ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Sciences; Geology  (25)
  • Textbook of informatics
  • Springer-Verlag  (27)
  • Wiley  (3)
  • International Union of Crystallography (IUCr)
Collection
Language
  • 1
    Publication Date: 2021-03-29
    Description: Most studies dealing with material properties of sandstones are based on a small data set. The present study utilizes petrographical and petrophysical data from 22 selected sandstones and ~300 sandstones from the literature to estimate/predict the material and weathering behaviour of characteristic sandstones. Composition and fabric properties were determined from detailed thin section analyses. Statistical methods applied consist of data distributions with whisker plots and linear regression with confidence regions for the petrophysical and weathering properties. To identify similarities between individual sandstones and to define groups of specific sandstone types, principal component and cluster analyses were applied. The results confirm an interaction between the composition, depositional environment, stratigraphic association and diagenesis, which leads to a particular material behaviour of sandstones. Three different types of pore radii distributions are observed, whereby each is derived from different pore space modifications during diagenesis and is associated with specific sandstone types: (1) bimodal with a maximum in capillary and micropores, (2) unimodal unequal with a maximum in smaller capillary pores and (3) unimodal equable with a maximum in larger capillary pores. Each distribution shows specific dependencies to water absorption, salt loading and hygric dilatation. The strength–porosity relationship shows dependence on the content of unstable lithic fragments, grain contact and type of pore radii distribution, cementation and degree of alteration. Sandstones showing a maximum of capillary pores and micropores (bimodal) exhibit a distinct hygric dilatation and low salt resistance. These sandstones are highly immature sublitharenites–litharenites, characterized by altered unstable rock fragments, which show pointed-elongated grain contacts, and some pseudomatrix. Quartz arenites and sublitharenites–litharenites which are strongly compacted and cemented, show unimodal unequal pore radii distributions, low porosity, high strength and a high salt resistance. The presence of swellable clay minerals in sublitharenites–litharenites leads to a medium to high hygric dilatation, whereas quartz arenites show little hygric dilatation. Sandstones with unimodal equal pore radii distribution mostly belong to weakly compacted and cemented mature quartz arenites. These are characterized by high water absorption and high porosity, low to medium strength and a low salt resistance. The data compiled in this study are used to create a sandstone quality catalogue. Since material properties are dependent on many different parameters of influence, the transition between different lithotypes is fluent.
    Keywords: Sandstones; Pore space; Prediction; Weathering behavior; Compressive strength ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: The expansion processes that develop in building stones upon changes of moisture content may be an important contributing factor for their deteriorations. Until recently, few data could be found in the literature concerning this parameter and weathering processes. Moreover, the processes that may be responsible for the moisture related expansion of natural building stones are not yet completely understood. To further elucidate this process, extensive mineralogical, petrophysical and fabric investigations were performed on eight German sandstones in order to obtain more information regarding the weathering process and its dependence on the rock fabric. The analysed sandstones show a wide range of pore size distributions and porosities. A positive correlation with the fabric and the pore space can be found for all studied petrophysical parameters. The intensity of the expansion and related swelling pressure cannot be attributed only to the swelling of clay minerals. The investigations suggest that the micropores and the resulting disjoining pressure during wet/dry cycles also play an important role. The results obtained suggest that the mechanism is related to the presence of liquid water within the porous material.
    Keywords: Sandstone weathering; Moisture expansion; Hygric and hydric wetting; Swelling clay minerals ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer-Verlag | Berlin/Heidelberg
    Publication Date: 2021-03-29
    Description: The profitable production of dimension stone mainly depends on the extractable block size. The regularity and volume of the blocks are of critical importance, and are controlled by the three-dimensional pattern of the discontinuity system. Therefore, optimization of block size has to be the aim when quarrying for natural stone. This is mainly connected to the quantification of joints and fractures, i.e., their spacing and orientation. The problem of finding unfractured blocks within arbitrarily oriented and distributed planes can be solved effectively by a numerical algorithm. The main effects of joint orientations on block sizes and shapes will be presented in this article. Quantification of unfractured blocks with the aim of optimization is illustrated by detailed studies on several quarries. The algorithm used in this study can be applied as a powerful tool in the planning of a quarry and the future exploitation of dimension stone. Application of the described approach is demonstrated on practical examples of quarrying natural stones, namely, sandstone, granite, rhyolite, etc. Block quarrying can be optimized by using the new 3D-BlockExpert approach. The quantification of unfractured rock masses is also shown to contribute to a more ecological protection and the sustainable use of natural resources.
    Keywords: Production of dimension stones; Joints and fractures; Block sizes; Optimization ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-29
    Description: Damages to natural building stones induced by the action of frost are considered to be of great importance. Commonly, the frost resistance of building stones is checked by standardised freeze–thaw tests before using. Corresponding tests normally involve 30–50 freeze–thaw action cycles. In order to verify the significance of such measurements, we performed long-term tests on four selected rocks over 1,400 freeze–thaw action cycles. Additionally, numerous petrophysical parameters were analysed to compare the behaviour of rocks in the weathering tests according to the current explanatory models of stress formation by growing ice crystals in the pore space. The long-term tests yield more information about the real frost sensibility of the rocks. A clear deterioration cannot be determined in most cases until 50 weathering cycles have been completed. In the freeze–thaw tests, the samples are also stressed by changing temperature and moisture, indicating that different decay mechanisms can interfere with each other. Thus, thermohygric and moisture expansion are important damage processes.
    Keywords: Freeze–thaw action; Natural building stones; Microfabric; Pore space properties ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-29
    Description: Owing to its long building history, different types of building stones comprised the construction of the Cologne Cathedral. Severe damage is observed on the different stones, e.g., sandstones, carbonate, and volcanic rocks, especially when the different stone materials neighbor the medieval “Drachenfels trachyte” from the “Siebengebirge”. The question arises, “Is the insufficient compatibility of the implemented building materials causatively related to the strong decay of the Drachenfels trachyte?” The present investigations focus on the petrography and mineralogical composition of eight different stones from the Cologne Cathedral. Petrophysical data, i.e., phase content, moisture and thermal characteristics as well as strength properties are determined and discussed in correlation to each other, showing that not only in terms of lithology great differences exist, but also the petrophysical properties strongly diverge. The ascertained parameters are discussed in view of the deterioration behavior and decay mechanisms of the different stones. To evaluate the compatibility of original, replacement and modern building materials, the properties of the investigated stones are compared to those of Drachenfels trachyte by means of constraints given in the literature. Besides optical properties, petrophysical criteria are also defined as well as strength values. It could be shown that primarily moisture properties, i.e., capillary and sorptive water uptake, water saturation, drying processes and moisture dilatation can be addressed to the deterioration processes.
    Keywords: Stone decay; Cologne Cathedral; Compatibility of building materials; Requirements for replacement stones ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-29
    Description: In the presented case study, ascomycete fungi and green algae on a marble monument were identified by comparisons of the 18S rRNA gene sequences, which were obtained from DNA either from environmental samples or from enrichment cultures. The organisms were found to be responsible for either black or green surface coverings on different areas of the monument surface. Most fungi were related to plant-inhabiting genera, corresponding to a heavy soiling of the marble surface with honeydew. Whereas green algae of the genera Stichococcus, Chloroidium and Apatococcus were found to be dominant in all samples, isolates of two additional genera were recovered only from enrichment cultures. A reference strain of Apatococcus lobatus and an isolate of Prasiolopsis sp. were investigated with respect to putative surface adhesive structures of the cell envelope. The Prasiolopsis cell walls were covered with a thin adhesive exopolysaccharide layer involved in biofilm formation.
    Keywords: Marble monument; Biofilm; Ascomycete fungi; Green algae; Cell wall; Exopolysaccharide ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer-Verlag | Berlin/Heidelberg
    Publication Date: 2021-03-29
    Description: Bowing is a well-known phenomenon seen in marbles used as building veneers. This form of rock weathering occurs as a result of external factors such as temperature, humidity, the system for anchoring the marble slabs or the panel dimensions. Under the same external conditions, many factors will determine the degree of deformation including petrography, thermal properties and residual locked stresses. The usual way to solve the problem of bowed marble slabs is to replace them with other materials, such as granites, in which the deformation still exists but is less common. In this study, eight ornamental granites with different mineralogy, grain size, grain shape, porosity and fabric were tested in a laboratory to assess their susceptibility to bowing. Three slabs of granite, each cut with a different orientation, were studied under different conditions of temperature (90 and 120°C) and water saturation (dry and wet) to investigate the influence of these factors together with that of anisotropy. At 90°C, only the granite with the coarsest grain size and low porosity exhibited deformation under wet conditions. At 120°C and wet conditions, three of the granites showed evident signs of bowing. Again, the granite with the coarsest grain size was the most deformed. It was concluded that the wide grain size distribution influences microcracking more than other expected factors, such as the quartz content of the rock. Also, mineral shape-preferred orientation and porosity play an important role in the bowing of the studied granites.
    Keywords: Granitoids; Bowing; Texture; Thermal expansion ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-29
    Keywords: Landsat ETM+; Sea surface temperature; Submarine groundwater discharge; Groundwater resource ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-29
    Description: Slates are internationally known as roof and façade-cladding material since prehistoric times. The methods required to mine and manufacture these dimensional stones are relatively simple in comparison to those utilized in granitic dimensional stones. This has led to a worldwide rentable commercialization of slate in the last centuries and also to the development of characteristic cultural landscapes. In Uruguay several slates are mined and used in architecture, especially as façade cladding and floor slabs. The most important slates regarding their production and utilization are the dolomitic slates. These dolomitic slates are associated with the Neoproterozoic thrust and fold belt of the Dom Feliciano belt. Representative samples have been geochemically and petrographically characterized, as well as petrophysically and petromechanically analyzed. The petrophysical and petromechanical properties were investigated in a very systematic way with respect to the new European standards, showing values comparable to those registered for internationally known slates. Detailed structural and deposit analysis were carried out in Uruguay in order to evaluate the dolomitic slate deposits. The slates are linked to calc-silicate strata in a greenschist facies volcano-sedimentary sequence and the deposits are located in the limb of a regional fold, where bedding and cleavage are parallel. The main lithotype is a layered and fine-grained dolomitic slate with a quite diverse palette of colors: light and dark green, gray, dark gray, reddish and black. The mined slate is split into slabs 0.5–2 cm thick. In the past, the average production in Uruguay was around 4,000 tons/year and a historical maximum of 13,000 tons was reached in 1993 (Oyhantçabal et al. in Z dt Ges Geowiss 158(3):417–428, 2007). The oscillations in the regional demand were the cause of several flourishing and decay cycles in the activity, but our investigation shows a considerable volume of indicated resources and therefore a very good potential.
    Keywords: Slates; Dimensional stones; Petrophysical properties; Petrography; Uruguay ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-29
    Description: Microstructure‐based finite-element analysis with a microcracking algorithm was used to simulate an actual degradation phenomenon of marble structures, i.e., microcracking. Both microcrack initiation and crack propagation were characterized, as were their dependence on lattice preferred orientation (LPO), grain shape preferred orientation (SPO), grain size, marble composition (calcite and dolomite) and grain‐boundary fracture toughness. Two LPOs were analyzed: a random orientation distribution function and an orientation distribution function with strong directional crystalline texture generated from a March–Dollase distribution. Three SPOs were considered: equiaxed grains; elongated grains and a mixture of equiaxed and elongated grains. Three different grain sizes were considered: fine grains of order 200 μm (only calcitic marble); medium size grains of order 1 mm (calcitic and dolomitic marbles); and large grains of order 2 mm (only dolomitic marble). The fracture surface energy for the grain boundaries, γig, was chosen to be 20 and 40 % of the fracture surface energy of a grain, γxtal, so that both intergranular and transgranular fracture were possible. Studies were performed on these idealized marble microstructures to elucidate the range of microcracking responses. Simulations were performed for both heating and cooling by 50 °C in steps of 1 °C. Microcracking results were correlated with the thermoelastic responses, which are indicators related to degradation. The results indicate that certain combinations of LPO, SPO, grain size, grain‐boundary fracture toughness and marble composition have a significant influence on the thermal-elastic response of marble. Microstructure with the smallest grain size and the highest degree of SPO and LPO had less of a tendency to microcrack. Additionally, with increasing SPO and LPO microcracking becomes more spatially anisotropic. A significant observation for all microstructures was an asymmetry in microcracking upon heating and cooling: more microcracking was observed upon cooling than upon heating. Given an identical microstructure and crystallographic texture, calcite showed larger thermal stresses than dolomite, had an earlier onset of microcracking upon heating and cooling, and a greater microcracked area at a given temperature differential. Thermal expansion coefficients with and without microcracking were also determined.
    Keywords: Marble; Microcracking; Finite-element modeling; Lattice preferred orientation; Shape preferred orientation; Strain energy density; Maximum principal stress; Thermal expansion coefficient; Thermal expansion anisotropy ; 551 ; Earth Sciences; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...