ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Biological  (417)
  • *Federal Government  (398)
  • Chemistry
  • General Chemistry
  • ddc:330
  • Nature Publishing Group (NPG)  (830)
  • 11
    Publication Date: 2010-10-15
    Description: The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becks, Lutz -- Agrawal, Aneil F -- England -- Nature. 2010 Nov 4;468(7320):89-92. doi: 10.1038/nature09449. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada. lutz.becks@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944628" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration/physiology ; Animals ; *Biological Evolution ; Diet/veterinary ; *Ecosystem ; Female ; *Food ; Genetic Drift ; Male ; Meiosis/genetics ; Models, Biological ; Ovum/physiology ; Population Density ; Reproduction/physiology ; Reproduction, Asexual/physiology ; Rotifera/cytology/genetics/*physiology ; Selection, Genetic ; *Sex
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-11-19
    Description: Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branch, Trevor A -- Watson, Reg -- Fulton, Elizabeth A -- Jennings, Simon -- McGilliard, Carey R -- Pablico, Grace T -- Ricard, Daniel -- Tracey, Sean R -- England -- Nature. 2010 Nov 18;468(7322):431-5. doi: 10.1038/nature09528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, Washington 98195-5020, USA. tbranch@uw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification/*metabolism ; Biodiversity ; Biomass ; Databases, Factual ; *Ecosystem ; Environmental Policy ; *Fisheries ; *Fishes/metabolism ; Food Chain ; Human Activities ; Invertebrates/metabolism ; Models, Biological ; Plankton/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Jane -- England -- Nature. 2010 Feb 25;463(7284):1012-3. doi: 10.1038/4631012a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20182485" target="_blank"〉PubMed〈/a〉
    Keywords: China ; Data Collection ; *Federal Government ; Internet/legislation & jurisprudence/utilization ; *Research Personnel ; Search Engine/*legislation & jurisprudence/*utilization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2009-12-23
    Description: Reprogramming of somatic cell nuclei to yield induced pluripotent stem (iPS) cells makes possible derivation of patient-specific stem cells for regenerative medicine. However, iPS cell generation is asynchronous and slow (2-3 weeks), the frequency is low (〈0.1%), and DNA demethylation constitutes a bottleneck. To determine regulatory mechanisms involved in reprogramming, we generated interspecies heterokaryons (fused mouse embryonic stem (ES) cells and human fibroblasts) that induce reprogramming synchronously, frequently and fast. Here we show that reprogramming towards pluripotency in single heterokaryons is initiated without cell division or DNA replication, rapidly (1 day) and efficiently (70%). Short interfering RNA (siRNA)-mediated knockdown showed that activation-induced cytidine deaminase (AID, also known as AICDA) is required for promoter demethylation and induction of OCT4 (also known as POU5F1) and NANOG gene expression. AID protein bound silent methylated OCT4 and NANOG promoters in fibroblasts, but not active demethylated promoters in ES cells. These data provide new evidence that mammalian AID is required for active DNA demethylation and initiation of nuclear reprogramming towards pluripotency in human somatic cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhutani, Nidhi -- Brady, Jennifer J -- Damian, Mara -- Sacco, Alessandra -- Corbel, Stephane Y -- Blau, Helen M -- AG009521/AG/NIA NIH HHS/ -- AG024987/AG/NIA NIH HHS/ -- AI007328/AI/NIAID NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG024987/AG/NIA NIH HHS/ -- R01 AG024987-05/AG/NIA NIH HHS/ -- T32 AI007328/AI/NIAID NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5175, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20027182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Fusion ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; Chromatin Immunoprecipitation ; Cytidine Deaminase/deficiency/genetics/*metabolism ; DNA/chemistry/genetics/metabolism ; *DNA Methylation ; DNA Replication ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Gene Knockdown Techniques ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Lung/cytology/embryology ; Mice ; Models, Biological ; Octamer Transcription Factor-3/genetics ; Promoter Regions, Genetic/genetics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2010 Oct 14;467(7317):762. doi: 10.1038/467762a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944703" target="_blank"〉PubMed〈/a〉
    Keywords: Conservation of Energy Resources/legislation & jurisprudence ; Environmental Policy/*legislation & jurisprudence ; *Federal Government ; Global Warming/*legislation & jurisprudence/prevention & control ; *Politics ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-08-27
    Description: Eusociality, in which some individuals reduce their own lifetime reproductive potential to raise the offspring of others, underlies the most advanced forms of social organization and the ecologically dominant role of social insects and humans. For the past four decades kin selection theory, based on the concept of inclusive fitness, has been the major theoretical attempt to explain the evolution of eusociality. Here we show the limitations of this approach. We argue that standard natural selection theory in the context of precise models of population structure represents a simpler and superior approach, allows the evaluation of multiple competing hypotheses, and provides an exact framework for interpreting empirical observations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279739/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279739/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nowak, Martin A -- Tarnita, Corina E -- Wilson, Edward O -- R01 GM078986/GM/NIGMS NIH HHS/ -- R01 GM078986-04/GM/NIGMS NIH HHS/ -- R01GM078986/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1057-62. doi: 10.1038/nature09205.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program for Evolutionary Dynamics, Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA. martin_nowak@harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20740005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; *Biological Evolution ; Female ; Humans ; Insects/physiology ; Male ; Models, Biological ; Selection, Genetic ; *Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-10-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Hara, Kathryn -- England -- Nature. 2010 Sep 30;467(7315):501. doi: 10.1038/467501a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carleton University. kathryn_ohara@carleton.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881970" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information ; Animals ; Canada ; *Communication ; *Federal Government ; *Freedom ; Global Warming ; Humans ; *Journalism ; Mass Media ; Policy Making ; Politics ; Public Sector ; *Research Personnel
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-11-26
    Description: Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Li-Qing -- Hou, Bi-Huei -- Lalonde, Sylvie -- Takanaga, Hitomi -- Hartung, Mara L -- Qu, Xiao-Qing -- Guo, Woei-Jiun -- Kim, Jung-Gun -- Underwood, William -- Chaudhuri, Bhavna -- Chermak, Diane -- Antony, Ginny -- White, Frank F -- Somerville, Shauna C -- Mudgett, Mary Beth -- Frommer, Wolf B -- 1R01DK079109/DK/NIDDK NIH HHS/ -- F32GM083439-02/GM/NIGMS NIH HHS/ -- R01 DK079109/DK/NIDDK NIH HHS/ -- R01 DK079109-01/DK/NIDDK NIH HHS/ -- R01 DK079109-02/DK/NIDDK NIH HHS/ -- R01 DK079109-03/DK/NIDDK NIH HHS/ -- R01 DK079109-03S1/DK/NIDDK NIH HHS/ -- R01 DK079109-04/DK/NIDDK NIH HHS/ -- R01 GM068886/GM/NIGMS NIH HHS/ -- ZR01GM06886-06A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Nov 25;468(7323):527-32. doi: 10.1038/nature09606.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport/genetics ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Glucose/*metabolism ; HEK293 Cells ; Host-Pathogen Interactions/*physiology ; Humans ; Membrane Transport Proteins/*metabolism ; Models, Biological ; Oryza/genetics/metabolism/microbiology ; RNA, Messenger/metabolism ; Saccharomyces cerevisiae/genetics ; Xenopus/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okasha, Samir -- England -- Nature. 2010 Oct 7;467(7316):653-5. doi: 10.1038/467653a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Philosophy, University of Bristol, Bristol BS8 1TB, UK. Samir.Okasha@bristol.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20930821" target="_blank"〉PubMed〈/a〉
    Keywords: *Altruism ; Animals ; Biological Evolution ; *Cooperative Behavior ; Female ; Group Processes ; Male ; Models, Biological ; *Research Personnel ; Selection, Genetic ; Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...