ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
  • Physics
  • INGV  (39)
  • Springer  (8)
Collection
Keywords
  • 1
    Publication Date: 2021-06-30
    Description: The NNE-trending Yangsan Fault (YSF) is the most prominent fault in the southeastern part of the Korean Peninsula and has a continuous trace about 200 km long. Activity on this fault was recently investigated using aerial photographs, topographic analysis, and trenching. The geomorphologic evidence of Late Quaternary faulting is clearly recognized on both the northern (Yugyeri and Tosung-ri areas) and southern parts (Eonyang to Tongdosa area) of the fault. The main YSF is marked by a zone of shattered rock that is tens of meters wide and zone of fault gouge. During the Late Quaternary, right-lateral movement occurred mainly on the southern part, as shown by lowangle striations on the fault plane, elongation of deformation features in the fault gouge. The estimated vertical slip rate is about 0.02-0.07 mm/yr, and the lateral slip rate may be several times larger than the vertical rate. The most recent event occurred prior to deposition of Holocene alluvium. In the northern part, the fault locally changes trend to almost N-S, dips to the east and has reverse movement. The average vertical slip rate is estimated less than 0.1 mm/yr. The most recent event probably occurred after 1314 cal. years BP (A.D. 536).
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Yangsan Fault (YSF) ; Korean Peninsula ; averge slip rate ; most recent event ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1191475 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-11
    Description: Although the Altyn Tagh Fault (ATF) is thought to play a key role in accommodating India-Eurasian convergence, little is known about its earthquake history. Studies of this strike-slip fault are important for interpretation of the role of faulting versus distributed deformation in the accommodation of the India- Eurasia collision. In addition, the 〉 1200 km long fault represents one of the most important and exemplary intracontinental strike-slip faults in the world. We mapped fault trace geometry and interpreted paleoseismic trench exposures to characterize the seismogenic behavior of the ATF. We identified 2 geometric segment boundaries in a 270 km long reach of the central ATF. These boundaries define the westernmost Wuzhunxiao, the Central Pingding, and the easternmost Xorxol (also written as Suekuli or Suo erkuli) segments. In this paper, we present the results from the Camel paleoseismic site along the Xorxol Segment at 91.759°E, 38.919°N. There evidence for the last two earthquakes is clear and 14C dates from layers exposed in the excavation bracket their ages. The most recent earthquake occurred between 1456 and 1775 cal A.D. and the penultimate event was between 60 and 980 cal A.D. Combining the Camel interpretations with our published results for the central ATF, we conclude that multiple earthquakes with shorter rupture lengths (?? 50 km) rather than complete rupture of the Xorxol Segment better explain the paleoseismic data. We found 2-3 earthquakes in the last 2-3 kyr. When coupled with typical amounts of slip per event (5-10 m), the recurrence times are tentatively consistent with 1-2 cm/yr slip rates. This result favors models that consider the broader distribution of collisional deformation, rather than those with northward motion of India into Asia absorbed along a few faults bounding rigid blocks.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismology ; Altyn Tagh Fault ; strike-slip faults ; India-Eurasia collision ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1161909 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-27
    Description: The simulation of a stacked radargram requires the calculation of a set of common-source experiments and application of the standard processing sequence. To reduce computing time, a zero-offset stacked section can be obtained with a single simulation, by using the exploding-reflector concept and the so-called non-reflecting wave equation. This non-physical modification of the wave equation implies a constant impedance model to avoid multiple reflections, which are, in principle, absent from stacked sections and constitute unwanted artifacts in migration processes. Magnetic permeability is used as a free parameter to obtain a constant impedance model and avoid multiple reflections. The reflection strength is then implicit in the source strength. Moreover, the method generates normal-incidence reflections, i.e. those having identical downgoing and upgoing wave paths.Exploding reflector experiments provide correct travel times of diffraction and reflection events, in contrast to the plane-wave method.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: exploding reflector ; zero-offset section ; GPR modeling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 106892 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-16
    Description: The North Tabriz Fault is a major seismogenic fault in NW Iran. The last damaging earthquakes on this fault occurred in 1721, rupturing the southeastern fault segment, and in 1780, rupturing the northwestern one. The understanding of the seismic behavior of this fault is critical for assessing the hazard in Tabriz, one of the major cities of Iran; the city suffered major damage in both the 1721 and 1780 events. Our study area is located on the northwestern fault segment, west of the city of Tabriz. We performed geomorphic and trenching investigations, which allowed us to recognize evidence for repeated faulting events since the Late Pleistocene. From the trenches, we found evidence for at least four events during the past 3.6 ka, the most recent one being the 1780 earthquake. On the basis of different approaches, horizontal slip per event and slip rates are found in the ranges of 4 ± 0.5 m and 3.1-6.4 mm/yr, respectively. We also attempted an estimate of the average recurrence intervals which appears to be in the range 350-1430 years, with a mean recurrence interval of 821 ± 176 years. On the basis of these results, the northwestern segment of the North Tabriz Fault does not appear to present a major seismic potential for the near future, however, not enough is known about the southeastern segment of the fault to make a comparable conclusion.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: active tectonics ; paleoseismology ; Iran Tabriz ; earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 986628 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-03
    Description: Il 6 Aprile 2009 un terremoto di Ml=5.8 (Mw=6.2) ha colpito L’Aquila e la media valle dell’Aterno in Abruzzo. In questo lavoro presentiamo in maniera sintetica i rilievi geologici effettuati in campagna dal gruppo di lavoro EmerGeo a seguito della sequenza sismica aquilana. Le attività di rilevamento condotte sono consistite principalmente nella verifica, definizione e caratterizzazione delle deformazioni cosismiche superficiali osservate lungo le strutture tettoniche note in letteratura; sono stati inoltre rilevati e riportati altri effetti cosismici locali (fratture su asfalto, frane e scivolamenti) non direttamente collegati alla presenza di strutture tettoniche. In totale sono stati rilevati oltre 300 punti di osservazione su una porzione di territorio estesa circa 900 km2. L’analisi preliminare dei rilievi effettuati indica che le rotture osservate lungo la faglia di Paganica, per la continuità e le caratteristiche, rappresentano l’espressione superficiale della faglia responsabile dell’evento del 6 aprile 2009, e che le rotture lungo le faglie di Bazzano e di Monticchio-Fossa possono rappresentare l’espressione in superficie di una struttura antitetica riattivata durante l’evento.
    Description: Published
    Description: 1-79
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: coseismic ruptures ; Central Apennines ; April, 6 2009 earthquake ; Aterno valley ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Gli autori sono anche gli Editor di questo numero speciale
    Description: N. A.
    Description: Published
    Description: V-VII
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: geomagnetic measurements ; geomagnetic field variations ; remote regions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: A ground magnetic study of Ustica Island was performed to provide new insights into subsurface tectonic and volcanic structures. The total-intensity anomaly field, obtained after a data-reduction procedure, shows the presence of a W–E-striking magnetic anomaly in the middle of the island and another two intense anomalies, which seem to continue offshore, in the southwestern and the northeastern sides, respectively. The detected anomalies were analyzed by a quadratic programming (QP) algorithm to obtain a 3D subsurface magnetization distribution. The volcano magnetization model reveals the presence of intensely magnetized volumes, interpreted as the feeding systems of the main eruptive centers of the island, which roughly follow the trend of the main regional structural lineaments. These findings highlight how regional tectonics has strongly affected the structural and magmatic evolution of the Ustica volcanic complex producing preferential ways for magma ascent.
    Description: Published
    Description: 869-879
    Description: JCR Journal
    Description: reserved
    Keywords: Magnetic survey ; Ustica Island ; Inverse magnetic modeling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 578639 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-03
    Description: Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a ‘territorial’ approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysicalengineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard.
    Description: Published
    Description: 395-414
    Description: JCR Journal
    Description: reserved
    Keywords: archaeoseismology ; historical seismology ; geoarchaeology ; environmental archaeology ; natural catastrophes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This paper shows the results of a detailed reprocessing of aeromagnetic data,obtained by the downward projection to the seabed. The area of interest is centered over the Tyrrhenian Basin,whose bathymetric –topographic lay-out is characterized by a somewhat irregular trend.The origin of the intense depth variations depends on the Tyrrhenian structural setting,that is associated with the presence of several tectonic lineaments,seamounts or volcanic islands.The data were characterized by good quality and dense sam- pling,but they have been reprocessed in order either to solve some problems in the original compilation,and to reduce the distor- tion of the geomagnetic anomaly field caused by the difference of distance between the survey level and the magnetic source.The reprocessed magnetic map is proposed as an e ffective analysis tool for the Tyrrhenian area that is characterized by high susceptibility lithotypes.Downward projection of the aeromagnetic data by BTM algorithm increases the de finition of the anomalous magnetic signal without distortions in the geometric pattern of the field,thus showing a more stable and effective association between the magnetic anomalies and their geological sources.This effect is particularly true for high frequency anomalies that are directly comparable after the topographic projection because the depth filtering effect is attenuated.Moreover,the BTM method has been applied for the first time to a regional scale survey that shows substantial advantages because no fictitious anomalies in the high frequency sector of the spectrum were generated.This has been a typical effect of the traditional downward projection methods widely used before.The final result is a BTM anomaly map that is able to show the structural connections between the geological magnetic sources of the Tyrrhenian Sea area.
    Description: Published
    Description: 265-277
    Description: reserved
    Keywords: Potential methods,marine geomagnetism,downward continuation,Tyrrhenian Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1155691 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude C 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20 trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22–23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6–6.7.
    Description: Dipartimento della Protezione Civile Nazionale
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Active fault ; Slip rate ; Maximum expected magnitude ; Continental stratigraphy ; Sulmona basin ; Central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...