsibilities; (3) Identify barriers and challenges to the application of TUV technologiesin management and research activities, and (4) Recommend a series of community actions toovercome identified barriers and challenges.A series of plenary presentation were provided to enhance subsequent breakout discussions bythe participants. Dave Nelson (University of Rhode Island) provided extensive summaries andreal-world assessment of the operational features of a variety of TUV platforms available in theUNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification ofTUV to provide a novel sampling platform for high resolution mapping of chemical distributionsin near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) providedan overview on the deployment of specialized towed vehicles equipped with rugged continuousplankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplanktoncommunity structure, enhancing our understanding of trends in secondary production in the upperocean. [PDF contains 32 pages]
    Description: NOAA
    Keywords: Engineering ; Environment ; Planning
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3111 | 130 | 2011-09-29 17:51:47 | 3111 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT.An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters.In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop.This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3120 | 130 | 2011-09-29 17:52:40 | 3120 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: A three day workshop on turbidity measurements was held at the Hawaii Institute of MarineBiology from August 3 1 to September 2, 2005. The workshop was attended by 30 participantsfrom industry, coastal management agencies, and academic institutions. All groups recognizedcommon issues regarding the definition of turbidity, limitations of consistent calibration, and thelarge variety of instrumentation that nominally measure "turbidity." The major recommendations,in order of importance for the coastal monitoring community are listed below:1. The community of users in coastal ecosystems should tighten instrument designconfigurations to minimize inter-instrument variability, choosing a set of specificationsthat are best suited for coastal waters. The IS0 7027 design standard is not tight enough.Advice on these design criteria should be solicited through the ASTM as well as Federaland State regulatory agencies representing the majority of turbidity sensor end users.Parties interested in making turbidity measurements in coastal waters should developdesign specifications for these water types rather than relying on design standards madefor the analysis of drinking water.2. The coastal observing groups should assemble a community database relating output ofspecific sensors to different environmental parameters, so that the entire community ofusers can benefit from shared information. This would include an unbiased, parallel studyof different turbidity sensors, employing a variety of designs and configuration in thebroadest range of coastal environments.3. Turbidity should be used as a measure of relative change in water quality rather than anabsolute measure of water quality. Thus, this is a recommendation for managers todevelop their own local calibrations. See next recommendation.4. If the end user specifically wants to use a turbidity sensor to measure a specific waterquality parameter such as suspended particle concentration, then direct measurement ofthat water quality parameter is necessary to correlate with 'turbidity1 for a particularenvironment. These correlations, however, will be specific to the environment in whichthey are measured. This works because there are many environments in which watercomposition is relatively stable but varies in magnitude or concentration. (pdf contains 22 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Oceanography ; Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/479 | 3 | 2020-08-24 03:00:10 | 479 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: The objectives of this study were 1) to determine the maximum structure-inducedlocal sediment scour depths for the proposed bridge piers for the Merrill BarberBridge over Indian River on.State Road 60 in Indian River County, Florida and 2) todetermine the feasibility of predicting equilibrium local scour depths near complexmultiple pile bridge piers from bottom shear stresses on the prescoured bed. Aseries of hydrodynamic tests were conducted in a laboratory flume (100 ft long x 8 ftwide x 2 ft deep) where flow velocities near model piers were measured with a twocomponent constant temperature anemometer at a height of 3 mm above the bed. Bottomshear stresses were then estimated from the flow measurements. The piers (which are1/15 scale models of proposed Merrill Barber Bridge piers) consisted of thirtysixsquare piles (3 columns of 12) and a pile cap that was positioned at differentelevations above the bottom. Two different pile cap shapes were also considered. Asimple relationship between the prescoured bottom shear stress and the equilibriumlocal scour depth was postulated.Sediment scour tests were then conducted in the same flume with the samemodels. The average duration of these tests was 28 hours. Scour depths weremeasured periodically throughout these tests using an acoustic transponder. Thescour measurements were used 1) to establish the maximum scour depths for the MerrillBarber Bridge piers and 2) to calibrate and test the scour-shear stress relationship.Even though the range of conditions tested was somewhat limited, the approach appearspromising and should be pursued further. A number of interesting findings were maderegarding the rate at which scour occurs in these complex structures. (Document contains 134 pages.)
    Keywords: Engineering ; Earth Sciences ; scouring ; bridges ; Florida ; Merril P Barber Bridge
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    University of Florida. Department of Coastal and Oceanographic Engineering | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/493 | 3 | 2020-08-24 03:01:09 | 493 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: Covers the engineering aspects of beach nourishment.(Document is 192 pages)
    Keywords: Oceanography ; Engineering ; Beach nourishment ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    University of Florida. Department of Coastal and Oceanographic Engineering | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/496 | 3 | 2020-08-24 03:02:24 | 496 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report presents the results of laboratory studies which were carried out in the Coastaland Oceanographical Engineering Laboratory to investigate the effects of ground water tableelevations on the beach profile changes over the swash zone. The experiment was conducted atthree different water table levels while the other experimental conditions were fixed to constantvalues with regular waves. The water table levels included (1) normal water table level whichis the same as mean sea level, (2) a higher level and (3) a lower level than the mean sealevel. Special attention was given to the higher water level to investigate whether this levelenhances erosion of the beach face and also to methods of interpreting the experimental data.The experiment described herein was carried out with a fairly fine sand and has demonstratedthe significance of beach water table on profile dynamics. The increased water table levelcaused distinct effects in three definite zones. First, erosion occurred at the base of the beachface and the sand eroded was carried up and deposited on the upper portion of the beachface. Secondly, the bar trough deepened considerably and rapidly and the eroded sand wasdeposited immediately landward. This depositional area changed from mildly erosional tostrongly depositional. Third, the area seaward of the bar eroded with a substantial deepening.The lowered water table appeared to result in a much more stable beach and the resultingeffects were much less. The only noticeable trend was a limited deposition in the scour area atthe base of the beach face. (Document has 37 pages.)
    Keywords: Oceanography ; Limnology ; Engineering ; Earth Sciences ; Beach erosion ; ground water
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    University of Florida. Department of Coastal and Oceanographic Engineering | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/495 | 3 | 2020-08-24 03:01:50 | 495 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: The focus of this study was the flow patterns of a flood tide near an inlet. The objectiveswere to examine flood flow patterns with particular reference to non-uniform or selectivewithdrawal as influenced by bottom topography and longshore currents, and to test theapplicability of conceptually simple analytic solutions to realistic sandy inlet bottom topographies,which often include an ebb shoal. Specifically, the applicability of three analytic solutions, twoof which include offshore selective withdrawal, to modeling of tidal water withdrawal duringflood tide under variable bottom topography and varying ratios of longshore current to inletvelocity, was examined. The three analytic solutions, including those for a horizontal (flat)bottom, a linearly sloping bottom and a logarithmically sloping bottom, together with a uniformlongshore current, were derived using potential flow theory. These solutions exhibit uniformlydistributed flows, selective offshore withdrawal, or an exaggerated offshore withdrawal,respectively, depending on the bottom slope. In order to investigate the flow patterns that exist during flood flow at a real inlet, experiments were conducted in a fixed bed hydrodynamic modelof Jupiter Inlet, Florida. Measurements were made to determine streamlines and velocities. Afield study at the prototype also tracked drogue patterns to determine streamlines and velocities.The physical model tests compared well with the field data. Comparison of thelaboratory and field data was then made to the analytic solutions to determine whether thetopography at Jupiter Inlet, which includes a well-developed ebb shoal, simulates a flat, meanlinearly or logarithmically sloping bottom. By comparing velocities at six selected points, asignificant relationship between the physical model and field data to the flat bottom analyticsolution was evident. The physical model tests and field data suggested that the flood tidal prismwas drawn from the region predominantly shoreward of the ebb shoal, thus implying a nearshoreselective withdrawal. Because the flood tidal prism was drawn from the nearshore, the flowpatterns at Jupiter Inlet did not resemble the analytic solutions of a linearly or logarithmicallysloping bottom, even though over a relatively long distance offshore, the bottom topography doesslope offshore at this inlet. In general, different inlet topographies would lend themselves todifferent analytic solutions, two examples being 1) the linearly sloping bottom of Koombana BayInlet, Australia, which shows an offshore selective withdrawal and 2) the basin-like nearfieldtopography of Jupiter Inlet which shows a more uniform nearshore withdrawal. The implicationsof this study are relevant to inlet management issues such as the mining of an ebb shoal for useas a source of beach sediment and changes in larval transport patterns due to jetty modifications. (Document has 97 pages.)
    Description: Thesis, M.S., Engineering
    Keywords: Oceanography ; Engineering ; Tidal inlets ; Jupiter Island ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainsville, FL
    In:  http://aquaticcommons.org/id/eprint/540 | 3 | 2020-08-24 03:04:56 | 540 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This report is the second annual report in a continuing series documenting a fieldproject within the Gulf Islands National Seashore at Perdido Key, Florida. The field projectincludes the monitoring of a number of physical parameters related to the evolution of thePerdido Key beach nourishment project. Approximately 4.1 million m3 of dredge spoilfrom Pensacola Pass were placed upon approximately 7 km of the Gulf of Mexico beachesof Perdido Key between November, 1989, and September, 1990.Beach profile data describing the evolution of the nourished beach are included, aswell as wave, current, tide, wind, temperature, and rainfall data to describe the forces influencingthe evolution. Data describing the sediment sizes throughout the project areaare also included. A brief discussion of the data is included; a more detailed analysis andinterpretation will be presented in the lead author's Ph.D. dissertation. (313 pp.)
    Description: Submitted to: Department of the Navy Southern Division Naval Facilities Engineering Command Charleston, SC 29411-0068
    Keywords: Conservation ; Oceanography ; Engineering ; Beach nourishment ; Sediment transport ; Shoreline response
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3119 | 130 | 2011-09-29 17:52:39 | 3119 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) Workshop entitled "Technologies for MeasuringCurrents in Coastal Environments" was held in Portland, Maine, October 26-28, 2005, withsponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), an ACT partnerorganization. The primary goals of the event were to summarize recent trends in nearshoreresearch and management applications for current meter technologies, identify how currentmeters can assist coastal managers to fulfill their regulatory and management objectives, and torecommend actions to overcome barriers to use of the technologies. The workshop was attendedby 25 participants representing state and federal environmental management agencies,manufacturers of current meter technologies, and researchers from academic institutions andprivate industry.Common themes that were discussed during the workshop included 1) advantages and limitationsof existing current measuring equipment, 2) reliability and ease of use with each instrument type,3) data decoding and interpretation procedures, and 4) mechanisms to facilitate better training andguidance to a broad user group. Seven key recommendations, which were ranked in order ofimportance during the last day of the workshop are listed below.1. Forums should be developed to facilitate the exchange of information among users andindustry:a) On-line forums that not only provide information on specific instruments andtechnologies, but also provide an avenue for the exchange of user experiences withvarious instruments (i.e. problems encountered, cautions, tips, advantages, etc). (seeReferences for manufacturer websites with links to application and technical forums atend of report)b) Regional training/meetings for operational managers to exchange ideas on methods formeasuring currents and evaluating data.c) Organize mini-meetings or tutorial sessions within larger conference venues.2. A committee of major stakeholders should be convened to develop common standards(similar to the Institute of Electrical and Electronics Engineers (IEEE) committee) thatenable users to switch sensors without losing software or display capabilities. (pdf contains 28 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Oceanography ; Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3124 | 130 | 2011-09-29 17:52:48 | 3124 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) held a Workshop on Sensor Technology forAssessing Groundwater-Surface Water Interactions in the Coastal Zone on March 7 to 9,2005 inSavannah, GA. The main goal of the workshop was to summarize the general parameters, whichhave been found to be useful in assessing groundwater-surface water (GW-SW) interactions in thecoastal zone. The workshop participants (Appendix I) were specifically charged with identifyingthe types of sensor systems, if any, that have been used to obtain time-series data and to makeknown which parameters may be the most amenable to the development/application of sensortechnology. The group consisted of researchers, industry representatives, and environmentalmanagers.Four general recommendations were made:1. Educate coastal managers and agencies on the importance of GW-SW interactions,keeping in mind that regulatory agencies are driven by a different set of rules thanresearchers: the focus is on understanding the significance of the problem and providingsolutions. ACT could facilitate this process in two ways. First, given that the researchliterature on this subject is fairly diffuse, ACT could provide links from its web site to factsheets or other literature. Second, ACT could organize a focused meeting for managersand/or agency groups.Encourage development of primary tools for quantifying flow. The most promisingtechnology in this respect is flow meters designed for flux chambers, mainly because theyshould be simple to use and can be made relatively inexpensively. However, it should bekept in mind that they provide only point measurements and several would need to bedeployed as a network in order to obtain reliable flow estimates. For evaluating systemwide GW-SW interactions, tools that integrate the signal over large areas would berequired. Suggestions include a user-friendly hydrogeologic models, keeping in mind thatfreshwater flow is not the entire story, or continuous radon monitors. Though the latterwould be slightly more difficult to use in terms of background knowledge, such aninstrument would be low power and easy to operate and maintain. ACT could facilitatethis recommendation by identifying funding opportunities on its web site and/orperforming evaluations of existing technologies that could be summarized on the web site. (pdf contains 18 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies(ACT) | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3109 | 130 | 2011-09-29 17:51:40 | 3109 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) Workshop entitled, "Biological Platforms as Sensor Technologies and their Use as Indicators for the Marine Environment" was held in Seward, Alaska, September 19 - 21,2007. The workshop was co-hosted by the University of Alaska Fairbanks (UAF) and the Alaska SeaLife Center (ASLC). The workshop was attended by 25 participants representing a wide range of research scientists, managers, and manufacturers who develop and deploy sensory equipment using aquatic vertebrates as the mode of transport.Eight recommendations were made by participants at the conclusion of the workshop and are presentedhere without prioritization:1. Encourage research toward development of energy scavenging devices of suitable sizes foruse in remote sensing packages attached to marine animals.2. Encourage funding sources for development of new sensor technologies and animal-bornetags.3. Develop animal-borne environmental sensor platforms that offer more combined systemsand improved data recovery methodologies, and expand the geographic scope of complementaryfixed sensor arrays.4. Engage the oceanographic community by:a. Offering a mini workshop at an AGU ocean sciences conference for people interestedin developing an ocean carbon program that utilizes animal-borne sensor technology.b. Outreach to chemical oceanographers.5. Min v2d6.sheepserver.net e and merge technologies from other disciplines that may be appliedto marine sensors (e.g. biomedical field).6. Encourage the NOAA Permitting Office to:a. Make a more predictable, reliable, and consistent permitting system for using animalplatforms.b. Establish an evaluation process.c. Adhere to established standards.7. Promote the expanded use of calibrated hydrophones as part of existing animal platforms.8. Encourage the Integrated Ocean Observing System (IOOS) to promote animal tracking aseffective samplers of the marine environment, and use of animals as ocean sensor technologyplatforms. [PDF contains 20 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Oceanography ; Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/467 | 3 | 2020-08-24 02:57:18 | 467 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: Part I. Relationships between the rate of bed fluidization and the rate of wave energy dissipation, by Jingzhi Feng and Ashish J. Mehta and Part II. In-situ rheometry for determining the dynamic response of bed, by David J.A. Williams and P. Rhodri Williams.A series of preliminary laboratory flume experiments were carried out to examine the time-dependentbehavior of a cohesive soil bed subjected to progressive, monochromatic waves. The bed was an aqueous,50/50 (by weight) mixture of a kaolinite and an attapulgite placed in a plexiglass trench. The nominal bedthickness was 16 cm with density ranging from 1170 to 1380 kg/m 3, and water above was 16 to 20 cmdeep. Waves of design height ranging from 2 to 8 cm and a nominal frequency of 1 Hz were run fordurations up to 2970 min. Part I of this report describes experiments meant to examine the rate at whichthe bed became fluidized, and its relation to the rate of wave energy dissipation. Part II gives results onin-situ rheometry used to track the associated changes in bed rigidity.Temporal and spatial changes of the effective stress were measured during the course of wave action,and from these changes the bed fluidization rate was calculated. A wave-mud interaction model developedin a companion study was employed to calculate the rate of wave energy dissipation. The dependence ofthe rate of fluidization on the rate of energy dissipation was then explored.Fluidization, which seemingly proceeded down from the bed surface, occurred as a result of the lossof structural integrity of the soil matrix through a buildup of the excess pore pressure and the associated loss of effective stress. The rate of fluidization was typically greater at the beginning of wave action andapparently approached zero with time. This trend coincided with the approach of the rate of energydissipation to a constant value. In general it was also observed that, for a given wave frequency, the largerthe wave height the faster the rate of fluidization and thicker the fluid mud layer formed. On the otherhand, increasing the time of bed consolidation prior to wave action decreased the fluidization rate due togreater bed rigidity. Upon cessation of wave action structural recovery followed.Dynamic rigidity was measured by specially designed, in situ shearometers placed in the bed atappropriate elevations to determine the time-dependence of the storage and loss moduli, G' and G", ofthe viscoelastic clay mixture under 1 Hz waves. As the inter-particle bonds of the space-filling, bedmaterial matrix weakened, the shear propagation velocity decreased measurably. Consequently, G'decreased and G" increased as a transition from dynamically more elastic to more viscous responseoccurred. These preliminary experiments have demonstrated the validity of the particular rheometrictechnique used, and the critical need for synchronous, in-situ measurements of pore pressures and modulicharacterizing bed rheology in studies on mud fluidization.This study was supported by WES contract DACW39-90-K-0010.(This document contains 151 pages.)
    Keywords: Engineering ; Cohesive sediments ; Resuspension ; Energy dissipation ; Rheology ; Fluidization ; Rheometry ; Fluid mud ; Water waves ; Pore pressures
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department
    In:  http://aquaticcommons.org/id/eprint/476 | 3 | 2020-08-24 03:09:33 | 476 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-29
    Description: Turbidity is a measure of the clarity of water. Turbidity depends upon thescattering and absorption of light by suspended particles. The focus of this study wasto obtain quantitative measurements of turbidity in the nearshore zone, along withmeasurements of associated wave parameters and currents occurring naturally andduring a beach nourishment project. The objectives were to make quantitative andqualitative comparisons between natural events and those induced by the dredge andfill operations, as well as assess the long term effects of the nourishment, uponturbidity.In-situ measurements of turbidity and wave climate were obtained at two shorenormal sites off the coast of Hollywood, Florida, from January, 1990 to April, 1992.The beaches adjacent to the communities of Hallandale and Hollywood wererenourished during the summer of 1991. Thirty minute in-situ observations wererecorded in burst mode every four hours at a frequency of four hertz. Analysis of thedata resulted in descriptions of the wave climate as well as statistics of turbidity for each observation.
    Description: Masters
    Description: UFL/COEL/93/004
    Keywords: Conservation ; Engineering ; turbidity ; beach nourishment ; Hollywood ; Florida
    Repository Name: AquaDocs
    Type: thesis
    Format: application/pdf
    Format: application/pdf
    Format: 101
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    University of Florida. Department of Coastal and Oceanographic Engineering | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/492 | 3 | 2020-08-24 03:00:51 | 492 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: With the rapid growth and development of barrier islands, understanding the long-termstability of these islands is an integral part of future coastal planning. The overwash process isthe largest influence on the long-term stability of these islands and thus a correspondingunderstanding is of major importance. A laboratory experiment was undertaken to physicallymodel the wave and current forcing as they pertain to the overwash process. The physical modelwas subjected to various storm conditions common to the occurrence of the overwash.Combinations of wave height, wave period, and overwash depth were tested in an attempt toisolate the significant parameters. Water surface gradients were also applied to observe theirinfluence on the overwash process. Wave height, current, and bed profile measurements weretaken at different locations throughout the tank. In addition, wave height transformationmodeling and mean current prediction were performed and compared to the laboratory results inan attempt to model the overwash process through computer simulations. (Document has 132 pages)
    Description: Thesis, M.S. Engineering
    Keywords: Oceanography ; Engineering ; Barrier islands ; storms ; overwash
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/497 | 3 | 2020-08-24 03:02:42 | 497 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: The mechanism by which fluid mud is formed by water wave motion over coastal andestuarine cohesive soil beds is of evident interest in understanding and interpreting themicrofabric of flow-deposited fine sediments in shallow waters, and hence the erodibilityof muddy beds due to hydrodynamic forcing. This study investigated water wave-inducedfluidization of cohesive soil beds composed of a 50/50 (by weight) mixture of a commercialattapulgite and a kaolinite in a laboratory flume. Temporal and spatial changes of theeffective stress were measured during the course of wave action, and from these changesthe bed fluidization rate was calculated. A previously developed hydrodynamic wave-mudinteraction model of the two-layered water-mud system was employed to study the natureand the degree of wave dissipation, in terms of energy dissipation rate, during the bed fluidizationprocess. By evaluating the mud rheological properties separately, a mud viscositymodel was developed, which was then used in conjunction with the wave-mud interactionmodel to obtain an effective sheared thickness of the bed resulting from wave action. Thisthickness, considered to be a representative of the fluidized mud thickness, was comparedwith the latter obtained from pressure measurements. Also, through this wave-mud modelthe relationship between the rate of fluidization and the rate of wave energy dissipationduring fluidization was examined. In general, for a given wave frequency, a larger wave fluidized the bed at a faster rateand to a greater depth than a smaller one. Furthermore, increased bed consolidation timedecreased the rate of fluidization due to increased mud rigidity. The rate of bed fluidizationwas typically greater at the beginning of wave action and decreased with time. Eventuallythis rate approached zero, while in some cases the wave energy dissipation rate approached aconstant value, which increased with wave height. As the fluidization rate approached zero,there appeared to occur an equilibrium value of the bed elevation, and hence a fluid mudthickness, for a given wave condition. During the fluidization process the bed apparentlylost its structural integrity by loss of the effective stress through a build-up of the excesspore water pressure. After wave action ceased, the bed structure exhibited recovery bydissipation of the excess pore water pressure.Further studies will be required in which the hydrodynamic model must be improved viaa more realistic description of mud rheology and relaxation of the shallow water assumption,and better pressure data must be obtained than in the present study. Nevertheless, thisinvestigation has been instructive in demonstrating relationships between the degree of mudfluidization, wave energy dissipation and bed consolidation time, and thus offers insight intoan important mechanism by which coastal and estuarine muds are eroded by wave action. (Document has125 pages.)
    Description: Thesis, M.S., Engineering
    Keywords: Oceanography ; Engineering ; Earth Sciences ; Muds ; Rheology ; Waves
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    University of Florida. Department of Coastal and Oceanographic Engineering | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/494 | 3 | 2020-08-24 03:01:30 | 494 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: In this final report on the investigation of the potentialities of improvedcoastal engineering management of Jupiter Inlet, Florida, three management-guidingissues were considered: better control of the erosion of the south beach, betternavigation access and safety, and better control (reduction) of sediment influx into theinlet channel and upstream points in the Loxahatchee River estuary. The first twoissues have been particularly outstanding, due to persistent concern for the inherentdeficiencies in the protocol for sand pumping and placement on the beach that tends toerode away rapidly, and the concern for conditions for navigation of vessels in theproximity of the inlet in open waters. With regard to the third issue, despite thereasonably successful ongoing program to pump sand out of the borrow areas within theinlet channel, other areas such as some of the marinas in the inlet area, as well as theregion of the Loxahatchee River west of the Florida East Coast Railroad bridge, havebeen experiencing slow but persistent sedimentation.Contingent upon a series of coastal and environmental engineering investigations,a range of engineering actions that could mitigate erosion, navigation and sedimentationproblems were considered. Based on the physical and ecological impacts that would becaused by these actions, two sets of action options that have net beneficial impacts dueto action implementation have been proposed. The first is a set of interdependentaction options that must be instituted inherently in a time-wise phased manner. Thesecond is a set of independent action options which can be instituted as and when desired. For determining the overall feasibility of any action option, it will benecessary to weigh the technical benefits against costs, which are provided. It shouldbe emphasized however that, considering the overwhelmingly observational nature ofcoastal science, the estimates of potential benefits are essentially and inherentlysubjective, and the costs very approximate, especially in cases where the desiredtechnology is in the "bench" stage. (Document has 231 pages)
    Description: This publication is being made available as part of the report series written by the faculty, staff, and students of the Coastal and Oceanographic Program of the Department of Civil and Coastal Engineering.
    Keywords: Management ; Oceanography ; Engineering ; Beach erosion ; Inlet management ; Jupiter Inlet ; Loxahatchee River ; Tidal entrances ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    University of Florida, Coastal and Oceanographic Engineering Department | Gainesville, FL
    In:  http://aquaticcommons.org/id/eprint/543 | 3 | 2020-08-24 03:06:11 | 543 | Oceanographic Engineering Program, Department of Civil and Coastal Engineering, University of Florida
    Publication Date: 2021-06-30
    Description: This thesis examines the historical shoreline response to inlet modifications and sealevel rise. Inlet modifications are considered to be the geographic stabilization and training(through the use of structures) of natural inlets and the creation and further modification ofartificial inlets. Shoreline response to natural and artificial processes must be understood inorder to predict the performance of the coastline. The tendency for creating and modifyinginlets increases as industry and population growth demands. Sea level rise is a natural processwhich cannot be controlled at this time. Current theoretical approaches to predictingshoreline response indicate that sea level rise and inlet modifications can cause substantialshoreline impact. Florida, with roughly a century of shoreline position and relative sea leveldata, provides a basis for examining past trends and comparing them with theory.The shoreline of Florida was found to be accreting with the greatest accretion alongthe east coast. Shoreline responses within the boundaries of the erosional influence of inletsdue to their creation and/or modification were examined for 19 inlets around the coast ofFlorida. The differences in the shoreline response before and after the initial modification ofeach inlet show the erosional strain that inlets apply on the nearby shoreline. The effect onshoreline response due to the human intervention (unnatural processes) of modifying inletswas isolated and examined. The shoreline response due to this "human intervention" was erosional, thereby showing the negative impact that modified inlets have on shorelines. Thisinduced erosion is responsible for the loss of roughly 21.6 million cubic yards of sand from theshoreline that is within the erosional influence of Florida's east coast inlets. Combining theshoreline changes due only to natural processes with sea level rise data allows for comparisonwith the commonly accepted Bruun Rule for shoreline response as a result of a changingsea level. This comparison and the effects of including a lag time between a rise in sea leveland a change in shoreline along the east coast of Florida during the last century show noagreement with the Bruun Rule and no correlation with a specific lag time. (153 pp.)
    Description: College of Engineering, M.S. Thesis
    Keywords: Oceanography ; Engineering ; Planning ; Sea level rise ; Inlets ; Florida
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3117 | 130 | 2011-09-29 17:52:04 | 3117 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of CoastalHabitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in MossLanding, California, sponsored by the ACT West Coast regional partnership comprised of theMoss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute(MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completesACT'S Remote Sensing Technology series by building upon the success of ACT'S West CoastRegional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging andResource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental ResearchInstitute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invitedparticipants were selected to provide a uniform representation of the academic researchers, privatesector product developers, and existing and potential data product users from the resource managementcommunity to enable development of broad consensus opinions on the role of ORS technologiesin coastal resource assessment and management.The workshop was organized to examine the current state of multi- and hyper-spectral imagingtechnologies with the intent to assess the current limits on their routine application for habitat classificationand resource monitoring of coastal watersheds, nearshore shallow water environments,and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practicalissues related to instrument and platform availability, reliability, hardware, software, and technicalskill levels required to exploit the data products generated by these instruments. Specifically,the participants were charged to address the following: (1) Identify the types of ORS data productscurrently used for coastal resource assessment and how they can assist coastal managers in fulfillingtheir regulatory and management responsibilities; (2) Identify barriers and challenges to theapplication of ORS technologies in management and research activities; (3) Recommend a seriesof community actions to overcome identified barriers and challenges.Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille(ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologiesavailable, deployment platform options, and tradeoffs for application of ORS data products withspecific applications to the assessment of coastal zone water quality and habitat characterization.Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential fordeveloping robust assessment of modeled biogeochemical interpretations derived from opticallybased earth observation data sets. While continuing improvements in sensor spectral resolution,signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithmsfor georectification, and atmospheric correction have made ORS data products invaluablesynoptic tools for oceanographic research, their adoption as management tools has lagged. SethBlitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yetsubstantial challenges hindering the adoption of advanced spectroscopic imaging data productsto supplement the current dominance of digital ortho-quad imagery by the resource managementcommunity, especially when they impinge on regulatory issues. (pdf contains 32 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3122 | 130 | 2011-09-29 17:52:44 | 3122 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) Workshop on Trace Metal Sensors for CoastalMonitoring was convened April 11-13, 2005 at the Embassy Suites in Seaside, California withpartnership from Moss Landing Marine Laboratories (MLML) and the Monterey Bay AquariumResearch Institute (MBARI).Trace metals play many important roles in marine ecosystems. Due to their extreme toxicity, theeffects of copper, cadmium and certain organo-metallinc compounds (such as tributyltin andmethylmercury) have received much attention. Lately, the sublethal effects of metals onphytoplankton biochemistry, and in some cases the expression of neurotoxins (Domoic acid),have been shown to be important environmental forcing functions determining the compositionand gene expression in some groups. More recently the role of iron in controlling phytoplanktongrowth has led to an understanding of trace metal limitation in coastal systems. Although metalsplay an important role at many different levels, few technologies exist to provide rapid assessmentof metal concentrations or metal speciation in the coastal zone where metal-induced toxicity orpotential stimulation of harmful algal blooms, can have major economic impacts. This workshopfocused on the state of on-site and in situ trace element detection technologies, in terms of whatis currently working well and what is needed to effectively inform coastal zone managers, as wellas guide adaptive scientific sampling of the coastal zone. Specifically the goals of this workshopwere to: 1) summarize current regional requirements and future targets for metal monitoring infreshwater, estuarine and coastal environments; 2) evaluate the current status of metal sensors andpossibilities for leveraging emerging technologies for expanding detection limits and targetelements; and 3) help identify critical steps needed for and limits to operational deployment ofmetal sensors as part of routine water quality monitoring efforts.Following a series of breakout group discussions and overview talks on metal monitoringregulatory issues, analytical techniques and market requirements, workshop participants madeseveral recommendations for steps needed to foster development of in situ metal monitoringcapacities:1. Increase scientific and public awareness of metals of environmental and biologicalconcern and their impacts in aquatic environments. Inform scientific and publiccommunities regarding actual levels of trace metals in natural and perturbed systems.2. Identify multiple use applications (e.g., industrial waste steam and drinking water qualitymonitoring) to support investments in metal sensor development. (pdf contains 27 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3239 | 130 | 2011-09-29 17:41:57 | 3239 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-06-26
    Description: Future coastal management practices require that a holistic, ecosystem management approach beadopted. Coastal ecosystems, however, present a variety of specific and unique challengesrelative to open ocean systems. In particular, interactions with the seabed significantly influencethe coastal ecosystem. Observing technologies must be developed and employed to incorporateseafloor interactions, processes and habitat diversity into research and management activities.An ACT Workshop on Seabed Sensor Technology was held February 1-3, 2006 in Savannah,Georgia, to summarize the current state of sensor technologies applicable to examining andmonitoring the coastal seabed, including the near-bed benthic boundary layer and surfacesediment layer. Workshop participants were specifically charged to identify current sensors inuse, recommend improvements to these systems and to identify areas for future development andactivities that would advance the use of sensor technology in the observation, monitoring andmanagement of the coastal benthic environment. (pdf contains 23 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Oceanography ; Engineering ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...