ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • neutron diffraction  (3)
  • serial crystallography  (3)
  • Rietveld refinement  (2)
  • International Union of Crystallography  (8)
  • 1
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2021-03-30
    Description: Recently, the authors reported on the development of crystallinity in mixed‐tacticity polyhydroxybutyrates. Comparable values reported in the literature vary depending on the manner of determination, the discrepancies being partially attributable to scattering from paracrystalline portions of the material. These portions can be qualified by peak profile fitting or quantified by allocation of scattered X‐ray intensities. However, the latter requires a good quality of the former, which in turn must additionally account for peak broadening inherent in the measurement setup, and due to limited crystallite sizes and the possible presence of microstrain. Since broadening due to microstrain and paracrystalline order both scale with scattering vector, they are easily confounded. In this work, a method to directionally discern these two influences on the peak shape in a Rietveld refinement is presented. Allocating intensities to amorphous, bulk and paracrystalline portions with changing tactic disturbance provided internal validations of the obtained directional numbers. In addition, the correlation between obtained thermal factors and Young's moduli, determined in earlier work, is discussed.
    Description: A method to robustly determine paracrystalline contents from Rietveld‐refined powder X‐ray data is presented and discussed for the example of mixed‐tacticity polyhydroxybutyrates. image
    Keywords: 548 ; polyhydroxybutyrates ; mixed tacticity ; paracrystallinity ; Rietveld refinement ; thermal factors
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-14
    Description: X‐ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X‐ray sources and enabled by employing high‐frame‐rate X‐ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced. One major requirement is a software mask that identifies defective pixels in diffraction frames. This paper introduces a methodology and program based upon concepts of machine learning, called robust mask maker (RMM), for the generation of bad‐pixel masks for large‐area X‐ray pixel detectors based on modern robust statistics. It is proposed to discriminate normally behaving pixels from abnormal pixels by analysing routine measurements made with and without X‐ray illumination. Analysis software typically uses a Bragg peak finder to detect Bragg peaks and an indexing method to detect crystal lattices among those peaks. Without proper masking of the bad pixels, peak finding methods often confuse the abnormal values of bad pixels in a pattern with true Bragg peaks and flag such patterns as useful regardless, leading to storage of enormous uninformative data sets. Also, it is computationally very expensive for indexing methods to search for crystal lattices among false peaks and the solution may be biased. This paper shows how RMM vastly improves peak finders and prevents them from labelling bad pixels as Bragg peaks, by demonstrating its effectiveness on several serial crystallography data sets.
    Description: Attention is focused on perhaps the biggest bottleneck in data analysis for serial crystallography at X‐ray free‐electron lasers, which has not received serious enough examination to date. An effective and reliable way is presented to identify anomalies in detectors, using machine learning and recently developed mathematical methods in the field referred to as `robust statistics'. image
    Keywords: ddc:548 ; bad‐pixel masks ; robust mask maker ; machine learning ; robust statistics ; serial crystallography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-19
    Description: Serial crystallography experiments produce massive amounts of experimental data. Yet in spite of these large‐scale data sets, only a small percentage of the data are useful for downstream analysis. Thus, it is essential to differentiate reliably between acceptable data (hits) and unacceptable data (misses). To this end, a novel pipeline is proposed to categorize the data, which extracts features from the images, summarizes these features with the `bag of visual words' method and then classifies the images using machine learning. In addition, a novel study of various feature extractors and machine learning classifiers is presented, with the aim of finding the best feature extractor and machine learning classifier for serial crystallography data. The study reveals that the oriented FAST and rotated BRIEF (ORB) feature extractor with a multilayer perceptron classifier gives the best results. Finally, the ORB feature extractor with multilayer perceptron is evaluated on various data sets including both synthetic and experimental data, demonstrating superior performance compared with other feature extractors and classifiers.
    Description: A machine learning method for distinguishing good and bad images in serial crystallography is presented. To reduce the computational cost, this uses the oriented FAST and rotated BRIEF feature extraction method from computer vision to detect image features, followed by a multilayer perceptron (neural network) to classify the images.
    Keywords: ddc:548 ; serial crystallography ; data reduction ; machine learning ; feature extraction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-21
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The high‐intensity time‐of‐flight (TOF) neutron diffractometer POWTEX for powder and texture analysis is currently being built prior to operation in the eastern guide hall of the research reactor FRM II at Garching close to Munich, Germany. Because of the world‐wide 〈sup〉3〈/sup〉He crisis in 2009, the authors promptly initiated the development of 〈sup〉3〈/sup〉He‐free detector alternatives that are tailor‐made for the requirements of large‐area diffractometers. Herein is reported the 2017 enterprise to operate one mounting unit of the final POWTEX detector on the neutron powder diffractometer POWGEN at the Spallation Neutron Source located at Oak Ridge National Laboratory, USA. As a result, presented here are the first angular‐ and wavelength‐dependent data from the POWTEX detector, unfortunately damaged by a 50〈italic〉g〈/italic〉 shock but still operating, as well as the efforts made both to characterize the transport damage and to successfully recalibrate the voxel positions in order to yield nonetheless reliable measurements. Also described is the current data reduction process using the 〈italic〉PowderReduceP2D〈/italic〉 algorithm implemented in 〈italic〉Mantid〈/italic〉 [Arnold 〈italic〉et al.〈/italic〉 (2014). 〈italic〉Nucl. Instrum. Methods Phys. Res. A〈/italic〉, 〈bold〉764〈/bold〉, 156–166]. The final part of the data treatment chain, namely a novel multi‐dimensional refinement using a modified version of the 〈italic〉GSAS‐II〈/italic〉 software suite [〈ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?aj5212"〉Toby & Von Dreele (2013). 〈italic〉J. Appl. Cryst.〈/italic〉〈bold〉46〈/bold〉, 544–549〈/ext-link〉], is compared with a standard data treatment of the same event data conventionally reduced as TOF diffraction patterns and refined with the unmodified version of 〈italic〉GSAS‐II〈/italic〉. This involves both determining the instrumental resolution parameters using POWGEN's powdered diamond standard sample and the refinement of a friendly‐user sample, BaZn(NCN)〈sub〉2〈/sub〉. Although each structural parameter on its own looks similar upon comparing the conventional (1D) and multi‐dimensional (2D) treatments, also in terms of precision, a closer view shows small but possibly significant differences. For example, the somewhat suspicious proximity of the 〈italic〉a〈/italic〉 and 〈italic〉b〈/italic〉 lattice parameters of BaZn(NCN)〈sub〉2〈/sub〉 crystallizing in 〈italic〉Pbca〈/italic〉 as resulting from the 1D refinement (0.008 Å) is five times less pronounced in the 2D refinement (0.038 Å). Similar features are found when comparing bond lengths and bond angles, 〈italic〉e.g.〈/italic〉 the two N—C—N units are less differently bent in the 1D results (173 and 175°) than in the 2D results (167 and 173°). The results are of importance not only for POWTEX but also for other neutron TOF diffractometers with large‐area detectors, like POWGEN at the SNS or the future DREAM beamline at the European Spallation Source.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The first real‐world neutron diffraction data have been collected with one of the POWTEX detectors (FRM II, Garching, Germany) mounted for testing at the Spallation Neutron Source (Oak Ridge National Laboratory, USA). They allow for angular‐ and wavelength‐dispersive Rietveld refinement using a modified version of 〈italic〉GSAS‐II〈/italic〉.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005767:jcr2tu5033:jcr2tu5033-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; neutron detectors ; POWGEN beamline ; POWTEX detector ; DREAM beamline ; time‐of‐flight diffraction ; angular‐dispersive refinement ; wavelength‐dispersive refinement ; powder diffraction ; Rietveld refinement ; multi‐dimensional refinement
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-24
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Complex functional materials play a crucial role in a broad range of energy‐related applications and in general for materials science. Revealing the structural mechanisms is challenging due to highly correlated coexisting phases and microstructures, especially for 〈italic〉in situ〈/italic〉 or 〈italic〉operando〈/italic〉 investigations. Since the grain sizes influence the properties, these microstructural features further complicate investigations at synchrotrons due to the limitations of illuminated sample volumes. In this study, it is demonstrated that such complex functional materials with highly correlated coexisting phases can be investigated under 〈italic〉in situ〈/italic〉 conditions with neutron diffraction. For large grain sizes, these experiments are valuable methods to reveal the structural mechanisms. For an example of 〈italic〉in situ〈/italic〉 experiments on barium titanate with an applied electric field, details of the electric‐field‐induced phase transformation depending on grain size and frequency are revealed. The results uncover the strain mechanisms in barium titanate and elucidate the complex interplay of stresses in relation to grain sizes as well as domain‐wall densities and mobilities.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This work reports 〈italic〉in situ〈/italic〉 neutron diffraction experiments on a broad range of grain sizes of barium titanate. The study reveals the grain‐size‐dependent strain mechanisms and shows the competitiveness of neutron diffraction with high‐resolution synchrotron diffraction.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005767:jcr2vb5054:jcr2vb5054-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:550.724 ; ddc:548 ; neutron diffraction ; in situ ; applied electric fields ; barium titanate ; strain mechanisms ; grain sizes ; complex functional materials ; microstructures ; coexisting phases
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-27
    Description: Serial crystallography records still diffraction patterns from single, randomly oriented crystals, then merges data from hundreds or thousands of them to form a complete data set. To process the data, the diffraction patterns must first be indexed, equivalent to determining the orientation of each crystal. A novel automatic indexing algorithm is presented, which in tests usually gives significantly higher indexing rates than alternative programs currently available for this task. The algorithm does not require prior knowledge of the lattice parameters but can make use of that information if provided, and also allows indexing of diffraction patterns generated by several crystals in the beam. Cases with a small number of Bragg spots per pattern appear to particularly benefit from the new approach. The algorithm has been implemented and optimized for fast execution, making it suitable for real‐time feedback during serial crystallography experiments. It is implemented in an open‐source C++ library and distributed under the LGPLv3 licence. An interface to it has been added to the CrystFEL software suite.
    Description: A description and evaluation are given of XGANDALF, extended gradient descent algorithm for lattice finding, an algorithm developed for fast and accurate indexing of snapshot diffraction patterns. image
    Keywords: 548 ; indexing ; XGANDALF ; CrystFEL ; multiple lattices ; serial crystallography
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉XDSGUI〈/italic〉 is a lightweight graphical user interface (GUI) for the 〈italic〉XDS〈/italic〉, 〈italic〉SHELX〈/italic〉 and 〈italic〉ARCIMBOLDO〈/italic〉 program packages that serves both novice and experienced users in obtaining optimal processing and phasing results for X‐ray, neutron and electron diffraction data. The design of the program enables data processing and phasing without command line usage, and supports advanced command flows in a simple user‐modifiable and user‐extensible way. The GUI supplies graphical information based on the tabular log output of the programs, which is more intuitive, comprehensible and efficient than text output can be.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉A customizable stateless graphical user interface simplifies the processing, analysis and phasing of diffraction data.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005767:jcr2yr5110:jcr2yr5110-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; X‐ray diffraction ; neutron diffraction ; electron diffraction ; data processing ; graphical user interfaces ; phasing ; XDS ; ARCIMBOLDO ; SHELX
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-06
    Description: The nuclear and magnetic structures of Mn3Fe2Si3 are investigated in the temperature range from 20 to 300 K. The magnetic properties of Mn3Fe2Si3 were measured on a single crystal. The compound undergoes a paramagnetic to antiferromagnetic transition at TN2 ≃ 120 K and an antiferromagnetic to antiferromagnetic transition at TN1 ≃ 69 K. A similar sequence of magnetic phase transitions is found for the parent compound Mn5Si3 upon temperature variation, but the field‐driven transition observed in Mn5Si3 is not found in Mn3Fe2Si3, resulting in a strongly reduced magnetocaloric effect. Structurally, the hexagonal symmetry found for both compounds under ambient conditions is preserved in Mn3Fe2Si3 through both magnetic transitions, indicating that the crystal structure is only weakly affected by the magnetic phase transition, in contrast to Mn5Si3 where both transitions distort the nuclear structure. Both compounds feature a collinear high‐temperature magnetic phase AF2 and transfer into a non‐collinear phase AF1 at low temperature. While one of the distinct crystallographic sites remains disordered in the AF2 phase in the parent compound, the magnetic structure in the AF2 phase involves all magnetic atoms in Mn3Fe2Si3. These observations imply that the distinct sites occupied by the magnetic atoms play an important role in the magnetocaloric behaviour of the family.
    Description: The nuclear and magnetic structures of Mn3Fe2Si3 are determined and the magnetic properties are compared with those of the parent compound Mn5Si3. The results imply that the distinct magnetic sites play an important role in the magnetocaloric behaviour of the family. image
    Keywords: ddc:548 ; magnetocaloric effect ; magnetic structure ; neutron diffraction ; synchrotron diffraction ; site dependence
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...