ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
  • Wiley-Blackwell  (2)
  • Nature Publishing Group
  • Public Library of Science (PLoS)
  • 1
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: Integration of geologic, geomorphologic and seismologic data sets is used to reconstruct the recent tectonic evolution and active deformation pattern in the Val d’Agri area, located in the seismically active axial sector of the Southern Apennines (Italy). The western portion of the Apennines thrust belt has been affected by Pliocene–Quaternary extension during easterly roll-back and crustal delamination of the Adriatic slab. The bulk of Quaternary extension has been accommodated bySW-dipping oblique and normal faults,which have attained mature morphologic and structural features and, nowadays, separate mountain ranges from intermontane basins. However, in the present seismogenic belt, coseismic faulting locally occurs on NE-dipping structures, which might cut the inherited Pleistocene landscape. In theVal d’Agri basin, in spite of the large Early–Middle Pleistocene, displacement occurred on SW-dipping faults bordering its eastern flank, our investigations show that the recent basin evolution has been controlled by a NE-dipping fault system (Monti della Maddalena fault system, MMFS). This fault system cuts across the Monti della Maddalena range, west of the Agri valley and has not yet created an evident tectonic landscape. Notwithstanding, fault motion since the Middle Pleistocene might explain geomorphologic and hydrographic anomalies of the Agri river and its valley, where fault-controlled subsidence has captured the river course and produced an aggrading plain within a regional uplift context. Recent and ongoing motion is documented by fault scarplets in loose deposits, 14C ages of palaeosols and the spatial relation with low to moderate instrumental seismicity. Results from fault kinematic analysis are compatible with fault-plane solutions of local and regional seismic events, and indicate ∼NE–SW oriented extension. Recognition of the MMFS as a potential seismogenic fault increases the longitudinal extent of the NE-dipping, morphologically immature seismic sources in the Southern Apennines and argues against the range-bounding fault model for active extension in the region. The regional size of the NE-dipping seismogenic belt may result from impingement of a mantle wedge beneath the Apenninic chain and possibly track the external front of crustal delamination.
    Description: Published
    Description: 591-609
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active tectonics ; crustal deformation ; earthquakes ; geomorphology ; normal faulting ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We analyzed a broad region around L’Aquila in search of seismogenic faults similar to that responsible for the 6 April 2009 earthquake (Mw 6.3). Having the lessons learned from this earthquake in mind, we focused on adjacent areas displaying similar morphotectonic, geological and structural evidence. The basin running from Barisciano to Civitaretenga-Navelli, notably located near the southeastern edge of the 2009 aftershock pattern, appears to be one of such areas. We collected morphotectonic and structural data indicating that this basin is underlain by a major active normal fault (San Pio Fault). All the observations are very much reminiscent of the morphotectonic, geological and structural setting of area struck by the L’Aquila earthquake, suggesting that the newly identified fault has the potential for a Mw 6.2-6.4 shock.
    Description: Published
    Description: Pages: 108–115
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismotectonics ; Morphotectonics ; Active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...