ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Underwater acoustics  (59)
  • Oceanic mixing  (32)
  • Chemistry
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (95)
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2006
    Description: This thesis develops methods for estimating wideband shallow-water acoustic communication channels. The very shallow water wideband channel has three distinct features: large dimension caused by extensive delay spread; limited number of degrees of freedom (DOF) due to resolvable paths and inter-path correlations; and rapid fluctuations induced by scattering from the moving sea surface. Traditional LS estimation techniques often fail to reconcile the rapid fluctuations with the large dimensionality. Subspace based approaches with DOF reduction are confronted with unstable subspace structure subject to significant changes over a short period of time. Based on state-space channel modeling, the first part of this thesis develops algorithms that jointly estimate the channel as well as its dynamics. Algorithms based on the Extended Kalman Filter (EKF) and the Expectation Maximization (EM) approach respectively are developed. Analysis shows conceptual parallels, including an identical second-order innovation form shared by the EKF modification and the suboptimal EM, and the shared issue of parameter identifiability due to channel structure, reflected as parameter unobservability in EKF and insufficient excitation in EM. Modifications of both algorithms, including a two-model based EKF and a subspace EM algorithm which selectively track dominant taps and reduce prediction error, are proposed to overcome the identifiability issue. The second part of the thesis develops algorithms that explicitly find the sparse estimate of the delay-Doppler spread function. The study contributes to a better understanding of the channel physical constraints on algorithm design and potential performance improvement. It may also be generalized to other applications where dimensionality and variability collide.
    Description: Financial support for this thesis research was provided by the Office of Naval Research and the WHOI Academic Program Office.
    Keywords: Underwater acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 2507760 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Ocean Sciences at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: This thesis introduces an algorithm for inverting for the geoacoustic properties of the seafloor in shallow water. The input data required by the algorithm are estimates of the amplitudes of the normal modes excited by a low-frequency pure-tone sound source, and estimates of the water column sound speed profiles at the source and receiver positions. The algorithm makes use of perturbation results, and computes the small correction to an estimated background profile that is necessary to reproduce the measured mode amplitudes. Range-dependent waveguide properties can be inverted for so long as they vary slowly enough in range that the adiabatic approximation is valid. The thesis also presents an estimator which can be used to obtain the input data for the inversion algorithm from pressure measurements made on a vertical line array (VLA). The estimator is an Extended Kalman Filter (EKF), which treats the mode amplitudes and eigenvalues as state variables. Numerous synthetic and real-data examples of both the inversion algorithm and the EKF estimator are provided. The inversion algorithm is similar to eigenvalue perturbation methods, and the thesis also presents a combination mode amplitude/eigenvalue inversion algorithm, which combines the advantages of the two techniques.
    Description: The funding that made this research possible came from the Office of Naval Research, and the WHOI Academic Programs Office.
    Keywords: Underwater acoustics ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution March, 1980
    Description: The Southern Ocean as defined here is the body of water between the Antarctic Continent and the Antarctic Polar Front, (APF). This ocean is considered important in the global thermodynamic balance of the ocean-atmosphere system because large planetary heat losses are believed to occur at high latitudes. The ocean and atmosphere must transport heat poleward to balance these losses. In the Southern Hemisphere, the oceanic contribution to this flux involves a southward transport of heat across the APF into the Southern Ocean where it is given up to the atmosphere through air-sea interactions. In Part I, the air-sea interactions and structure of the near surface waters of the Southern Ocean are investigated with a three dimensional time dependent numerical model. The surface waters in this region in summer are characterized by a relatively warm surface mixed layer with low salinity. Below this layer, a cold temperature extremum is usually observed in vertical profiles which is believed to be the remnant of a deep surface mixed layer produced in winter. The characteristics of this layer, the surface mixed layer and the observed distribution of wintertime sea ice are reproduced well by this model. Unlike some other sea-ice models the air-sea heat exchange is a free variable. Model estimates of the annual heat loss by the Southern Ocean exhibit the observed meridional variation of heat gained by the ocean along the APF with heat lost further south. The model's area average heat loss is much smaller than that estimated with direct observations. While several model parameterizations were made which could be in error, the model results suggest that the Southern Ocean does give up vast amounts of heat to the atmosphere away from the continental margins. The model results and direct calculations of air-sea exchanges suggest a southward heat flux must occur across the APF. The lateral water mass transition across the front is not discontinuous but occurs over a finite sized zone of fluid which is dominated by intrusive finestructure. The characteristics and dynamics of these features are investigated in Part II to try and assess their importance in the meridional heat budget. Observations made on two cruises to the APF are presented and the space-time scales of the features and thermohaline characteristics are discussed. It is suggested that double diffusive processes dominated by salt fingering are active within the intrusions. An extension of Stern's (1967) model of the stability of a thermohaline front to intrusive finestructure driven by saltfingering where small scale viscous processes are included, is presented to explain why intrusions are observed in frontal zones. The model successfully predicts vertical scales of intrusions observed in the ocean and the observed dependence of the intrusions' slopes across density surfaces on the vertical scale. Since the fastest growing intrusion is not strongly determined by the model, though, it is likely that finite amplitude effects determine the dominant scale of interleaving in the ocean. The analysis predicts that intrusions transport heat, salt and density down the mean gradients of the front. For the APF, this heat flux is poleward which is the direction required by the global heat budget. This model does not describe intrusions at finite amplitude or in steady state and so cannot be used to estimate the magnitude of the poleward heat flux due to intrusions in the APF.
    Description: The research reported on here, and my support as a graduate student was provided by the National Science Foundation through grants OCE 75 14056. OCE 76 82036 and OCE 77 28355.
    Keywords: Ocean-atmosphere interaction ; Ocean temperature ; Oceanic mixing ; Heat budget ; Sea ice ; Convection ; Fronts ; Thomas G. Thompson (Ship) Cruise TN107 ; Knorr (Ship : 1970-) Cruise KN73
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2005
    Description: This thesis develops and utilizes a method for analyzing data from the North Pacific Acoustic Laboratory's (NPAL) Basin Acoustic Seamount Scattering Experiment (BASSEX). BASSEX was designed to provide data to support the development of analytical techniques and methods which improve the understanding of sound propagation around underwater seamounts. The depth-dependent sound velocity profile of typical ocean waveguides force sound to travel in convergence zones about a minimum sound speed depth. This ducted nature of the ocean makes modeling the acoustic field around seamounts particularly challenging, compared to an isovelocity medium. The conical shape of seamounts also adds to the complexity of the scatter field. It is important to the U.S. Navy to understand how sound is diffracted around this type of topographic feature. Underwater seamounts can be used to conceal submarines by absorbing and scattering the sound they emit. BASSEX measurements have characterized the size and shape of the forward scatter field around the Kermit-Roosevelt Seamount in the Pacific Ocean. Kermit- Roosevelt is a large, conical seamount which shoals close to the minimum sound speed depth, making it ideal for study. Acoustic sources, including M-sequence and linear frequency-modulated sources, were stationed around the seamount at megameter ranges. A hydrophone array was towed around the seamount to locations which allowed measurement of the perturbation zone. Results from the method developed in this thesis show that the size and shape of the perturbation zone measured coincides with theoretical and experimental results derived in previous work.
    Keywords: Underwater acoustics ; Seamounts
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2007
    Description: This thesis covers a comprehensive analysis of long-range, deep-ocean, low-frequency, sound propagation experimental results obtained from the North Pacific Ocean. The statistics of acoustic fields after propagation through internal-wave-induced sound-speed fluctuations are explored experimentally and theoretically. The thesis starts with the investigation of the North Pacific Acoustic Laboratory 98-99 data by exploring the space-time scales of ocean sound speed variability and the contributions from different frequency bands. The validity of the Garret & Munk internal-wave model is checked in the upper ocean of the eastern North Pacific. All these results impose hard bounds on the strength and characteristic scales of sound speed fluctuations one might expect in this region of the North Pacific for both internal-wave band fluctuations and mesoscale band fluctuations. The thesis then presents a detailed analysis of the low frequency, broadband sound arrivals obtained in the North Pacific Ocean. The observed acoustic variability is compared with acoustic predictions based on the weak fluctuation theory of Rytov, and direct parabolic equation Monte Carlo simulations. The comparisons show that a resonance condition exists between the local acoustic ray and the internal wave field such that only the internal-waves whose crests are parallel to the local ray path will contribute to acoustic scattering: This effect leads to an important filtering of the acoustic spectra relative to the internal-wave spectra. We believe that this is the first observational evidence for the acoustic ray and internal wave resonance. Finally, the thesis examined the evolution with distance, of the acoustic arrival pattern of the off-axis sound source transmissions in the Long-range Ocean Acoustic Propagation EXperiment. The observations of mean intensity time-fronts are compared to the deterministic ray, parabolic equation (with/without internal waves) and (one-way coupled) normal mode calculations. It is found the diffraction effect is dominant in the shorter-range transmission. In the longer range, the (internal wave) scattering effect smears the energy in both the spatial and temporal scales and thus has a dominant role in the finale region.
    Description: The funding that made this research possible came from the Office of Naval Research, and the WHOI Academic Programs Office.
    Keywords: Acoustic models ; Underwater acoustics ; Roger Revelle (Ship) Cruise LOAPEX ; Melville (Ship) Cruise LOAPEX
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2003
    Description: A novel distributed underwater acoustic networking (UAN) protocol suitable for ad-hoc deployments of both stationary and mobile nodes dispersed across a relatively wide coverage area is presented. Nodes are dynamically clustered in a distributed manner based on the estimated position of one-hop neighbor nodes within a shallow water environment. The spatial dynamic cellular clustering scheme allows scalable communication resource allocation and channel reuse similar in design to land-based cellular architectures, except devoid of the need for a centralized controlling infrastructure. Simulation results demonstrate that relatively high degrees of interference immunity, network connectivity, and network stability can be achieved despite the severe limitations of the underwater acoustic channel.
    Keywords: Underwater acoustics ; Underwater acoustic telemetry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2002
    Description: This thesis investigates the complexities of acoustic scattering by finite bodies in general and by fish in particular through the development of an advanced acoustic scattering model and detailed laboratory acoustic measurements. A general acoustic scattering model is developed that is accurate and numerically effcient for a wide range of frequencies, angles of orientation, irregular axisymmetric shapes and boundary conditions. The model presented is an extension of a two-dimensional conformal mapping approach to scattering by irregular, finite-length bodies of revolution. An extensive series of broadband acoustic backscattering measurements has been conducted involving alewife fish (Alosa pseudoharengus), which are morphologically similar to the Atlantic herring (Clupea harengus). A greater-than-octave bandwidth (40-95 kHz), shaped, linearly swept, frequency modulated signal was used to insonify live, adult alewife that were tethered while being rotated in 1-degree increments over all angles of orientation in two planes of rotation (lateral and dorsal/ventral). Spectral analysis correlates frequency dependencies to morphology and orientation. Pulse compression processing temporally resolves multiple returns from each individual which show good correlation with size and orientation, and demonstrate that there exists more than one significant scattering feature in the animaL. Imaging technologies used to exactly measure the morphology of the scattering features of fish include very highresolution Phase Contrast X-rays (PCX) and Computerized Tomography (CT) scans, which are used for morphological evaluation and incorporation into the scattering modeL. Studies such as this one, which combine scattering models with high-resolution morphological information and high-quality laboratory data, are crucial to the quantitative use of acoustics in the ocean.
    Keywords: Underwater acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 1983
    Description: Ocean acoustic tomography was proposed in 1978 by Munk and Wunsch as a possible technique for monitoring the evolution of temperature, density, and current fields over large regions. In 1981, the Ocean Tomography Group deployed four 224 Hz acoustic sources and five receivers in an array which fit within a box 300 km. on a side centered on 26°N, 70°W (southwest of Bermuda). The experiment was intended both to demonstrate the practicality of tomography as an observation tool and to extend the understanding of mesoscale evolution in the low-energy region far from the strong Gulf Stream recirculation. The propagation of 224 Hz sound energy in the ocean can be described as a set of rays traveling from source to receiver, with each ray taking a different path through the ocean in a vertical plane connecting the source and receiver. The sources transmitted a phase-coded signal which was processed at the receiver to produce a pulse at the time of arrival of the signal. Rays can be distinguished by their different pulse travel times, and these travel times change in response to variations in sound speed and current in the ocean through which the rays passed. In order to reconstruct the ocean variations from the observed travel time changes, it is necessary to specify models for both the variations and their effect on the travel times. The dependence of travel time on the oceanic sound speed and current fields can be calculated using ray paths traced by computer. The vertical structure of the sound speed and current fields in the ocean were modelled as a combination of Empirical Orthogonal Functions (EOFs) from MODE. The horizontal structure was continuous, but was constrained to have a gaussian covariance with a 100 km. e- folding scale. The resulting estimator closely resembles objective mapping as used in meteorology and physical oceanography. The tomographic system has at present only been used to estimate sound speed structure for comparison with the traditional measurements, especially the first two NOAA CTD surveys, but the method provides means for estimating density, temperature or velocity fields, and these will be produced in the future. The sound speed estimates made using the tomographic system match the traditional measurements to within the associated error bars, and there are several possibilities for improving the signal to noise ratio of the data. Given high-precision data, tomographic systems can resolve ocean structures at small scales, such as in the Gulf Stream, or at large scales, over entire ocean basins. Work is in progress to evaluate the usefulness of tomography as an observation tool in these applications.
    Description: My support for the first 3 years came from an NSF graduate fellowship, and I was then supported as a research assistant by NSF Grant OCE-8017791.
    Keywords: Underwater acoustics ; Sound transmission
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2003
    Description: Oceanic observations indicate that abyssal mixing is localized in regions of rough topography. How locally mixed fluid interacts with the ambient fluid is an open question. Laboratory experiments explore the interaction of mechanically induced boundary mixing and an interior body of linearly stratified rotating fluid. A single oscillating bar produces a small region of turbulence along the wall at middepth. Mixed fluid quickly reaches a steady state height set by a turbulent-buoyant balance, independent of rotation. Initially, the bar is exposed on three sides. Mixed fluid intrudes directly into the interior rather than forming a boundary current. The circulation patterns suggest a model of unmixed fluid being laterally entrained into the turbulent zone. In accord with the model, observed outflux is constant, independent of stratification and restricted by rotation. Later the bar is laterally confines between two walls, which form a channel opening into the basin. A small percentage of mixed fluid enters a boundary current, which exits the channel. The bulk forms a cyclonic circulation in front of the bar, which blocks the channel and restricts horizontal entrainment. In the confined case, the volume flux of mixed fluid decays with time.
    Description: This work was supported by the Ocean Ventures Fund, the Westcott Fund and the WHOI Education Office. Financial support was also provided by the National Science Foundation through grant OCE-9616949.
    Keywords: Oceanic mixing ; Turbulence ; Rotating masses of fluid ; Fluid dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2002
    Description: One of the major problems in wireless communications is compensating for the time-varying intersymbol interference (ISI) due to multipath. Underwater acoustic communications is one such type of wireless communications in which the channel is highly dynamic and the amount of ISI due to multipath is relatively large. In the underwater acoustic channel, associated with each of the deterministic propagation paths are macro-multipath fluctuations which depend on large scale environmental features and geometry, and micro-multipath fluctuations which are dependent on small scale environmental inhomogeneities. For arrivals which are unsaturated or partially saturated, the fluctuations in ISI are dominated by the macro-multipath fluctuations resulting in correlated fluctuations between different taps of the sampled channel impulse response. Traditional recursive least squares (RLS) algorithms used for adapting channel equalizers do not exploit this structure. A channel subspace post-filtering algorithm that treats the least squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error is presented. The improvement in performance of the algorithm with respect to traditional least squares algorithms is predicted theoretically, and demonstrated using both simulation and experimental data. An adaptive equalizer structure that explicitly uses this improved estimate of the channel impulse response is discussed. The improvement in performance of such an equalizer due to the use of the post-filtered estimate is also predicted theoretically, and demonstrated using both simulation and experimental data.
    Description: This research was supported by an ONR Graduate Traineeship Award Grant #N00014-00-10049.
    Keywords: Underwater acoustics ; Mathematical models
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...