ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Other Sources  (9)
  • Inter Research  (5)
  • GEOMAR Helmholtz Centre for Ocean Research  (4)
  • 1
    Publication Date: 2018-05-30
    Description: The phylogenetic relationship of sulphur-oxidising endosymbiotic bacteria from bivalves of the families Vesicomyidae (Calyptogena sp. C1, Calyptogena sp. C3), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele sp.) from cold-seep habitats were determined by 16S rDNA nucleotide sequence analyses. The endosymbiotic bacteria form distinct groups within the gamma-Proteobacteria and are well separated from each other and from free-living sulphur-oxidising bacteria of the genera Beggiatoa, Halothiobacillus and Thiomicrospira. The endosymbiotic bacteria of Acharax sp. from cold seeps off Oregon, Indonesia and Pakistan have sequences highly similar to each other but quite distinct from other thiotrophic endosymbionts. This includes endosymbionts from Solemya spp., to which they are distantly related. Symbiotic bacteria of Conchocele sp. from a cold seep in the Sea of Okhotsk are similar to those of Bathymodiolus thermophilus and related species, as shown by their overall sequence similarity and by signature sequences. The endosymbiotic bacteria of Calyptogena spp. from cold seeps off Oregon and Pakistan are closely related to those of other vesicomyids. Endosymbiont species found off Oregon corresponded to 2 different clusters of Calyptogena spp. symbionts in the same samples. The results corroborate the hypothesis of a monophyletic origin of the symbionts in vesicomyid clams, and support the existence of deeply branching groups in solemyid symbionts and of divergent lines and distribution for thyasirid symbionts. The results also indicate that certain symbiont species cluster according to the depth distribution of their hosts, and that in consequence host species together with their symbionts may have undergone depth-specific adaptation and evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-22
    Description: ALKOR cruise AL590 took place as part of the project CONMAR (https://conmarmunition.eu/) which is part of the DAM mission sustainMare (https://www.sustainmare.de/). It was the continuation of the munition monitoring started within the BMBF‐funded project UDEMM (Environmental Monitoring for the Delaboration of Munition in the Sea; https://udemm.geomar.de/), the EMFF (European Maritime and Fisheries Fund) ‐funded projects BASTA (Boost Applied munition detection through Smart data detection in and AI workflows; https://www.basta‐munition.eu) and ExPloTect (Ex‐situ, near‐real‐time detection compound detection in seawater). ALKOR worked for two weeks in the Baltic Sea in the munition dumpsites Kolberger Heide, Falshöft, in Lübeck Bight and west of Rügen. Munition sites were mapped via hydroacoustic (multibeam and synthetic aperture sonar) and visual (ROV and towed camera) methods. Water samples were taken for explosive- type compounds and eDNA analysis and sediment samples for macro faunal distribution studies. A change of crew happened on 24th March in Neustadt i.H. with support of the Coast Guard t of the federal police.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 264 . pp. 1-14.
    Publication Date: 2019-07-02
    Description: At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that gain energy from sulfide oxidation. Depending on fluid flow, the surface communities are dominated either by the filamentous sulfur bacteria Beggiatoa (high advective flow), the clam Calyptogena (low advective flow), or the bivalve Acharax (diffusive flow). We analyzed surface sediments (0 to 10 cm) populated by chemosynthetic communities for AOM, sulfate reduction (SR) and the distribution of the microbial consortium mediating AOM. Highest AOM rates were found at the Beggiatoa field with an average rate of 99 mmol m-2 d-1 integrated over 0 to 10 cm. These rates are among the highest AOM rates ever observed in methane-bearing marine sediments. At the Calyptogena field, AOM rates were lower (56 mmol m-2 d-1). At the Acharax field, methane oxidation was extremely low (2.1 mmol m-2 d-1) and was probably due to aerobic methane oxidation. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation and showed low activity. Aggregates of the AOM consortium were abundant at the fluid-impacted sites (between 5.1 × 1012 and 7.9 × 1012 aggregates m-2) but showed low numbers at the Acharax field (0.4 × 1012 aggregates m-2). A transport-reaction model was applied to estimate AOM at Beggiatoa fields. The model agreed with the measured depth integrated AOM rates and the vertical distribution. AOM represents an important methane sink in the surface sediments of HR, consuming between 50 and 100% of the methane transported by advection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-03
    Description: Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Oxygen (O2) deficiency and nutrient concentrations in marine systems are impacting organisms from microbes to higher trophic levels. In coastal and enclosed seas, O2 deficiency is often related to eutrophication and high degradation rates of organic matter. To investigate the impact of O2 concentration on bacterial growth and the turnover of organic matter, we conducted multifactorial batch experiments with natural microbial communities of the central Baltic Sea. Water was collected from suboxic (〈5 µmol L -1) depths in the Gotland Basin during June 2015. Samples were kept for four days under fully oxygenated and low O2 conditions (mean: 34 µmol L-1 O2), with or without nutrient (ammonium, phosphate, nitrate) and labile carbon (glucose) amendments. We measured bacterial abundance, bacterial heterotrophic production, extracellular enzyme rates (leucine-aminopeptidase) and changes in dissolved and particulate organic carbon concentrations. Our results show that the bacterial turnover of organic matter was limited by nutrients under both oxic and low O2 conditions. In nutrient and glucose replete treatments, low O2 concentrations significantly reduced the net uptake of dissolved organic carbon and lead to higher accumulation of more labile dissolved organic matter. Our results therewith suggest that the combined effects of eutrophication and deoxygenation on heterotrophic bacterial activity may potentially favor the accumulation of dissolved organic carbon in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Report, N. Ser. 054 . GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 88 pp.
    Publication Date: 2020-01-24
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The family Solemyidae represents ancestral protobranch bivalves with the shallow-water genus Solemya and the deep-sea genus Acharax. All known members of this family host symbiotic sulfur-oxidizing bacteria in their gill filaments. Analysis of 18S rRNA gene sequences of Acharax specimens from methane-seeps off Makran (Pakistan), Java (Indonesia), the Aleutian Trench and off the Oregon, Costa Rica, and Peru margins revealed that Solemya spp. and Acharax spp. are well-separated genetically. This supports the current systematic distinction based on morphological criteria. We found 2 clearly distinct clusters within the genus Acharax, with specimens from the Makran, Oregon and Peru (MOP) margins in one (MOP–Acharax) cluster, and those from Java, the Aleutian Trench and Costa Rica (JAC) in the other (JAC–Acharax) cluster. The separation of MOP– and JAC–Acharax clusters from each other and from Solemya (S. reidi and S. velum) is well-supported by phylogenetic calculations employing maximum likelihood and maximum parsimony. Compared to genetic distances among other protobranch groups, distances between the MOP– and JAC–Acharax clusters would justify the affiliation of these clusters to separate species. This implies that species differentiation in Acharax based on shell morphology is likely to underestimate true species diversity within this taxon. Furthermore, our results support the hypothesis that genetic separation of Solemya and Acharax is congruent with the phylogeny of their bacterial endosymbionts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Report, N. Ser. 034 . GEOMAR Helmholtz Centre for Ocean Research, Kiel, 86 pp.
    Publication Date: 2016-12-14
    Description: RV SONNE cruise SO244-2 sailed offshore northern Chile from Nov. 27 to Dec. 13, 2015 to install the seafloor geodetic network GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) on the marine forearc and outer rise of the South American subduction system around 21°S. This segment of the Nazca-South American plate boundary has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique/Pisagua earthquake (Mw=8.1). The southern portion of the segment remains unbroken by a recent earthquake and is currently in the latest stage of the interseismic phase of the seismic cycle. Seafloor geodetic measurements provide a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The GeoSEA Network consists of autonomous seafloor transponders installed on 4 m high tripods, which were lowered to the seabed on the deep-sea cable of RV SONNE. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. An additional component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is capable to upload the seafloor data to the sea surface and to transfer it via satellite. We have chosen three areas on the middle and lower slope and the outer rise for the set-up of three sub-arrays. The array in Area 1 on the middle continental slope consists of 8 transponders located in pairs on four topographic ridges, which are surface expressions of faults at depth. Area 2 is located on the outer rise seaward of the trench where 5 stations monitor extension across plate-bending related normal faults. The third area is located at water depth 〉5000 m on the lower continental slope where an array of 10 stations measures diffuse strain build-up. Data from all networks and all stations were successfully uploaded to GeoSURF and/or a HPT modem lowered into the water from RV SONNE. The seabed installation of a total of 23 transponders was completed by December 07, when we proceeded to deploy a total of 14 ocean bottom seismometers (OBS) on the forearc between 19.2°-21.6°S. These instruments will be recovered by RV LANGSETH in Spring/Summer 2016.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...