ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences  (185)
  • thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology  (168)
  • GEOPHYSICS
  • Inorganic Chemistry
  • Organic Chemistry
  • SPACE SCIENCES
  • Frontiers Media SA  (347)
  • Springer International Publishing  (7)
Collection
Language
Years
  • 1
    Publication Date: 2024-04-14
    Description: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Keywords: open access ; Statistical learning ; Bayesian regression ; Deep learning ; Non linear regression ; Plant breeding ; Crop management ; multi-trait multi-environments models ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TV Agriculture and farming::TVB Agricultural science ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSV Zoology and animal sciences ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBT Probability and statistics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature | Springer International Publishing
    Publication Date: 2024-04-14
    Description: This open access book explores a new conceptual framework for the sustainable management of the boreal forest in the face of climate change. The boreal forest is the second-largest terrestrial biome on Earth and covers a 14 million km2 belt, representing about 25% of the Earth’s forest area. Two-thirds of this forest biome is managed and supplies 37% of global wood production. These forests also provide a range of natural resources and ecosystem services essential to humanity. However, climate change is altering species distributions, natural disturbance regimes, and forest ecosystem structure and functioning. Although sustainable management is the main goal across the boreal biome, a novel framework is required to adapt forest strategies and practices to climate change. This collaborative effort draws upon 148 authors in summarizing the sustainable management of these forests and detailing the most recent experimental and observational results collected from across the boreal biome. It presents the state of sustainable management in boreal forests and highlights the critical importance of this biome in a context of global change because of these forests' key role in a range of natural processes, including carbon sequestration, nutrient cycling, and the maintaining of biodiversity. This book is an essential read for academics, students, and practitioners involved in boreal forest management. It outlines the challenges facing sustainable boreal forest management within the context of climate change and serves as a basis for establishing new research avenues, identifying future research trends, and developing climate-adapted forest management plans.
    Keywords: Boreal Forests and Climate Change ; Forest Sustainable Management ; Biome Scale Perspectives and Synthesis ; Climate Change and Climate Change Impacts ; Ecology of Boreal Forests ; Biodiversity and Ecophysiology of Forests ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TV Agriculture and farming::TVR Forestry and silviculture ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RNP Pollution and threats to the environment::RNPG Climate change ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RNU Sustainability ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Transfer cells are anatomically specialized cells optimized to support high levels of nutrient transport in plants. These cells trans-differentiate from existing cell types by developing extensive and localized wall ingrowth labyrinths to amplify plasma membrane surface area which in turn supports high densities of membrane transporters. Unsurprisingly, therefore, transfer cells are found at key anatomical sites for nutrient acquisition, distribution and exchange. Transfer cells are involved in delivery of nutrients between generations and in the development of reproductive organs and also facilitate the exchange of nutrients that characterize symbiotic associations. Transfer cells occur across all taxonomic groups in higher plants and also in algae and fungi. Deposition of wall ingrowth-like structures are also seen in “syncytia” and “giant cells” which function as feeding sites for cyst and root-knot nematodes, respectively, following their infection of roots. Consequently, the formation of highly localized wall ingrowth structures in diverse cell types appears to be an ancient anatomical adaption to facilitate enhanced rates of apoplasmic transport of nutrients in plants. In some systems a role for transfer cells in the formation of an anti-pathogen protective barrier at these symplastic discontinuities has been inferred. Remarkably, the extent of cell wall ingrowth development at a particular site can show high plasticity, suggesting that transfer cell differentiation might be a dynamic process adapted to the transport requirements of each physiological condition. Recent studies exploiting different experimental systems to investigate transfer cell biology have identified signaling pathways inducing transfer cell development and genes/gene networks that define transfer cell identity and/or are involved in building the wall ingrowth labyrinths themselves. Further studies have defined the structure and composition of wall ingrowths in different systems, leading in many instances to the conclusion that this process may involve previously uncharacterized mechanisms for localized wall deposition in plants. Since transfer cells play important roles in plant development and productivity, the latter being relevant to crop yield, especially so in major agricultural species such as wheat, barley, soybean and maize, understanding the molecular and cellular events leading to wall ingrowth deposition holds exciting promise to develop new strategies to improve plant performance, a key imperative in addressing global food security. This Research Topic presents a timely and comprehensive treatise on transfer cell biology to help define critical questions for future research and thereby generating a deeper understanding of these fascinating and important cells in plant biology.
    Keywords: QK1-989 ; Q1-390 ; Wall ingrowth ; Arabidopsis thaliana ; synctial cells ; Zea mays ; transfer cells ; endosperm transfer cells ; Giant Cells ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-05
    Description: Photosystem II is a 700-kDa membrane-protein super-complex responsible for the light-driven splitting of water in oxygenic photosynthesis. The photosystem is comprised of two 350-kDa complexes each made of 20 different polypeptides and over 80 co-factors. While there have been major advances in understanding the mature structure of this photosystem many key protein factors involved in the assembly of the complex do not appear in the holoenzyme. The mechanism for assembling this super-complex is a very active area of research with newly discovered assembly factors and subcomplexes requiring characterization. Additionally the ability to split water is inseparable from light-induced photodamage that arises from radicals and reactive O2 species generated by Photosystem II chemistry. Consequently, to sustain water splitting, a “self repair” cycle has evolved whereby damaged protein is removed and replaced so as to extend the working life of the complex. Understanding how the biogenesis and repair processes are coordinated is among several important questions that remain to be answered. Other questions include: how and when are the inorganic cofactors inserted during the assembly and repair processes and how are the subcomplexes protected from photodamage during assembly? Evidence has also been obtained for Photosystem II biogenesis centers in cyanobacteria but do these also exist in plants? Do the molecular mechanisms associated with Photosystem II assembly shed fresh light on the assembly of other major energy-transducing complexes such as Photosystem I or the cytochrome b6/f complex or indeed other respiratory complexes? The contributions to this Frontiers in Plant Science Research Topic are likely to reveal new details applicable to the assembly of a range of membrane-protein complexes, including aspects of self-assembly and solar energy conversion that may be applied to artificial photosynthetic systems. In addition, a deeper understanding of Photosystem II assembly — particularly in response to changing environmental conditions — will provide new knowledge underpinning photosynthetic yields which may contribute to improved food production and long-term food security.
    Keywords: QK1-989 ; Q1-390 ; Arabidopsis thaliana ; photoactivation ; photosynthesis ; Chlamydomonas reinhardtii ; cyanobacteria ; biogenesis ; Photosystem II ; photodamage ; Nicotiana tabacum ; Synechocystis sp. PCC 6803 ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-05
    Description: Biotic and abiotic stress factors deliver a huge impact on plant life. Biotic stress factors such as damage through pathogens or herbivore attack, as well as abiotic stress factors like variation in temperature, rainfall and salinity, have placed the plant kingdom under constant challenges for survival. As a consequence, global agricultural and horticultural productivity has been disturbed to a large extent. Being sessile in nature, plants cannot escape from the stress, and instead adapt changes within their system to overcome the adverse conditions. These changes include physiological, developmental and biochemical alterations within the plant body which influences the genome, proteome and metabolome profiles of the plant. Since proteins are the ultimate players of cellular behavior, proteome level alterations during and recovery period of stress provide direct implications of plant responses towards stress factors. With current advancement of modern high-throughput technologies, much research has been carried out in this field. This e-book highlights the research and review articles that cover proteome level changes during the course or recovery period of various stress factors in plant life. Overall, the chapters in this e-book has provided a wealth of information on how plants deal with stress from a proteomics perspective.
    Keywords: QK1-989 ; Q1-390 ; Infection ; signaling events during stress ; Quantitative Proteomics ; heavy metal stress ; plant proteomics ; drought ; high temperature ; Salinity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-05
    Description: As a consequence of the global climate change, both the reduction on yield potential and the available surface area of cultivated species will compromise the production of food needed for a constant growing population. There is consensus about the significant gap between world food consumption projected for the coming decades and the expected crop yield-improvements, which are estimated to be insufficient to meet the demand. The complexity of this scenario will challenge breeders to develop cultivars that are better adapted to adverse environmental conditions, therefore incorporating a new set of morpho-physiological and physico-chemical traits; a large number of these traits have been found to be linked to heat and drought tolerance. Currently, the only reasonable way to satisfy all these demands is through acquisition of high-dimensional phenotypic data (high-throughput phenotyping), allowing researchers with a holistic comprehension of plant responses, or ‘Phenomics’. Phenomics is still under development. This Research Topic aims to be a contribution to the progress of methodologies and analysis to help understand the performance of a genotype in a given environment.
    Keywords: QK1-989 ; Q1-390 ; software development ; reverse phenomics ; forward phenomics ; phenotyping ; high-throughput phenotyping ; phenomics ; breeding ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Autophagy (also known as macroautophagy) is an evolutionarily conserved process by which cytoplasmic components are nonselectively enclosed within a double-membrane vesicle known as the autophagosome and delivered to the vacuole for degradation of toxic components and recycling of needed nutrients. This catabolic process is required for the adequate adaptation and response of the cell, and correspondingly the whole organism, to different types of stress including nutrient starvation or oxidative damage. Autophagy has been extensively investigated in yeasts and mammals but the identification of autophagy-related (ATG) genes in plant and algal genomes together with the characterization of autophagy-deficient mutants in plants have revealed that this process is structurally and functionally conserved in photosynthetic eukaryotes. Recent studies have demonstrated that autophagy is active at a basal level under normal growth in plants and is upregulated during senescence and in response to nutrient limitation, oxidative stress, salt and drought conditions and pathogen attack. Autophagy was initially considered as a non-selective pathway, but numerous observations mainly obtained in yeasts revealed that autophagy can also selectively eliminate specific proteins, protein complexes and organelles. Interestingly, several types of selective autophagy appear to be also conserved in plants, and the degradation of protein aggregates through specific adaptors or the delivery of chloroplast material to the vacuole via autophagy has been reported. This research topic aims to gather recent progress on different aspects of autophagy in plants and algae. We welcome all types of articles including original research, methods, opinions and reviews that provide new insights about the autophagy process and its regulation.
    Keywords: QK1-989 ; Q1-390 ; Lipid degradation ; selective autophagy ; pexophagy ; algae ; Plants ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: In this century the human being must face the challenges of producing enough to feed a growing population in a sustainable and environmentally friendly way. The yields are with increasing frequency affected by abiotic stresses such as salinity, drought, and high temperature or by new diseases and plagues. The Research Topic on Induced Resistance for Plant Defense focuses on the understanding the mechanisms underlying plant resistance or tolerance since these will help us to develop fruitful new agricultural strategies for a sustainable crop protection. This topic and its potential applications provide a new sustainable approach to crop protection. This technology currently can offer promising molecules capable to provide new long lasting treatments for crop protection against biotic or abiotic stresses. The aim of this Research Topic is to review and discuss current knowledge of the mechanisms regulating plant induced resistance and how from our better understanding of these mechanisms we can find molecules capable of inducing this defence response in the plant, thereby contributing to sustainable agriculture we need for the next challenges of the XXI century.
    Keywords: QK1-989 ; Q1-390 ; priming ; plant defence activators ; induced resistance ; elicitors ; abiotic stress ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer Nature | Springer International Publishing
    Publication Date: 2024-04-05
    Description: This open access book covers a century of research on wheat genetics and evolution, starting with the discovery in 1918 of the accurate number of chromosomes in wheat. We re-evaluate classical studies that are pillars of the current knowledge considering recent genomic data in the wheat group comprising 31 species from the genera Amblyopyrum, Aegilops, Triticum, and other more distant relatives. For these species, we describe morphology, ecogeographical distribution, phylogeny as well as cytogenetic and genomic features. For crops, we also address evolution under human selection, namely pre-domestication cultivation and domestication. We re-examine the genetic and archeological evidence of where, when, and how domestication occurred. We discuss unique aspects of genome evolution and maintenance under polyploidization, in natural and synthetic allopolyploids of the wheat group. Finally, we propose some thoughts on the future prospects of wheat improvement. As such, it can be of great interest to wheat researchers and breeders as well as to plant scientists and students interested in plant genetics, evolution, domestication, and polyploidy.
    Keywords: Wheat ; Triticeae ; cytogenetics ; polyploidy ; genomics ; phylogenetics ; domestication ; evolution ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TV Agriculture and farming::TVB Agricultural science ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAK Genetics (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: Phytopathogenic bacteria of the Xanthomonas genus cause severe diseases on hundreds of host plants, including economically important crops, such as bean, cabbage, cassava, citrus, hemp, pepper, rice, sugarcane, tomato or wheat. Diseases occurring in nature comprise bacterial blight, canker, necrosis, rot, scald, spot, streak or wilt. Xanthomonas spp. are distributed worldwide and pathogenic and nonpathogenic strains are essentially found in association to plants. Some phytopathogenic strains are emergent or re-emergent and, consequently, dramatically impact agriculture, economy and food safety. During the last decades, massive efforts were undertaken to decipher Xanthomonas biology. So far, more than one hundred complete or draft genomes from diverse Xanthomonas species have been sequenced (http://www.xanthomonas.org), thus providing powerful tools to study genetic determinants triggering pathogenicity and adaptation to plant habitats. Xanthomonas spp. employ an arsenal of virulence factors to invade its host, including extracellular polysaccharides, plant cell wall-degrading enzymes, adhesins and secreted effectors. In most xanthomonads, type III secretion (T3S) system and secreted effectors (T3Es) are essential to bacterial pathogenicity through the inhibition of plant immunity or the induction of plant susceptibility (S) genes, as reported for Transcription Activation-Like (TAL) effectors. Yet, toxins can also be major virulence determinants in some xanthomonads while nonpathogenic Xanthomonas species do live in sympatry with plant without any T3S systems nor T3Es. In a context of ever increasing international commercial exchanges and modifications of the climate, monitoring and regulating pathogens spread is of crucial importance for food security. A deep knowledge of the genomic diversity of Xanthomonas spp. is required for scientists to properly identify strains, to help preventing future disease outbreaks and to achieve knowledge-informed sustainable disease resistance in crops. This Research Topic published in the ‘Plant Biotic Interactions’ section of Frontiers in Plant Science and Frontiers in Microbiology aims at illustrating several of the recent achievements of the Xanthomonas community. We collected twelve manuscripts dealing with comparative genomics or T3E repertoires, including five focusing on TAL effectors which we hope will contribute to advance research on plant pathogenic bacteria.
    Keywords: QK1-989 ; Q1-390 ; Resistance ; susceptibility ; Xop ; Type III effector ; Immunity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...