ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (16)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems  (14)
  • 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution  (14)
  • Elsevier Science Limited  (43)
  • Public Library of Science
Collection
Years
  • 1
    Publication Date: 2021-06-25
    Description: The 11 March 2011 Tohoku earthquake was the strongest event recorded in recent historic seismicity in Japan. Several researchers reported the deformation and possible mechanism as triggered by a mega thrust fault located offshore at the interface between the Pacific and the Okhotsk Plate. The studies to estimate the deformation in detail and the dynamics involved are still in progress. In this paper, coseismic GPS displacements associated with Tohoku earthquake are used to infer the amount of slip on the fault plane. Starting from the fault displacements configuration proposed by Caltech-JPL ARIA group and Geoazur CNRS, an optimization of these displacements is performed by developing a 3D finite element method (FEM) model, including the data of GPS-acoustic stations located offshore. The optimization is performed for different scenarios which include the presence of topography and bathymetry (DEM) as well as medium heterogeneities. By mean of the optimized displacement distribution for the most complete case (heterogeneous with DEM), a broad slip distribution, not narrowly centered east of hypocenter, is inferred. The resulting displacement map suggests that the beginning of the area of subsidence is not at east of MYGW GPS-acoustic station, as some researchers have suggested, and that the area of polar reversal of the vertical displacement is rather located at west of MYGW. The new fault slip distribution fits well for all the stations at ground and offshore and provides new information on the earthquake generation process and on the kinematics of Northern Japan area.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 2011 Tohoku earthquake ; Fault slip distribution ; Numerical FEM optimization ; Upper plate rebound ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: In this paper, the relationship between the dike-forming magmatic intrusions and the faulting process at Mount Etna is investigated in terms of Coulomb stress changes. As case study, a complete time-dependent 3-D finite element model for the 2002-2003 eruption at Mount Etna is presented. In the model, which takes into account the topography, medium heterogeneities and principal fault systems in a viscoelastic/plastic rheology, we sequentially activated three dike-forming processes and looked at the induced temporal evolution of the Coulomb stress changes, during the co-intrusive and post-intrusive periods, on Pernicana and Santa Venerina faults. We investigated where and when fault slips were encouraged or not, and consequently how earthquakes may have been triggered. Results show positive Coulomb stress changes for the Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquake (Md = 3.5). The amount of Coulomb stress changes in the area of Santa Venerina Fault, as induced by dike-forming intrusions only, is instead almost negligible and, probably, not sufficient to trigger the 29th October Santa Venerina earthquake (Md = 4.4), occurred two days after the start of the eruption. The necessary Coulomb stress change value to trigger this earthquake is instead reached if we consider it as induced by the 27th October Pernicana biggest earthquake, combined with the dike-induced stresses.
    Description: MED-SUV FP7 Project (Grant number 308665)
    Description: Published
    Description: 185-196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Coulomb stress changes ; Finite Element Model ; Viscoelasticity ; Earthquakes ; Mount Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: From simple considerations we propose a revision of the AcceleratingMoment Release (AMR) methodology for improving our knowledge of seismic sequences and then, hopefully in a close future, to reach the capability of predicting the main-shock location and occurrence with sufficient accuracy. The proposed revision is based on the introduction of a “reduced” Benioff strain for the earthquakes of the seismic sequence where, for the same magnitude and after a certain distance from the main-shock epicentre, the closer the events the more they are weighted. In addition,we retain the usual expressions proposed by the ordinary AMRmethod for the estimation of the corresponding main-shock magnitude, although this parameter is the weakest of the analysis. Then, we apply the revised method to four case studies in Italy, three of which are the most recent seismic sequences of the last 9 years culminating with a shallow main-shock, and one is instead a 1995–1996 swarm with no significant main-shock. The application of the R-AMRmethodology provides the best results in detecting the precursory seismic acceleration,when comparedwith those found by ordinaryAMR technique.We verify also the stability of the results in space, applying the analysis to real data with moving circles in a large area around each mainshock epicentre, and the efficiency of the revised technique in time, comparing the results with those obtained when applying the same analysis to simulated seismic sequences.
    Description: Published
    Description: 82–98
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake interaction ; Forecasting and prediction ; Seismicity and tectonics ; Seismic attenuation ; Seismic sequence ; Foreshocks ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-01
    Description: Between 1994 and 1995, gas samples from fumaroles and thermal waters were collected on Ischia Island. The chemical composition of the shallow and deep natural hydrothermal fluids discharged is related to the main hydrological and lithological characteristics of the rock formations present in the reservoir. A biphase reservoir (liquid 1 gas) is identified, where the dominant liquid has a temperature of about 2808C. On the basis of d 13CTDC values it was possible to hypothesize a deep source characterised by carbon isotopic values varying from 0 to 23d‰. These values are noticeably more positive with respect to those attributed to magmatic CO2 d13CCO2 ranging from 25 to 28d ‰), thus suggesting a magmatic source modified by crustal contamination. This hypothesis is supported by the carbon isotopic composition of CO2 in sampled gases, which varied from 0 to 25d‰. The inferred isotopic value of carbon of magmatic CO2 would then be about 22d‰. The observed differences in C isotopic composition between fumarolic and magmatic gases would be caused by kinetic and/or equilibrium fractionation processes. These processes would cause a fractionation of d 13C of deep CO2 towards more negative values (down to 25‰). Actually, CO2 removal or addition processes caused by the interaction between deep gases and shallow hydrothermal waters are likely to be responsible for the different chemical and isotopic compositions of gaseous emissions. For these reasons, and on the basis of the homogeneity of geothermometric values, the existence of a single, large reservoir that feeds all of the fluids discharged at Ischia Island can be hypothesised. Based on acquired data, a new geochemical model of the geothermal system of Ischia Island is proposed.
    Description: Published
    Description: 151-178
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: gas thermometers; water geothermometer; dissolved gases; geothermal system; Ischia Island ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-02
    Description: This study presents new geological and seismological data that are used to assess the seismic hazard of a sector of the Po Plain (northern Italy), a large alluvial basin hit by two strong earthquakes on May 20 (Mw 6.1) and May 29 (Mw 6.0), 2012. The proposed interpretation is based on high-quality relocation of 5,369 earthquakes ( 'Emilia sequence‘) and a dense grid of seismic profiles and exploration wells. The analysed seismicity was recorded by 44 seismic stations, and initially used to calibrate new one-dimensional and three- dimensional local Vp and Vs velocity models for the area. Considering these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. These data define a seismicity that is elongated in the W-NW to E-SE directions. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~45° SSW, and the surface projection indicates an area ~10 km wide and 23 km long. The aftershocks of the May 29 mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~6 km wide and 33 km long. Multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene. There is also evidence of a Mesozoic extensional fault system in the Ferrara arc, with faults that in places have been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were related to ruptures along blind fault surfaces that are not part of the Pliocene-Pleistocene structural system, but are instead related to a deeper system that is itself closely related to re-activation of a Mesozoic extensional fault system.
    Description: Published
    Description: 107–123
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: JCR Journal
    Description: restricted
    Keywords: velocity model ; relocated hypocenters ; double-difference locations ; Po Plain ; May 2012 Emilia earthquakes ; reactivated extensional faults ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-10
    Description: Between the October 2011 and the July 2012, several seismic swarms occurred in the Hyblean foreland domain of SE Sicily (Italy) along the Cavagrande Canyon, one of the most impressive fluvial incisions of Sicily. Despite the low magnitude of the events (main shock with M~3.7), they represent the biggest strain release of the Hyblean area over the last ten years. A careful wave-form analysis of the earthquakes revealed that most of them form a family of ―multiplets‖. These findings allow us to reconstruct the attitude of the accountable fault plane by interpolating their highprecision 3D location parameters into a GIS platform. A detailed morpho-structural analysis, performed at the ideal updip projection of the modelled plane, showed that during the Middle-Late Pleistocene the epicentral area has been deformed by a belt of extensional faults, a segment of which matches well with the computer-generated surface. Despite the field evidence, computed focal solutions support contrasting strike-slip kinematics on the same fault plane, clearly indicating a dextral shearing on this pre-existing normal fault. The seismic swarms nucleated on a small rupture area along a ~10 km long, NW-SE trending fault segment, that could be able to generate M~6 earthquakes. Following our analysis and looking at seismicity distribution in the SE portion of Hyblean area, we asses that a stress pattern reorganization occurred all over the Hyblean foreland between the Late Pleistocene and present-day. Change in the trajectory of the max stress axes (from vertical to horizontal) seems to have involved a pre-existing large scale fault configuration with considerable seismotectonic implications.
    Description: Published
    Description: 215-228
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Hyblean foreland ; seismic sequences ; fault reactivation ; 3D fault modelling ; stress changing ; seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-14
    Description: The geochemical behaviour of Rare Earth Elements, Zr and Hf was investigated in the thermal waters of Nevado del Ruiz volcano system. A wide range of pH, between 1.0 and 8.8, characterizes these fluids. The acidic waters are sulphate dominatedwith different Cl/SO4 ratios. The important role of the pH and the ionic complexes for the distribution of REE, Zr and Hf in the aqueous phase was evidenced. The pH rules the precipitation of authigenic Fe and Al oxyhydroxides producing changes in REE, Zr, Hf amounts and strong anomalies of Cerium. The precipitation of alunite and jarosite removes LREE from the solution, changing the REE distribution in acidic waters. Y–Ho and Zr–Hf (twin pairs) have a different behaviour in strong acidic waterswith respect to the water with pH near-neutral. Yttrium and Ho behave as Zr and Hf in waters with pH near neutral-to-neutral, showing superchondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface of authigenic particulate (Fe-, Al-oxyhydroxides), suggesting an enhanced scavenging of Ho and Hf with respect to Y and Zr, leading to superchondritic values. In acidic waters, a different behaviour of twin pairs occurs with chondritic Y/Ho ratios and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf were investigated in natural acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major anion chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH b 3.6. In strong acidic waters the fractionation of Zr and Hf was recognized as function of major anion contents (Cl and SO4), suggesting the formation of complexes leading to sub-chondritic Zr/Hf molar ratios.
    Description: Published
    Description: 125–133
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Zirconium ; Hafnium ; Rare earth elements ; Ionic complexes ; Acidic waters ; Fe–Al oxyhydroxides ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-12
    Description: Slip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.
    Description: Project “Abruzzo” (code: RBAP10ZC8K_ 003) funded by the Italian Ministry of Education, University and Research (MIUR).
    Description: Published
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: slip rate ; numerical model ; fault ; rheology ; central Italy ; active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-07
    Description: After the April 6th 2009 MW 6.3 (ML 5.9) L'Aquila earthquake (central Italy), we re-measured more than 100 km of high-precision levelling lines in the epicentral area. The joint inversion of the levelling measurements with InSAR and GPS measurements, allowed us to derive new coseismic and post-seismic slip distributions and to de- scribe, with high resolution details on surface displacements, the activation and the slip distribution of a second- ary fault during the aftershock sequence that struck the Campotosto area (major event MW 5.2). Coseismic slip on the Paganica fault occurred on one main asperity, while the afterslip distribution shows a more complex pattern, occurring on three main patches, including both slips on the shallow portions and on the deeper parts of the rup- ture plane. The comparison between coseismic and post-seismic slip distributions strongly suggests that afterslip was triggered at the edges of the coseismic asperity. The activation of a segment of the Campotosto fault during the aftershock sequence, with a good correlation between the estimated slipping area, moment release and distribution of aftershocks, raises the opportunity to discuss the local seismic hazard following the occurrence of the 2009 L'Aquila mainshock. The Campotosto fault appears capable of generating earthquakes as large as his- torical events in the region (M N 6.5) or as small as the ones associated with the 2009 sequence. In the case that the Campotosto fault is accumulating a significant portion of the current interseismic deformation, the 2009 MW N 5 events will have released only a small amount of the accumulated elastic strain, and then a significant hazard still remains in the area. Continuing geodetic monitoring and a densification of the GPS networks in the region are therefore needed to estimate the tectonic loading across the different recognized active fault systems in this part of the Apennines.
    Description: Published
    Description: 168-185
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: High-precision leveling; InSAR; GPS; Earthquake source; Normal faulting; Seismic hazard ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-03
    Description: Fluorine adsorption experiments were performed on 28 samples of the first 5 cm of topsoil collected on the flanks of Mt. Etna. The soil samples were equilibrated with F-rich rainwater (3.25 mg/L) at a soil/water weight ratio of 1/25. Aliquots of the supernatant were collected after 1, 7, 72, 720 and 5640 h and analysed for F content. The soil samples could be subdivided into three groups based on their F-adsorption behaviours after 1 h and at the end of the experiment: (1) negative adsorption (F released from the soil to the solution) after 1 h and negative or moderately positive adsorption at the end, (2) from negative after 1 h to strongly positive adsorption at the end, and (3) always strong positive adsorption. The adsorption capacity of the soils was positively correlated with the soil pH, the contents of finer granulometric fractions (clay and silt) and the weathering stage (as quantified by the chemical alteration index). The most F adsorbing soils are found at the periphery of the volcano where aquifers are more vulnerable to contamination due to the shallower depth of the water table. This study further evidences the importance of the Etnean soils in protecting groundwater from an excessive magmatic F input.
    Description: Published
    Description: 1179–1188
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic soils ; fluoride adsorption ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...