ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cohesive sediment  (2)
  • Antarctic Oscillation  (1)
  • Humans
  • SPACE SCIENCES
  • MDPI AG  (4)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 10 (2018): 331, doi:10.3390/rs10020331.
    Description: The Southern Ocean is the focus of many physical, chemical, and biological analyses due to its global importance and highly variable climate. This analysis of sea surface temperatures (SST) and global teleconnections shows that SSTs are significantly spatially correlated with both the Antarctic Oscillation and the Southern Oscillation, with spatial correlations between the indices and standardized SST anomalies approaching 1.0. Here, we report that the recent positive patterns in the Antarctic and Southern Oscillations are driving negative (cooling) trends in SST in the high latitude Southern Ocean and positive (warming) trends within the Southern Hemisphere sub-tropics and mid-latitudes. The coefficient of regression over the 35-year period analyzed implies that standardized temperatures have warmed at a rate of 0.0142 per year between 1982 and 2016 with a monthly standard error in the regression of 0.0008. Further regression calculations between the indices and SST indicate strong seasonality in response to changes in atmospheric circulation, with the strongest feedback occurring throughout the austral summer and autumn.
    Description: B.S.F. is supported by the NASA/South Carolina Space-grant Graduate Assistantship. A. Macdonald acknowledges support from NOAA Grant #NA160AR4310172.
    Keywords: Southern Ocean ; Sea surface temperature ; Teleconnections ; Antarctic Oscillation ; El Niño-Southern Oscillation ; AVHRR
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in International Journal of Environmental Research and Public Health 15 (2018): 723, doi:10.3390/ijerph15040723.
    Description: There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208Pb/206Pb and 207Pb/206Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields
    Keywords: Lead isotopes ; ICP-MS ; TIMS ; MC-ICP-MS ; Environment ; Humans ; Rats ; Fractionation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Water 8 (2016): 131, doi:10.3390/w8040131.
    Description: Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.
    Description: This research was supported by the Office of Naval Research funding of contracts N00014-07-1-0448, N00014-07-1-0756.
    Keywords: Water waves ; Muddy waters ; Coastal waters ; Currents ; Bed drag ; Drag coefficient ; Bottom shear stress ; Bottom friction ; Mud ; Cohesive sediment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Marine Science and Engineering 2 (2014): 413-436, doi:10.3390/jmse2020413.
    Description: The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.
    Description: Funding by the National Science Foundation (OCE-1061781 and OCE-0536572) supported Fall, Harris, Friedrichs, and Rinehimer.
    Keywords: Cohesive sediment ; Critical stress ; Sediment transport modeling ; Erodibility ; Settling velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...