ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.05. Geomagnetism  (6)
  • Etna  (6)
  • volcano monitoring  (6)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
  • MDPI  (14)
  • Nature Publishing Group  (5)
  • 1
    Publication Date: 2020-12-21
    Description: Thermal-infrared remote sensing is used to monitor and study hazardous volcanic phenomena. Thermal cameras are often used by monitoring centers and laboratories. A physical comprehension of their behavior is needed to perform quantitative measurements, which are strongly dependent on camera features and settings. This makes it possible to control the radiance measurements related to volcanic processes and, thus, to detect thermal anomalies, validate models, and extract source parameters. We review the theoretical background related to the camera behavior beside the main features affecting thermal measurements: Atmospheric transmission, object emissivity and reflectivity, camera characteristics, and external optics. We develop a Python package, PythTirCam-1.0, containing pyTirTran, a radiative transfer model based on the HITRAN database and the camera spectral response. This model is compared with the empirical algorithm implemented into a commercial camera. These two procedures are validated using a simple experiment involving pyTirConv, an algorithm developed to recover the radiometric thermal data from compressed images collected by monitoring centers. Python scripts corresponding to the described methods are provided as open-source code. This study can be applied to a wide variety of applications and, specifically, to different volcanic processes, from earth and space.
    Description: This research has received funding from the Italian MIUR project Premiale Ash-RESILIENCE (FOE 2015), from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731070, and from Pianeta Dinamico INGV project.
    Description: Published
    Description: id 4056
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: volcano monitoring ; image processing ; thermal imaging ; eruption data ; atmospheric transmission ; HITRAN database ; Volcano monitoring thermal cameras
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-29
    Description: The first 5.3 years of magnetic data from three Swarm satellites have been systematically analyzed, and possible co-seismic magnetic disturbances in the ionosphere were investigated just a few minutes after the occurrence of large earthquakes. We preferred to limit the investigation to a subset of earthquakes selected in function of depth and magnitude. After a systematic inspection of the available data around (in time and space) the seismic events, we found 12 Swarm satellite tracks with co-seismic disturbances possibly produced by ten earthquakes from Mw5.6 to Mw6.9. The distance of the satellite to the earthquake epicenter corresponds to the measured distance-time arrival of the disturbance from the surface to the ionosphere, confirming that the identified disturbances are most likely produced by the seismic events. Secondly, we found a good agreement with a model that combined a propagation of the disturbance to the F2 ionospheric layer with an acoustic gravity wave at a velocity of about (2.2 0.3) km/s and a second faster phenomenon that transmits the disturbance from F2 layer to the Swarm satellite with a velocity of about (16 3) km/s as an electromagnetic scattering propagation.
    Description: Published
    Description: 1166
    Description: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Description: JCR Journal
    Keywords: coseismic phenomena ; ionospheric phenomena ; 01.02. Ionosphere ; 04.05. Geomagnetism ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group
    Publication Date: 2017-04-04
    Description: One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 E+04 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage).
    Description: This work was supported by the MED-SUV project, which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308665.
    Description: Published
    Description: 11908
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: dyke propagation ; Etna ; seismic signals ; ground fracturing ; conceptual modelling ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
    Description: Published
    Description: 30471
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: eruptive potential ; eruptive probability ; open conduit volcanoes ; Etna ; Soil CO2 flux ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-31
    Description: The pressure-gradient current is among the weaker ionospheric current systems arising from plasma pressure variations. It is also called diamagnetic current because it produces a magnetic field which is oriented oppositely to the ambient magnetic field, causing its reduction. The magnetic reduction can be revealed in measurements made by low-Earth orbiting satellites flying close to ionospheric plasma regions where rapid changes in density occur. Using geomagnetic field, plasma density and electron temperature measurements recorded on board ESA Swarm A satellite from April 2014 to March 2018, we reconstruct the flow patterns of the pressure-gradient current at high-latitude ionosphere in both hemispheres, and investigate their dependence on magnetic local time, geomagnetic activity, season and solar forcing drivers. Although being small in amplitude these currents appear to be a ubiquitous phenomenon at ionospheric high latitudes characterized by well defined flow patterns, which can cause artifacts in the main field models. Our findings can be used to correct magnetic field measurements for diamagnetic current effect, to improve modern magnetic field models, as well as to understand the impact of ionospheric irregularities on ionospheric dynamics at small-scale sizes of a few tens of kilometers.
    Description: Published
    Description: 1428
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: High-latitude ionosphere ; Pressure-gradient current ; Diamagnetic current ; Swarm constellation ; 01.02. Ionosphere ; 04.05. Geomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-04-22
    Description: An accurate understanding of dissimilarities in geomagnetic variability between quiet and disturbed periods has the potential to vastly improve space weather diagnosis. In this work, we exploit some recently developed methods of dynamical system theory to provide new insights and conceptual ideas in space weather science. In particular, we study the co-variation and recurrence statistics of two geomagnetic indices, SYM-H and AL, that measure the intensity of the globally symmetric component of the equatorial electrojet and that of the westward auroral electrojet, respectively. We find that the number of active degrees of freedom, required to describe the phase space dynamics of both indices, depends on the geomagnetic activity level. When the magnetospheric substorm activity, as monitored by the AL index, increases, the active number of degrees of freedom increases at high latitudes above the dimension obtained through classical time delay embedding methods. Conversely, a reduced number of degrees of freedom is observed during geomagnetic storms at low latitude by analysing the SYM-H index. By investigating time-dependent relations between both indices we find that a significant amount of information is shared between high and low latitude current systems originating from coupling mechanisms within the magnetosphere–ionosphere system as the result of a complex interplay between processes and phenomena of internal origin activated by the triggering of external source processes. Our observations support the idea that the near-Earth electromagnetic environment is a complex system far from an equilibrium
    Description: Published
    Description: 226
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Space weather ; geomagnetic storms ; magnetospheric substorms ; geomagnetic indices ; 04.05. Geomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-30
    Description: On 13 December 2020, Etna volcano entered a new eruptive phase, giving rise to a number of paroxysmal episodes involving increased Strombolian activity from the summit craters, lava fountains feeding several-km high eruptive columns and ash plumes, as well as lava flows. As of 2 August 2021, 57 such episodes have occurred in 2021, all of them from the New Southeast Crater (NSEC). Each paroxysmal episode lasted a few hours and was sometimes preceded (but more often followed) by lava flow output from the crater rim lasting a few hours. In this paper, we use remote sensing data from the ground and satellite, integrated with ground deformation data recorded by a high precision borehole strainmeter to characterize the 12 March 2021 eruptive episode, which was one of the most powerful (and best recorded) among that occurred since 13 December 2020. We describe the formation and growth of the lava fountains, and the way they feed the eruptive column and the ash plume, using data gathered from the INGV visible and thermal camera monitor- ing network, compared with satellite images. We show the growth of the lava flow field associated with the explosive phase obtained from a fixed thermal monitoring camera. We estimate the erupted volume of pyroclasts from the heights of the lava fountains measured by the cameras, and the erupted lava flow volume from the satellite-derived radiant heat flux. We compare all erupted volumes (pyro- clasts plus lava flows) with the total erupted volume inferred from the volcano deflation recorded by the borehole strainmeter, obtaining a total erupted volume of ~3 × 106 m3 of magma constrained by the strainmeter. This volume comprises ~1.6 × 106 m3 of pyroclasts erupted during the lava fountain and 2.4 × 106 m3 of lava flow, with ~30% of the erupted pyroclasts being remobilized as rootless lava to feed the lava flows. The episode lasted 130 min and resulted in an eruption rate of ~385 m3 s−1 and caused the formation of an ash plume rising from the margins of the lava fountain that rose up to 12.6 km a.s.l. in ~1 h. The maximum elevation of the ash plume was well constrained by an empirical formula that can be used for prompt hazard assessment.
    Description: Funding: This research was funded by the Project FIRST-ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019, (Delibera n. 144/2020; Scientific Responsibility: S.C.). The research has moreover benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile (DPC), All. B2-Task 11 “Real-time quantification of Etna’s eruptive activity from fixed thermal cameras and satellite data”. (Scientific Responsibility: G.G.) and Task 9 “Ottimiz- zazione dell’acquisizione dei segnali ad alta precisione degli strainmeter installati in pozzo sull’Etna” (Scientific Responsibility: A.B.). A.B. also benefited from the EC 298H2020-FET OPEN project grant agreement n. 863220 “SiC optical nano-strain-meters for pico-detection in Geosciences” (SiC nano for picoGeo). This paper does not necessarily represent DPC’s official opinions and policies.
    Description: Published
    Description: 3052
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Etna volcano ; paroxysmal explosive and effusive episodes ; volcanic hazard ; volcano monitoring ; remote sensing ; Etna volcano, paroxysmal explosions, volcanic hazard
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...