ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-13
    Description: Abstract
    Description: A seismic network was installed in the Helsinki capital area of Finland to monitor the response to a 6 km deep geothermal stimulation experiment in 2018. The Institute of Seismology, University of Helsinki (ISUH), installed these 100 geophones in addition to five surface broadband sensors and a 13-site borehole network deployed by the operating company. The stations operated for 106 days between 7 May and 20 August 2018 (day 127 to 232). The data set consists of raw CUBE-recorder data and converted MSEED data.
    Keywords: enhanced geothermal system ; induced seismicity ; array of arrays ; monitoring ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; geology ; EARTH SCIENCE 〉 SOLID EARTH ; 201802 ; Otaniemi Reservoir stimulation (ORS)
    Language: English
    Type: Dataset , temporary seismological network
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-13
    Description: Abstract
    Description: Bedload transport is a key process in fluvial morphodynamics and hydraulic engineering, but is notoriously difficult to measure. The recent advent of stream-side seismic monitoring techniques provides an alternative to in-stream monitoring techniques, which are often costly, staff-intensive, and cannot be deployed during large floods. Seismic monitoring is a surrogate method requiring several steps to convert seismic data into bedload data. State-of-the-art approaches of conversion exploit physical models predicting the seismic signal generated by bedload transport. Here, we did an active seismic survey (2017-11) and used seismic data from a flood event (2016-02-22) on the Nahal Ehstemoa to constrain a seismic bedload model. We conducted the active seismic survey to determine the local seismic ground properties, i.e., the Green’s function. We also used water depth and bedload grain size distribution to constrain the seismic bedload model and were able to compare the bedload flux obtained from the seismic data using the model with high-quality independent bedload measurements from slot samplers on the site. The complementary non-seismic data is published in a separate data publication (Lagarde et al., 2020).
    Keywords: Ground properties ; Green’s function ; Environmental seismology ; EARTH SCIENCE 〉 SOLID EARTH ; geology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-26
    Description: Abstract
    Description: This data collection provides digital access to data and publications of the KTB (German Continental Deep Drilling Program) project. KTB was a very detailed, long-term Earth science investigation on the structure, dynamics and formation of the Central European crust in Northeastern Bavaria, Germany (Harms, Kück 2016). With geophysical sounding and ultra-deep drilling it elucidated a crustal block at the border of a micro-continental collision zones amalgamated during the Caledonian and Variscan orogenies. Major research themes were: i) the nature of geophysical structures and phenomena, ii) the crustal stress field and the brittle-ductile transition, iii) the thermal structure of the crust, iv) crustal fluids and transport processes, and v) structure and evolution of the central European Variscan basement. KTB started in 1982 with pre-site selection studies and scientific objective definition followed in 1985 by site selection studies including shallow boreholes. From 1987 to 1990 a pilot borehole of 4000 m depth was drilled and fluid tests and borehole studies were conducted. In 1990 started drilling of a so-called superdeep main borehole of 9101 m depth that was reached in 1994. Again, the final drilling phase was concluded with large-scale fluid and seismic experiments. The rocks drilled comprise metamorphic series of mafic volcanic, volcano-clastics as well as minor gabbroic to ultramafic rocks that are intercalated with leucocratic meta-sedimentary gneisses. They represent most likely a deeply subducted accretionary wedge mélange with a complex P-T-t history. The undisturbed bottom hole temperature is ~265°C. Among the outstanding results are the following: (1) A continuous profile of the complete stress tensor was obtained. (2) Several lines of evidence indicate that KTB reached the present-day brittle-ductile transition. (3) The drilled crustal segment is distinguished by large amounts of free fluids down to mid-crustal levels. (4) The role of post-orogenic brittle deformation had been grossly underestimated. (5) Steep-angle seismic reflection surveys depict the deformation pattern of the upper crust. (6) High-resolution seismic images of the crust can be obtained with a newly developed technique of true-amplitude prestack depth migration. (7) The electrical behavior of the crust is determined by secondary graphite (+/-sulfides) in shear zones. (after Emmermann und Lauterjung (1997)
    Description: Other
    Description: The data are ordered according to disciplines, wells and working groups and currently available via the original KTB site (https://data.icdp-online.org/sites/ktb/welcome.html). The DOI-referenced data publication of KTB data is in progress. Scientific disciplines: Borehole Measurements Geology, Petrology, Tectonics - Microscopy - Lithological description of cores - Lithological description of cuttings - Tectonic elements Geochemistry - Gas analysis - XRF, XRD analysis - Infrared Spectrometry - IC, ICP-AES Petrophysics - Density - Porosity - Electrical resistivity - Natural gamma-ray activity - Inner surface - Permeability - Relaxation - Magnetic susceptibility - Ultrasonic seismics - Thermal conductivity Rock Mechanics - Compressive strength - Tensile strength Technical drilling parameter Fluid/Hydraulic experiments Hydrofrac/Seismic experiments
    Keywords: German Continental Deep Drilling Program ; KTB ; Bavaria ; Windischeschenbach ; field laboratory ; downhole logging unit ; geology ; petrology ; tectonics ; geochemistry ; petrophysics ; rock mechanics ; borehole measurements ; drilling engineering ; final experiments ; hydrolaulic tests ; presite surveys ; dekorp iso89 ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; In Situ/Laboratory Instruments 〉 Corers
    Type: Collection , Collection
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-28
    Description: Abstract
    Description: The stations are part of a seismic network in the Helsinki capital area of Finland in 2020. The stations recorded the response to a second stimulation of a ∼ 6 km deep enhanced geothermal system in the Otaniemi district of Espoo that followed on the first larger stimulation in 2018. The second stimulation from 6 May to 24 May 2020 established a geothermal doublet system. The Institute of Seismology, University of Helsinki (ISUH), installed the 70 GIPP-provided geophones in addition to surface broadband sensors, ISUH-owned short-period instruments, and a borehole satellite network deployed by the operating company. The data set consists of raw CUBE-recorder data and converted MSEED data. The data set has been collected to underpin a wide range of seismic analysis techniques for complementary scientific studies of the evolving reservoir processes and the induced event properties. These should inform the legislation and educate the public for transparent decision making around geothermal power generation in Finland. The full 2020 network and with it the deployment of the CUBE stations is described in a Seismological Research Letter Data Mine Column by A. Rintamäki et al. (2021).
    Description: Other
    Description: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Keywords: Geothermal system ; geothermal reservoir ; stimulation ; induced seismicity ; induced earthquakes ; Fennoscandian shield ; earthquake monitoring ; seismic arrays ; array seismology ; array of arrays ; Finland ; Helsinki] ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; geology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-11
    Description: Abstract
    Description: The new data set along the TRANSALP geophysical transect in the European Alps consists of three types: (i) new apatite and zircon fission data, (ii) a MOVE™ structural-kinematic model for the tectonic evolution along the transect since the Oligocene, and (iii) PECUBE input/output thermo-kinematic model data corresponding to the structural-kinematic MOVE™ model. The fission track data are provided as *.csv data tables formatted to be ideally opened and viewed in RadialPlotter (Vermeesch, 2009) or alternatively in any spreadsheet editor (e.g., Microsoft Excel). The MOVE™ files require the software MOVE™ licensed by Petroleum Experts. The PECUBE input/output files can be opened with any text editor (e.g., Microsoft Visual Code) or data analysis software (e.g., MATLAB™).
    Description: Methods
    Description: Apatite and zircon mineral extraction were conducted for four samples following standard techniques. Samples were crushed and sieved before undergoing magnetic and heavy liquid separation. Apatite and zircon separates were embedded in epoxy resin and Teflon™ sheets, respectively. The sample mounts were polished to expose internal surfaces at approximately half the grain size. Apatite mounts were etched in 5.5 mol HNO3 for 20 seconds at 21 ºC (Donelick et al., 2005), and zircon mounts in a KOH:NaOH eutectic melt at 228 ºC until fission tracks were visible (Garver, 2003). We employed the mica external detector method (Gleadow et al., 1981) for all samples to determine the Uranium content. After neutron irradiation at the nuclear reactor BR1 in Mol/Belgium, micas were etched in 40% HF for 30 minutes at 21 ºC. Spontaneous and induced fission tracks were counted at 1000x magnification on a Zeiss Axiolmager M2m microscope with AutoScan® soft- and hardware. Fission-track ages are calculated using the ζ age calibration method (Hurford & Greene, 1983) using ζ-values of 249.9±8.9 and 121.7±4.1 for the AFT and ZFT systems, respectively. Data visualization and age mixture distribution analyses were aided by RadialPlotter (Vermeesch, 2009). Reconstruction of rock trajectories along TRANSALP were performed in MOVE™ through orogen-scale upper lithospheric cross-section balancing in 2D (e.g., Dahlstrom, 1969). Cross-section balancing provides a tool to reconstruct the displacement of rock material over geologic time scales while maintaining equal rock area before and after deformation under a brittle regime and honoring observed geology. Maintenance of line lengths before and after a deformation step is ensured above active décollements, whereas beneath, we assume crustal thickening occurs through unspecified ‘distributed deformation’ reflecting a hybrid ductile/brittle state. This enabled us to implement a simplified evolution of the Mohorovičić discontinuity (Moho) with time. Shortening above the décollement gives us a precise estimate of the area that needs to be accommodated between the décollement and the Moho. In this process, the Moho has been warped downward by the amount of space displaced between the décollement and the Moho with each deformation step (Fig. 4), assuming that crustal thickening is achieved through distributed deformation’ until the Moho reaches its present-day shape as determined by Kummerow et al. (2004). In this forward kinematic modeling process, we added flexural and isostatic crustal responses to rock displacement and different modes of erosion (i.e., changing the angle of taper topography). For details related to implementation of the geological structures and crustal parameters, please refer to the companion paper. Viable structural-kinematic models are used to track rock displacement and simulate heat advection in a thermal model. The thermal model used is a University of Tübingen modified version of PECUBE (‘Pecube-D’; Whipp et al., 2009; Braun, 2003; McQuarrie & Ehlers, 2015; 2017). Pecube-D is modified from the original version of Pecube to include integration with the Move structural restoration software (McQuarrie and Ehlers, 2015), detrital thermochronometer age analysis (Whipp et al., 2009; Whipp and Ehlers, 2020), and inverse modelling of cooling ages for sample exhumation rates (Thiede and Ehlers, 2013). It solves the three-dimensional heat transport equation for user-defined topographies and surface boundary conditions. Age prediction algorithms for the (U-Th)/He and fission-track systems in apatite and zircon follow Farley (2000), Crowley et al. (1991), Reiners et al. (2004), and Brandon et al. (1998).
    Keywords: TRANSALP ; thermochronology ; continental collision ; subduction polarity ; thermo-kinematic modelling ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS ; geology ; surface processes ; tectonics ; thermochronology
    Type: Collection , Collection
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...