ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zou, Zhihua -- Horowitz, Lisa F -- Montmayeur, Jean-Pierre -- Snapper, Scott -- Buck, Linda B -- England -- Nature. 2008 Mar 6;452(7183):120. doi: 10.1038/nature06819.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18322536" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Zhaohuan -- England -- Nature. 2015 Nov 19;527(7578):310-1. doi: 10.1038/527310a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26581286" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Zhihuai -- Hoffman, Jennifer E -- England -- Nature. 2014 Sep 18;513(7518):319-20. doi: 10.1038/513319a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25230648" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-04-04
    Description: Understanding inter-individual differences in stress response requires the explanation of genetic influences at multiple phenotypic levels, including complex behaviours and the metabolic responses of brain regions to emotional stimuli. Neuropeptide Y (NPY) is anxiolytic and its release is induced by stress. NPY is abundantly expressed in regions of the limbic system that are implicated in arousal and in the assignment of emotional valences to stimuli and memories. Here we show that haplotype-driven NPY expression predicts brain responses to emotional and stress challenges and also inversely correlates with trait anxiety. NPY haplotypes predicted levels of NPY messenger RNA in post-mortem brain and lymphoblasts, and levels of plasma NPY. Lower haplotype-driven NPY expression predicted higher emotion-induced activation of the amygdala, as well as diminished resiliency as assessed by pain/stress-induced activations of endogenous opioid neurotransmission in various brain regions. A single nucleotide polymorphism (SNP rs16147) located in the promoter region alters NPY expression in vitro and seems to account for more than half of the variation in expression in vivo. These convergent findings are consistent with the function of NPY as an anxiolytic peptide and help to explain inter-individual variation in resiliency to stress, a risk factor for many diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715959/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715959/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zhifeng -- Zhu, Guanshan -- Hariri, Ahmad R -- Enoch, Mary-Anne -- Scott, David -- Sinha, Rajita -- Virkkunen, Matti -- Mash, Deborah C -- Lipsky, Robert H -- Hu, Xian-Zhang -- Hodgkinson, Colin A -- Xu, Ke -- Buzas, Beata -- Yuan, Qiaoping -- Shen, Pei-Hong -- Ferrell, Robert E -- Manuck, Stephen B -- Brown, Sarah M -- Hauger, Richard L -- Stohler, Christian S -- Zubieta, Jon-Kar -- Goldman, David -- K01 MH072837/MH/NIMH NIH HHS/ -- K02-DA17232/DA/NIDA NIH HHS/ -- P01 HL040962/HL/NHLBI NIH HHS/ -- P50-DA16556/DA/NIDA NIH HHS/ -- PL1 DA024859/DA/NIDA NIH HHS/ -- PL1 DA024859-02/DA/NIDA NIH HHS/ -- R01 DA 016423/DA/NIDA NIH HHS/ -- R01 DE 15396/DE/NIDCR NIH HHS/ -- R01 HL065137/HL/NHLBI NIH HHS/ -- R01 MH074697/MH/NIMH NIH HHS/ -- R01 MH074697-04A1/MH/NIMH NIH HHS/ -- R01-AA13892/AA/NIAAA NIH HHS/ -- Z01 AA000301-09/Intramural NIH HHS/ -- Z99 AA999999/Intramural NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):997-1001. doi: 10.1038/nature06858. Epub 2008 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Neurogenetics, NIAAA, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18385673" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Anxiety/genetics ; Anxiety Disorders/genetics ; Brain/*metabolism/physiology/physiopathology ; *Emotions ; European Continental Ancestry Group/genetics ; Facial Expression ; Finland/ethnology ; Gene Expression Regulation/*genetics ; Genetic Variation/*genetics ; Haplotypes/genetics ; Humans ; Lymphocytes/metabolism ; Magnetic Resonance Imaging ; Male ; Neuropeptide Y/blood/*genetics ; Opioid Peptides/metabolism ; Pain/genetics ; Polymorphism, Single Nucleotide/genetics ; RNA, Messenger/genetics/metabolism ; Stress, Physiological/*genetics/psychology ; United States/ethnology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-18
    Description: The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3-H4)(2) heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An alpha-helix and an irregular loop at the conserved amino terminus and a shorter alpha-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077455/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077455/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zheng -- Feng, Hanqiao -- Zhou, Bing-Rui -- Ghirlando, Rodolfo -- Hu, Kaifeng -- Zwolak, Adam -- Miller Jenkins, Lisa M -- Xiao, Hua -- Tjandra, Nico -- Wu, Carl -- Bai, Yawen -- Z01 BC010808-01/Intramural NIH HHS/ -- England -- Nature. 2011 Apr 14;472(7342):234-7. doi: 10.1038/nature09854. Epub 2011 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21412236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Autoantigens/chemistry/metabolism ; Binding Sites ; Centromere/*chemistry/metabolism ; Chromosomal Proteins, Non-Histone/*chemistry/*metabolism ; Conserved Sequence ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Histones/chemistry/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Chaperones/chemistry/metabolism ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Conformation ; *Saccharomyces cerevisiae/cytology/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-31
    Description: Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho, SMAD and Wnt/beta-catenin) and processes such as endothelial-mesenchymal transition (EndMT) proposed to have causal roles. CCM2 binds to MEKK3 (refs 7, 8, 9, 10, 11), and we have recently shown that CCM complex regulation of MEKK3 is essential during vertebrate heart development. Here we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we show that expression of the MEKK3 target genes Klf2 and Klf4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. By contrast, we find no evidence of EndMT or increased SMAD or Wnt signalling during early CCM formation. Endothelial-specific loss of Map3k3 (also known as Mekk3), Klf2 or Klf4 markedly prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we show that endothelial expression of KLF2 and KLF4 is increased in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates the MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signalling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zinan -- Tang, Alan T -- Wong, Weng-Yew -- Bamezai, Sharika -- Goddard, Lauren M -- Shenkar, Robert -- Zhou, Su -- Yang, Jisheng -- Wright, Alexander C -- Foley, Matthew -- Arthur, J Simon C -- Whitehead, Kevin J -- Awad, Issam A -- Li, Dean Y -- Zheng, Xiangjian -- Kahn, Mark L -- P01 HL075215/HL/NHLBI NIH HHS/ -- P01 HL120846/HL/NHLBI NIH HHS/ -- P01 NS092521/NS/NINDS NIH HHS/ -- P01NS092521/NS/NINDS NIH HHS/ -- R01 HL094326/HL/NHLBI NIH HHS/ -- R01HL-084516/HL/NHLBI NIH HHS/ -- R01HL094326/HL/NHLBI NIH HHS/ -- R01NS075168/NS/NINDS NIH HHS/ -- T32HL07439/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Apr 7;532(7597):122-6. doi: 10.1038/nature17178. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA. ; Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia. ; Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, USA. ; Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA. ; Sydney Microscopy &Microanalysis, University of Sydney, Sydney, New South Wales 2050, Australia. ; Division of Cell Signaling and Immunology, University of Dundee, Dundee DD1 5EH, UK. ; Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA. ; The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China. ; Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027284" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/metabolism ; Animals ; Animals, Newborn ; Carrier Proteins/genetics/metabolism ; Disease Models, Animal ; Endothelial Cells/enzymology/*metabolism ; Female ; Hemangioma, Cavernous, Central Nervous System/etiology/*metabolism/pathology ; Humans ; Kruppel-Like Transcription Factors/deficiency/*metabolism ; MAP Kinase Kinase Kinase 3/deficiency/*metabolism ; *MAP Kinase Signaling System ; Male ; Mice ; Protein Binding ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-06-26
    Description: The classic phytohormones cytokinin and auxin play essential roles in the maintenance of stem-cell systems embedded in shoot and root meristems, and exhibit complex functional interactions. Here we show that the activity of both hormones directly converges on the promoters of two A-type ARABIDOPSIS RESPONSE REGULATOR (ARR) genes, ARR7 and ARR15, which are negative regulators of cytokinin signalling and have important meristematic functions. Whereas ARR7 and ARR15 expression in the shoot apical meristem (SAM) is induced by cytokinin, auxin has a negative effect, which is, at least in part, mediated by the AUXIN RESPONSE FACTOR5/MONOPTEROS (MP) transcription factor. Our results provide a mechanistic framework for hormonal control of the apical stem-cell niche and demonstrate how root and shoot stem-cell systems differ in their response to phytohormones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Zhong -- Andersen, Stig U -- Ljung, Karin -- Dolezal, Karel -- Miotk, Andrej -- Schultheiss, Sebastian J -- Lohmann, Jan U -- England -- Nature. 2010 Jun 24;465(7301):1089-92. doi: 10.1038/nature09126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Stem Cell Biology, University of Heidelberg, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577215" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/drug effects/genetics/*metabolism ; Arabidopsis Proteins/genetics/metabolism ; Cytokinins/metabolism/pharmacology ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Gene Expression Regulation, Plant ; Indoleacetic Acids/metabolism/pharmacology ; Meristem/cytology/drug effects/genetics/metabolism ; Plant Growth Regulators/*metabolism/pharmacology ; Plant Roots ; Plant Shoots/*cytology/drug effects/metabolism ; Signal Transduction/drug effects ; Stem Cell Niche/*cytology/drug effects/*metabolism ; Stem Cells/*cytology/drug effects ; Transcription Factors/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-05-16
    Description: When the packing fraction is increased sufficiently, loose particulates jam to form a rigid solid in which the constituents are no longer free to move. In typical granular materials and foams, the thermal energy is too small to produce structural rearrangements. In this zero-temperature (T = 0) limit, multiple diverging and vanishing length scales characterize the approach to a sharp jamming transition. However, because thermal motion becomes relevant when the particles are small enough, it is imperative to understand how these length scales evolve as the temperature is increased. Here we used both colloidal experiments and computer simulations to progress beyond the zero-temperature limit to track one of the key parameters-the overlap distance between neighbouring particles-which vanishes at the T = 0 jamming transition. We find that this structural feature retains a vestige of its T = 0 behaviour and evolves in an unusual manner, which has masked its appearance until now. It is evident as a function of packing fraction at fixed temperature, but not as a function of temperature at fixed packing fraction or pressure. Our results conclusively demonstrate that length scales associated with the T = 0 jamming transition persist in thermal systems, not only in simulations but also in laboratory experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Zexin -- Xu, Ning -- Chen, Daniel T N -- Yunker, Peter -- Alsayed, Ahmed M -- Aptowicz, Kevin B -- Habdas, Piotr -- Liu, Andrea J -- Nagel, Sidney R -- Yodh, Arjun G -- England -- Nature. 2009 May 14;459(7244):230-3. doi: 10.1038/nature07998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. zexin@sas.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19444211" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-19
    Description: It is widely believed that the Sahara desert is no more than approximately 2-3 million years (Myr) old, with geological evidence showing a remarkable aridification of north Africa at the onset of the Quaternary ice ages. Before that time, north African aridity was mainly controlled by the African summer monsoon (ASM), which oscillated with Earth's orbital precession cycles. Afterwards, the Northern Hemisphere glaciation added an ice volume forcing on the ASM, which additionally oscillated with glacial-interglacial cycles. These findings led to the idea that the Sahara desert came into existence when the Northern Hemisphere glaciated approximately 2-3 Myr ago. The later discovery, however, of aeolian dune deposits approximately 7 Myr old suggested a much older age, although this interpretation is hotly challenged and there is no clear mechanism for aridification around this time. Here we use climate model simulations to identify the Tortonian stage ( approximately 7-11 Myr ago) of the Late Miocene epoch as the pivotal period for triggering north African aridity and creating the Sahara desert. Through a set of experiments with the Norwegian Earth System Model and the Community Atmosphere Model, we demonstrate that the African summer monsoon was drastically weakened by the Tethys Sea shrinkage during the Tortonian, allowing arid, desert conditions to expand across north Africa. Not only did the Tethys shrinkage alter the mean climate of the region, it also enhanced the sensitivity of the African monsoon to orbital forcing, which subsequently became the major driver of Sahara extent fluctuations. These important climatic changes probably caused the shifts in Asian and African flora and fauna observed during the same period, with possible links to the emergence of early hominins in north Africa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Zhongshi -- Ramstein, Gilles -- Schuster, Mathieu -- Li, Camille -- Contoux, Camille -- Yan, Qing -- England -- Nature. 2014 Sep 18;513(7518):401-4. doi: 10.1038/nature13705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bjerknes Centre for Climate Research, Uni Research Climate, Allegaten 70, 5007 Bergen, Norway [2] Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China. ; Laboratoire des Sciences du Climat et de l'Environnement/IPSL, CEA-CNRS-UVSQ, UMR8212, Orme des Merisiers, CE Saclay, 91191 Gif-sur-Yvette Cedex, France. ; Institut de Physique du Globe de Strasbourg (UMR 7516), Ecole et Observatoire des Sciences de la Terre, CNRS and Universite de Strasbourg, 1 rue Blessig, 67084 Strasbourg Cedex, France. ; Bjerknes Centre for Climate Research, Geophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway. ; Bjerknes Centre for Climate Research, Uni Research Climate, Allegaten 70, 5007 Bergen, Norway. ; Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25230661" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Northern ; Animals ; Biological Evolution ; *Desert Climate ; History, Ancient ; Hominidae ; Ice Cover ; Models, Theoretical ; *Oceans and Seas ; Rain ; Seasons
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Zhengrong -- Han, Yingying -- Weng, Qiang -- England -- Nature. 2015 Oct 29;526(7575):640. doi: 10.1038/526640a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beijing Forestry University, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26511567" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...