ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (80,951)
  • Institute of Physics  (56,945)
  • Molecular Diversity Preservation International  (24,006)
  • Geography  (73,399)
  • Computer Science  (7,552)
Collection
  • Articles  (80,951)
Years
Journal
  • 1
    Publication Date: 2021-10-28
    Description: Although remote sensors have been increasingly providing dense data and deriving reanalysis data for inversion of particulate matters, the use of these data is considerably limited by the ground monitoring samples and conventional machine learning models. As regional criteria air pollutants, particulate matters present a strong spatial correlation of long range. Conventional machine learning cannot or can only model such spatial pattern in a limited way. Here, we propose a method of a geographic graph hybrid network to encode a spatial neighborhood feature to make robust estimation of coarse and fine particulate matters (PM10 and PM2.5). Based on Tobler’s First Law of Geography and graph convolutions, we constructed the architecture of a geographic graph hybrid network, in which full residual deep layers were connected with graph convolutions to reduce over-smoothing, subject to the PM10–PM2.5 relationship constraint. In the site-based independent test in mainland China (2015–2018), our method achieved much better generalization than typical state-of-the-art methods (improvement in R2: 8–78%, decrease in RMSE: 14–48%). This study shows that the proposed method can encode the neighborhood information and can make an important contribution to improvement in generalization and extrapolation of geo-features with strong spatial correlation, such as PM2.5 and PM10.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Moored upward-looking Acoustic Doppler Current Profilers (ADCPs) can be used to observe sea ice draft. While previous studies relied on the availability of auxiliary pressure sensors to measure the instrument depth of the ADCP, we present an adaptive approach that infers instrument depth from ADCP bottom track (BT) mode measurements of error velocity and range. The ADCP-derived ice draft time series are validated with data from adjacent Upward-Looking Sonar (ULS) moorings. We demonstrate that this method can be used to obtain daily mean sea ice draft time series that, on average, are within 20% of ULS-derived draft time series. ULS and ADCP ice draft time series were observed by four moorings in the Laptev Sea and show correlations between 0.7 and 0.9. This new approach is not a substitute for high-frequency, high-precision ULS measurements of ice draft but it provides a low-cost opportunity to derive daily mean ice draft time series accessing existing ADCP data that have not been not used for that purpose to date. This method has the potential to close data gaps and extend existing ice draft time series in all ice-covered regions and supports the validation of sea ice thickness products from satellite missions such as CryoSat-2, SMOS or ENVISAT.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: Air temperature (Ta), defined as the temperature 2 m above the land’s surface, is one of the most important factors for environment and climate studies. Ta can be measured by obtaining the land surface temperature (LST) which can be retrieved with the 11- and 12-µm bands from satellite imagery over a large area, and LST is highly correlated with Ta. To measure the Ta in a broad area, we studied a Ta retrieval method through Deep Neural Network (DNN) using in-situ data and satellite data of South Korea from 2014 to 2017. To retrieve accurate Ta, we selected proper input variables and conditions of a DNN model. As a result, Normalized Difference Vegetation Index, Normalized Difference Water Index, and 11- and 12-µm band data were applied to the DNN model as input variables. And we also selected proper condition of the DNN model with test various conditions of the model. In validation result in the DNN model, the best accuracy of the retrieved Ta showed an correlation coefficient value of 0.98 and a root mean square error (RMSE) of 2.19 K. And then we additional 3 analysis to validate accuracy which are spatial representativeness, seasonal analysis and time series analysis. We tested the spatial representativeness of the retrieved Ta. Results for window sizes less than 132 × 132 showed high accuracy, with a correlation coefficient of over 0.97 and a RMSE of 1.96 K and a bias of −0.00856 K. And in seasonal analysis, the spring season showed the lowest accuracy, 2.82 K RMSE value, other seasons showed high accuracy under 2K RMSE value. We also analyzed a time series of six the Automated Synoptic Observing System (ASOS) points (i.e., locations) using data obtained from 2018 to 2019; all of the individual correlation coefficient values were over 0.97 and the RMSE values were under 2.41 K. With these analysis, we confirm accuracy of the DNN model was higher than previous studies. And we thought the retrieved Ta can be used in other studies or climate model to conduct urban problems like urban heat islands and to analyze effects of arctic oscillation.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: The fight against the COVID-19 pandemic still involves many struggles and challenges. The greatest challenge that most governments are currently facing is the lack of a precise, accurate, and automated mechanism for detecting and tracking new COVID-19 cases. In response to this challenge, this study proposes the first blockchain-based system, called the COVID-19 contact tracing system (CCTS), to verify, track, and detect new cases of COVID-19. The proposed system consists of four integrated components: an infection verifier subsystem, a mass surveillance subsystem, a P2P mobile application, and a blockchain platform for managing all transactions between the three subsystem models. To investigate the performance of the proposed system, CCTS has been simulated and tested against a created dataset consisting of 300 confirmed cases and 2539 contacts. Based on the metrics of the confusion matrix (i.e., recall, precision, accuracy, and F1 Score), the detection evaluation results proved that the proposed blockchain-based system achieved an average of accuracy of 75.79% and a false discovery rate (FDR) of 0.004 in recognizing persons in contact with COVID-19 patients within two different areas of infection covered by GPS. Moreover, the simulation results also demonstrated the success of the proposed system in performing self-estimation of infection probabilities and sending and receiving infection alerts in P2P communications in crowds of people by users. The infection probability results have been calculated using the binomial distribution function technique. This result can be considered unique compared with other similar systems in the literature. The new system could support governments, health authorities, and citizens in making critical decisions regarding infection detection, prediction, tracking, and avoiding the COVID-19 outbreak. Moreover, the functionality of the proposed CCTS can be adapted to work against any other similar pandemics in the future.
    Electronic ISSN: 2227-9709
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: Semi-natural grasslands contribute highly to biodiversity and other ecosystem services, but they are at risk by the spread of invasive plant species, which alter their habitat structure. Large area grassland monitoring can be a powerful tool to manage invaded ecosystems. Therefore, WorldView-3 multispectral sensor data was utilized to train multiple machine learning algorithms in an automatic machine learning workflow called ‘H2O AutoML’ to detect L. polyphyllus in a nature protection grassland ecosystem. Different degree of L. polyphyllus cover was collected on 3 × 3 m2 reference plots, and multispectral bands, indices, and texture features were used in a feature selection process to identify the most promising classification model and machine learning algorithm based on mean per class error, log loss, and AUC metrics. The best performance was achieved with a binary classification of lupin-free vs. fully invaded 3 × 3 m2 plot classification with a set of 7 features out of 763. The findings reveal that L. polyphyllus detection from WorldView-3 sensor data is limited to large dominant spots and not recommendable for lower plant coverage, especially single plant detection. Further research is needed to clarify if different phenological stages of L. polyphyllus as well as time series increase classification performance.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: An information retrieval (IR) system is the core of many applications, including digital library management systems (DLMS). The IR-based DLMS depends on either the title with keywords or content as symbolic strings. In contrast, it ignores the meaning of the content or what it indicates. Many researchers tried to improve IR systems either using the named entity recognition (NER) technique or the words’ meaning (word sense) and implemented the improvements with a specific language. However, they did not test the IR system using NER and word sense disambiguation together to study the behavior of this system in the presence of these techniques. This paper aims to improve the information retrieval system used by the DLMS by adding the NER and word sense disambiguation (WSD) together for the English and Arabic languages. For NER, a voting technique was used among three completely different classifiers: rules-based, conditional random field (CRF), and bidirectional LSTM-CNN. For WSD, an examples-based method was used to implement it for the first time with the English language. For the IR system, a vector space model (VSM) was used to test the information retrieval system, and it was tested on samples from the library of the University of Kufa for the Arabic and English languages. The overall system results show that the precision, recall, and F-measures were increased from 70.9%, 74.2%, and 72.5% to 89.7%, 91.5%, and 90.6% for the English language and from 66.3%, 69.7%, and 68.0% to 89.3%, 87.1%, and 88.2% for the Arabic language.
    Electronic ISSN: 2504-2289
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: This paper proposes a new variational model for segmentation of low-contrast and piecewise smooth images. The model is motivated by the two-stage image segmentation work of Cai–Chan–Zeng (2013) for the Mumford–Shah model. To deal with low-contrast images more effectively, especially in treating higher-order discontinuities, we follow the idea of the Blake–Zisserman model instead of the Mumford–Shah. Two practical ideas are introduced here: first, a convex relaxation idea is used to derive an implementable formulation, and second, a game reformulation is proposed to reduce the strong dependence of coupling parameters. The proposed model is then analysed for existence and further solved by an ADMM solver. Numerical experiments can show that the new model outperforms the current state-of-the-art models for some challenging and low-contrast images.
    Electronic ISSN: 2313-433X
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: Monitoring of land use, land-use changes, and forestry (LULUCF) plays a crucial role in biodiversity and global environmental challenges. In 2015, the Food and Agriculture Organization of the United Nations (FAO) launched the Global Forest Survey (GFS) integrating medium- (MR) and very-high-resolution (VHR) images through the FAO’s Collect Earth platform. More than 11,150 plots were inventoried in the Temperate FAO ecozone in Europe to monitor LULUCF from 2000 to 2015. As a result, 2.19% (VHR) to 2.77% (MR/VHR) of the study area underwent LULUCF, including a 0.37% (VHR) to 0.43% (MR/VHR) net increase in forest lands. Collect Earth and VHR images have also (i) allowed for shaping a preliminary structure of the land-use network, showing that cropland was the land type that changed most and that cropland and grassland were the more frequent land uses that generated new forest land, (ii) shown that, in 2015, mixed and monospecific forests represented 44.3% and 46.5% of the forest land, respectively, unlike other forest sources, and (iii) shown that 14.9% of the area had been affected by disturbances, particularly wood harvesting (67.47% of the disturbed forests). According to other authors, the area showed a strong correlation between canopy mortality and reported wood removals due to the transition from past clear-cut systems to “close-to-nature” silviculture.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: Algae serves as a food source for a wide range of aquatic species; however, a high concentration of inorganic nutrients under favorable conditions can result in the development of harmful algal blooms (HABs). Many studies have addressed HAB detection and monitoring; however, no global scale meta-analysis has specifically explored remote sensing-based HAB monitoring. Therefore, this manuscript elucidates and visualizes spatiotemporal trends in HAB detection and monitoring using remote sensing methods and discusses future insights through a meta-analysis of 420 journal articles. The results indicate an increase in the quantity of published articles which have facilitated the analysis of sensors, software, and HAB proxy estimation methods. The comparison across multiple studies highlighted the need for a standardized reporting method for HAB proxy estimation. Research gaps include: (1) atmospheric correction methods, particularly for turbid waters, (2) the use of analytical-based models, (3) the application of machine learning algorithms, (4) the generation of harmonized virtual constellation and data fusion for increased spatial and temporal resolutions, and (5) the use of cloud-computing platforms for large scale HAB detection and monitoring. The planned hyperspectral satellites will aid in filling these gaps to some extent. Overall, this review provides a snapshot of spatiotemporal trends in HAB monitoring to assist in decision making for future studies.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-28
    Description: A new phase-based filter (called improved analytical signal (IAS)) is introduced to detect buried unexploded ordnance (UXO) precisely from magnetic fields using the arcsine function of the ratio of the first-order vertical derivative of the analytical signal to the first-order derivatives of the x-, y-, and z-components of the analytical signal. The calculations are computed in the frequency domain and then transformed back into the space domain using the inverse Fourier transform. The filter has been tested on magnetic data collected at a test site with UXO bodies of variable orientation. It was also validated on magnetic data measured at a former army artillery range in Slovakia. The results show that the IAS filter not only revealed better imaging of the UXO bodies compared to the other commonly used filters but also produced a high-resolution image with much less influence of noise.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...