ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
  • Etna
  • Nature Publishing Group  (5)
  • Wiley-Blackwell  (4)
  • 1
    Publication Date: 2017-04-04
    Description: We find that geodetic strain rate (SR) integrated with the knowledge of active faults points out that hazardous seismic areas are those with lower SR, where active faults are possibly approaching the end of seismic cycle. SR values estimated from GPS velocities at epicentral areas of large historical earthquakes in Italy decrease with increasing elapsed time, thus highlighting faults more prone to reactivation. We have modelled an exponential decrease relationship between SR and the time elapsed since the last largest earthquake, differencing historical earthquakes according to their fault rupture style. Then, we have estimated the characteristic times of relaxation by a non-linear inversion, showing that events with thrust mechanism exhibit a characteristic time (∼ 990 yr) about three times larger than those with normal mechanism. Assuming standard rigidity and viscosity values we can infer an average recurrence time of about 600 yr for normal faults and about 2000 yr for thrust faults.
    Description: Published
    Description: 815-820
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic cycle ; Seismicity and tectonics ; Transient deformation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this study,we use Differential Synthetic Aperture Radar Interferometry (DInSAR) and multiaperture interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hr apart and an Mw 5.7 event that occurred 40 d later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan Block of the Eurasian Plate. Surface displacements estimated from ascending and descending ENVISAT ASAR acquisitions were used to derive elastic dislocation models for the sources of the two main events. The estimated slip distributions have peak values of 120 and 130 cm on a pair of almost parallel and near-vertical faults striking NW–SE, and of 50 cm and 60 cm on two high-angle faults striking NE–SW. Values up to 50 cm were found for the largest aftershock on an NE–SW fault located between the sources of the main shocks. The MAI measurements, with their high sensitivity to the north–south motion component, are crucial in this area to accurately describe the coseismic displacement field. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at shallow depths on large NW fault planes is compatible with left-lateral activation on smaller NE–SW faults.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Radar interferometry ; Satellite geodesy ; Seismicity and Tectonics ; Continental margins: convergent ; Earthquake interaction, forecasting and prediction ; Earthquake source observation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We used the SBAS DInSAR analysis technique to estimate the interseismic deformation along the western part of the Doruneh fault system (DFS), northeastern Iran. We processed 90 ENVISAT images from four different frames from ascending and descending orbits. Three of the ground velocity maps show a significant interseismic signal. Using a simple dislocation approach we model 2-D velocity profiles concerning three InSAR data set relative to the western part of the DFS, obtaining a good fit to the observations. The resulting model indicates that a slip rate of ∼5mmyr−1 accumulates on the fault below 10 km depth, and that in its western sector the Doruneh fault is not purely strike-slip (left-lateral) as in its central part, but shows a significant thrust component. Based on published geological observations, and assuming that all interseismic deformation is recovered with a single event, we can estimate a characteristic recurrence interval between 630 and 1400 yr.
    Description: Published
    Description: 622-628
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Image processing; Satellite geodesy; Seismic cycle; Radar interferometry; Seismicity and tectonics; Continental tectonics: strike-slip and transform. ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: For decades, many authors have attempted to define the location, geometry and kinematics of the causative fault for the 1908 December 28, M 7.1 earthquake that struck the Messina Straits between Sicily and Calabria (southern Italy). The coseismic displacement caused a predominant downwarping of the Straits and small land uplift away from it, which were documented by levelling surveys performed 1 yr before and immediately after the earthquake. Most of the source models based on inversion of levelling data suggested that the earthquake was caused by a low angle, east-dipping blind normal fault, whose upper projection intersects the Earth surface on the Sicilian (west) side of the Messina Straits.An alternative interpretation holds that the causative fault is one of the high-angle, west-dipping faults located in southern Calabria, on the eastern side of the Straits, and may in large part coincide with the mapped Armo Fault. Here, we critically review the levelling data with the aim of defining both their usefulness and limits in modelling the seismogenic fault. We demonstrate that the levelling data alone are not capable of discriminating between the two oppositely dipping fault models, and thus their role as a keystone for modellers is untenable. However, new morphotectonic and geodetic data indicate that the Armo Fault has very recent activity and is accumulating strain. The surface observations, together with appraisal ofmacroseismic intensity distribution, available seismic tomography and marine geophysical evidence, lends credit to the hypothesis that the Armo and possibly the S. Eufemia faults are part of a major crustal structure that slipped during the 1908 earthquake.
    Description: Published
    Description: 1025-1041
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source ; Messina Straits ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group
    Publication Date: 2017-04-04
    Description: One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 E+04 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage).
    Description: This work was supported by the MED-SUV project, which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308665.
    Description: Published
    Description: 11908
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: dyke propagation ; Etna ; seismic signals ; ground fracturing ; conceptual modelling ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
    Description: Published
    Description: 30471
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: eruptive potential ; eruptive probability ; open conduit volcanoes ; Etna ; Soil CO2 flux ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...