ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (1,622,296)
  • American Chemical Society (ACS)  (125,802)
Collection
Language
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 294 (1992), S. 466-478 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 317 (1993), S. 474-484 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-30
    Description: n our daily lives, we consume foods that have been transported, stored, prepared, cooked, or otherwise processed by ourselves or others. Food storage and preparation have drastic effects on the chemical composition of foods. Untargeted mass spectrometry analysis of food samples has the potential to increase our chemical understanding of these processes by detecting a broad spectrum of chemicals. We performed a time-based analysis of the chemical changes in foods during common preparations, such as fermentation, brewing, and ripening, using untargeted mass spectrometry and molecular networking. The data analysis workflow presented implements an approach to study changes in food chemistry that can reveal global alterations in chemical profiles, identify changes in abundance, as well as identify specific chemicals and their transformation products. The data generated in this study are publicly available, enabling the replication and re-analysis of these data in isolation, and serve as a baseline dataset for future investigations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-25
    Description: Highlights • There is direct and indirect evidence for hydrate occurrence in several areas around Europe. • Hydrate is particularly widespread offshore Norway and Svalbard and in the Black Sea. • Hydrate occurrence often coincides with conventional thermogenic hydrocarbon provinces. • The regional abundance of hydrate in Europe is poorly known. Abstract Large national programs in the United States and several Asian countries have defined and characterised their marine methane hydrate occurrences in some detail, but European hydrate occurrence has received less attention. The European Union-funded project “Marine gas hydrate – an indigenous resource of natural gas for Europe” (MIGRATE) aimed to determine the European potential inventory of exploitable gas hydrate, to assess current technologies for their production, and to evaluate the associated risks. We present a synthesis of results from a MIGRATE working group that focused on the definition and assessment of hydrate in Europe. Our review includes the western and eastern margins of Greenland, the Barents Sea and onshore and offshore Svalbard, the Atlantic margin of Europe, extending south to the northwestern margin of Morocco, the Mediterranean Sea, the Sea of Marmara, and the western and southern margins of the Black Sea. We have not attempted to cover the high Arctic, the Russian, Ukrainian and Georgian sectors of the Black Sea, or overseas territories of European nations. Following a formalised process, we defined a range of indicators of hydrate presence based on geophysical, geochemical and geological data. Our study was framed by the constraint of the hydrate stability field in European seas. Direct hydrate indicators included sampling of hydrate; the presence of bottom simulating reflectors in seismic reflection profiles; gas seepage into the ocean; and chlorinity anomalies in sediment cores. Indirect indicators included geophysical survey evidence for seismic velocity and/or resistivity anomalies, seismic reflectivity anomalies or subsurface gas escape structures; various seabed features associated with gas escape, and the presence of an underlying conventional petroleum system. We used these indicators to develop a database of hydrate occurrence across Europe. We identified a series of regions where there is substantial evidence for hydrate occurrence (some areas offshore Greenland, offshore west Svalbard, the Barents Sea, the mid-Norwegian margin, the Gulf of Cadiz, parts of the eastern Mediterranean, the Sea of Marmara and the Black Sea) and regions where the evidence is more tenuous (other areas offshore Greenland and of the eastern Mediterranean, onshore Svalbard, offshore Ireland and offshore northwest Iberia). We provide an overview of the evidence for hydrate occurrence in each of these regions. We conclude that around Europe, areas with strong evidence for the presence of hydrate commonly coincide with conventional thermogenic hydrocarbon provinces.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-14
    Description: Highlights • Common HIMU end member in adjacent continental and oceanic volcanic provinces. • End member St. Helena HIMU derived from deep upwelling(s)/plume(s). • Plateau collision & plume interaction with Gondwana active margin causes breakup. • Hybrid volcanic-tectonic margins resulted from Zealandia – Antarctica breakup. Abstract Margins resulting from continental breakup are generally classified as volcanic (related to flood basalt volcanism from a starting plume head) or non-volcanic (caused by tectonic processes), but many margins (breakups) may actually be hybrids caused by a combination of volcanic and tectonic processes. It has been postulated that the collision of the Hikurangi Plateau with the Gondwana margin ∼110 Ma ago caused subduction to cease, followed by large-scale extension and ultimately breakoff of the Zealandia micro-continent from West Antarctica through seafloor spreading which started at ∼85 Ma. Here we report new geochemical (major and trace element and Sr-Nd-Pb-Hf isotope) data for Late Cretaceous (99-69 Ma) volcanism from Zealandia, which include the calc-alkalic, subduction-related Mount Somers (99-96 Ma) and four intraplate igneous provinces: 1) Hikurangi Seamount Province (99-88 Ma), 2) Marlborough Igneous Province (98-94 Ma), 3) Westland Igneous Province (92-69 Ma), and 4) Eastern Chatham Igneous Province (86-79 Ma). Each of the intraplate provinces forms mixing arrays on incompatible-element and isotope ratio plots between HIMU (requiring long-term high U/204Pb) and either a depleted (MORB-source) upper mantle (DM) component or enriched continental (EM) type component (located in the crust and/or upper mantle) or a mixture of both. St. Helena end member HIMU could be the common component in all four provinces. Considering the uniformity in composition of the HIMU end member despite the type of lithosphere (continental, oceanic, oceanic plateau) beneath the igneous provinces, we attribute this component to a sublithospheric source, located beneath all volcanic provinces, and thus most likely a mantle plume. We propose that the plume material rose beneath the active Gondwana margin and flowed along the subducting lithosphere beneath the Hikurangi Plateau and neighboring seafloor and through slab tears/windows beneath the Gondwana (later to become Zealandia) continental lithosphere. We conclude that both plateau collision, resulting in subduction cessation, and the opening of slab tears/windows, allowing hot asthenosphere and/or plume material to upwell to shallow depths, were important in causing the breakup of Zealandia from West Antarctica. Combined tectonic-volcanic processes are also likely to be responsible for causing breakup and the formation of other hybrid type margins.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2020-01-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
  • 12
  • 13
    Publication Date: 2020-01-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
  • 15
  • 16
  • 17
    Publication Date: 2020-01-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-01-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-11-12
    Description: We present a transport-reaction model (TRACTION) specifically designed to account for non-ideal transport effects in the presence of thermodynamic (e.g. salinity or temperature) gradients. The model relies on the most fundamental concept of solute diffusion, which states that the chemical potential gradient (Maxwell’s model) rather than the concentration gradient (Fick’s law) is the driving force for diffusion. In turn, this requires accounting for species interactions by applying Pitzer’s method to derive species chemical potentials and Onsager coefficients instead of using the classical diffusion coefficients. Electrical imbalances arising from varying diffusive fluxes in multicomponent systems, like seawater, are avoided by applying an electrostatic gradient as an additional transport contribution. We apply the model to pore water data derived from the seawater mixing zone at the submarine Mercator mud volcano in the Gulf of Cadiz. Two features are particularly striking at this site: (i) Ascending halite-saturated fluids create strong salinity (NaCl) gradients in the seawater mixing zone that result in marked chemical activity, and thus chemical potential gradients. The model predicts strong transport-driven deviations from the mixing profile derived from the commonly used Fick’s diffusion model, and is capable of matching well with the profile shapes observed in the pore water concentration data. Even better agreement to the observed data is achieved when ion pairs are transported separately. (ii) The formation of authigenic gypsum (several wt%) occurs in the surface sediments, which is typically restricted to evaporitic surface processes. Very little is known about the gypsum paragenesis in the subseafloor and we first present possible controls on gypsum solubility, such as pressure, temperature, and salinity (pTS), as well as the common ion and ion pairing effects. Due to leaching of deep diapiric salt, rising fluids of the MMV are saturated with respect to gypsum (as well as celestite and barite). Several processes that could drive these fluids towards gypsum supersaturation and hence precipitation were postulated and numerically quantified. In line with the varied morphology of the observed gypsum crystals, gypsum paragenesis at the MMV is likely a combination of two temperature-related processes. Gypsum solubility increases with increasing temperature, especially in strong electrolyte solutions and the first mechanism involves the cooling of saturated fluids along the geothermal gradient during their ascent. Secondly, local temperature changes, i.e. cooling during the transition from MMV activity towards dormancy results in the cyclic build-up of gypsum. The model showed that the interpretation of field data can be majorly misguided when ignoring non-ideal effects in extreme diagenetic settings. While at first glance the pore water profiles at the Mercator mud volcano would indicate strong reactive influences in the seawater mixing zone, our model shows that the observed species distributions are in fact primarily transport-controlled. The model results for SO4 are particularly intriguing, as SO4 is shown to diffuse into the sediment along its increasing (!) concentration gradient. Also, a pronounced gypsum saturation peak can be observed in the seawater mixing zone. This peak is not related to the dissolution of gypsum but is simply a result of the non-ideal transport forces acting on the activity profile of SO4 and Ca profiles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Encyclopedia of Ecology. , ed. by Fath, B. D. Elsevier, Oxford, UK, pp. 108-115. 2. ed. ISBN 978-0-444-63768-0
    Publication Date: 2018-10-16
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-10-30
    Description: Highlights • New 40Ar/39Ar age and geochemical (major, trace element, Sr-Nd-Pb-Hf isotope) data are presented from the Walvis Ridge, belonging to the Tristan-Gough hotspot track in the South Atlantic. • The entire Tristan-Gough hotspot system, including Walvis Ridge, display a spatially continuous age progression. • The Gough-type component is the dominant geochemical flavor of the Tristan-Gough plume and has also been identified in the Discovery and Shona hotspot systems. • The geochemical heterogeneity in the South Atlantic DUPAL region can be reproduced by mixing of Gough-type enriched mantle with continental crust and a FOZO/PREMA-like component. • The HIMU-type alkalic lavas on the Walvis Ridge and older part of Shona hotspot track are ∼30 Ma younger in age than the EMI-type primarily tholeiitic basement lavas at a given locality. Abstract Long-lived spatial geochemical zonation of the Tristan-Gough and Discovery hotspot tracks and temporal variations from EMI-type basement to HIMU-type late-stage volcanism at the Walvis Ridge and Shona hotspot tracks point to a complex evolution and multiple source areas for the South Atlantic hotspots. Here we report 40Ar/39Ar age and geochemical (major and trace element, Sr-Nd-Pb-Hf isotope) data for samples from 16 new sites on the Walvis Ridge. This aseismic ridge is the oldest submarine expression of the Tristan-Gough mantle plume and represents the initial reference locality of the EMI end member in the South Atlantic Ocean. The EMI-type lavas display an excellent age progressive trend of ∼31 mm/a along the entire Tristan-Gough hotspot track, indicating constant plate motion over a relatively stationary melt anomaly over the last ∼115 Ma. The Gough-type EMI composition of the Tristan-Gough hotspot track is the dominant composition on the 〉70 Ma part of the Walvis Ridge, the Etendeka and Parana flood basalts, and along the Gough sub-track, extending from DSDP Site 525A on the SW Walvis Ridge to Gough Island, whereas Tristan-type EMI dominates on the Tristan Track, extending from DSDP Sites 527 and 528 to Tristan da Cunha Island. Gough-type EMI is also the dominant composition of the northern Discovery and Shona hotspot tracks, suggesting that these hotspots tap a common source reservoir. The continuous EMI-type supply over ≥132 Ma, coupled with high 3He/4He (〉10 RA), points to a deep-seated reservoir for this mantle material. The Tristan and Southern Discovery EMI-type flavors can be reproduced by mixing of the Gough-type component with (1) FOZO/PREMA to produce Tristan-type lavas, and (2) marine sediments or upper continental crust to generate the Southern Discovery-type composition. South Atlantic hotspots with EMI-type compositions overlie the margin (1 % ∂Vs velocity contour) of the African Large Low Shear Velocity Province (LLSVP), which may promote the emergence of geochemical “zonation”. The St. Helena HIMU-type volcanism, however, is located above internal portions of the LLSVP, possibly reflecting a layered LLSVP.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-12-14
    Description: Highlights • Northern Hispaniola Margin is studied with new high-resolution bathymetry and vintage seismic data. • Northern Hispaniola Deformed Belt forms an active N-verging fold-and-thrust imbricate system. • Gravity failures are frequent features in the Northern Hispaniola Margin and Bahamas Banks slope. • Oblique collision accelerates the Bahamas Carbonate Province collapse and retreat. • New observations help the assessment of tsunami hazards in the Northern Caribbean region. Abstract The northern margin of Hispaniola records the oblique collision/underthrusting of the Bahamas Carbonate Province with the island-arc. Due to the collision, northern Hispaniola has suffered several natural disasters caused by major earthquakes and tsunamis, such as the historic earthquake of 1842, the tsunami caused by earthquake-driven slumping in 1918 in the Mona Passage, the seismic crisis of 1943–1953 with five events of M 〉 7.0 or the seismic crisis of 2003 with a main shock of M6.3 and a large aftershock of M5.3. Using new swath multibeam bathymetry data and vintage single- and multi-channel seismic profiles, we have performed a regional scale analysis and interpretation of the shallow surface and active processes along the northern margin of the Dominican Republic. We have identified three morphostructural provinces: a) the Bahamas Banks, b) the Hispaniola Trench and c) the Insular Margin, which are divided into two tectonic domains, the Collision Domain and Underthrusting Domain. The southern slope of the Bahamas Carbonate Province shows a very irregular morphology produced by active erosive processes and normal dip-slip faulting, evidence of an extensional tectonic regime and margin collapse. This collapse is of major extent in the Oblique Collision Domain where there are erosive and fault escarpments with higher dip-slip fault throws. The Hispaniola Trench, is formed by the Caicos and Hispaniola basins in the underthrusting domain, and by the Santisima Trinidad and Navidad basins in the Oblique Collision Domain. They have a flat seafloor with a sedimentary filling of variable thickness consisting of horizontal or sub-horizontal turbiditic levels. The turbiditic fill mostly proceeds from the island arc through wide channels and canyons, which transports sediment from the shelf and upper slope. The Insular Margin comprises the Insular Shelf and the Insular Slope. The active processes are generated on the Insular Slope where the Northern Hispaniola Deformed Belt is developed. This Deformed Belt shows a very irregular morphology, with a WNW-ESE trending N verging imbricate thrust-and fold system. This system is the result of the adjustment of the oblique collision/underthrusting between the North American plate and the Caribbean plate. In the Oblique Underthrusting Domain the along-strike development of the imbricate system is highly variable forming salients and recesses. This variability is due to along-strike changes in the sediment thickness of the Hispaniola Trench, as well as to the variable topography of the underthrusting Bahamas Carbonate Province. In the Oblique Collision Domain, the morphology of the Insular Slope and the development of the Deformed Belt deeply change. The imbricate system is barely inferred and lies upslope. These changes are due to the active collision of Bahamas Carbonate Province with the Insular Margin where the spurs are indented against the Insular Margin. Throughout the entire area studied, gravitational instabilities have been observed, especially on the Insular Margin and to a lesser extent on the southern slope of the Bahamas Carbonate Province. These instabilities are a direct consequence of the active underthrusting/collision process. We have mapped large individual slumps north of Puerto Plata in the Oblique Underthrusting Domain and zones of major slumps in the Oblique Collision Domain. These evidences of active processes must be considered as near-field sources in future studies on the assessment of tsunami hazards in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-04-12
    Description: This study investigates the Lesser Antilles fore-arc at the latitude of Guadeloupe Archipelago and evidences that La Désirade Island, the eastermost island of the forearc, displays a staircase coastal sequence including four uplifted marine terraces and an upper reefal platform with mean shoreline angle elevations ranging from 10 to 210 m above sea level (asl). The platform paleobathymetry is constraint by a detailed analysis of the sediments. We propose a revised morphostratigraphy for this coastal sequence including 5 paleo-shorelines based on six U/Th dating from aragonitic corals from the three lowest terraces combined with paleobathymetric analysis of the fossil corals present in the upper platform. Terrace and upper platform carving of construction periods occurred during Marine Isotopic Stages MIS 5e, MIS 9, and during the intervals MIS 15–17, MIS 19–25 and MIS 31–49 (upper coral reef platform). Our results evidence a bulk decreasing uplift rate since early Calabrian to Present-Day, clearly documented since 310 ka (MIS 9) (from 0.14 to 0.19 to ca 0 mm/y). Our data are consistent with first the transient influence of the subducting oceanic Tiburon ridge during Calabrian, then with other parametres of the subduction zone since late Calabrian to Present-Day (dip of the slab, basal erosion of the upper plate, inherited structures …)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-01-24
    Description: Northeast Atlantic marine ecosystems such as the Bay of Biscay, Celtic Sea, English Channel, Subpolar Gyre region, Icelandic waters and North Sea as well as the Mediterranean Sea show concomitant ‘regime shift’-like changes around the mid-1990s, which involved all biota of the pelagial: phytoplankton, zooplankton, pelagic fish assemblages, demersal fish assemblages and top predators. These shifts were caused by complex ocean-atmosphere interactions initiating large-scale changes in the strength and direction of the current systems, that move water masses around the North Atlantic, and involved the North Atlantic Oscillation (NAO), the Atlantic Meridional Overturning Circulation (AMOC), and the subpolar gyre (SPG). The contractions and expansions of the SPG and fluctuations of the Atlantic Multidecadal Oscillation (AMO) play a key role in these complex processes. Small pelagic fish population trends were the sentinels of these changes in the mid-1990s in the ecosystems under investigation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-11-20
    Description: Atlantic cod (Gadus morhua) is an important recreational and commercial fisheries target species in the Northern hemisphere. Release rates are high in the recreational fishery due to regulatory and voluntary catch-and-release practice. Although post-release mortality of cod is relatively low, there is potential for further reductions. The most effective way to reduce post-release mortality is to minimize the catch of sublegal fish or non-target species and to reduce hooking injuries by using more selective fishing methods. This study investigated the influence of the lure/bait type on: (1) size of fish, (2) catch and harvest, (3) proportion of bycatch, (4) hooking location, and (5) injury (bleeding) in the western Baltic Sea recreational cod fishery. Data were collected via random onboard sampling of 35 charter vessel angling trips (778 anglers) and during two supplementary studies in the western Baltic Sea. Overall, the median total length was significantly higher for cod caught on artificial lures (39 cm) than for cod caught on natural bait (28 cm), leading to a 43% higher proportion of sublegal (〈38 cm) cod for bait than for lure. Median catch-per-unit-efforts (number of captured cod per angling hour) did not differ significantly between lure and bait angling (both: 0.49 cod per hour), whereas the median harvest-per-unit-effort (number of captured cod ≥ minimum landing size (38 cm) per angling hour) was significantly higher for lure (0.24 cod ≥38 cm per hour) than for bait angling (0.06 cod ≥38 cm per hour). The incidence of deep hooking and severe bleeding was significantly higher for bait angling. Furthermore, bait angling significantly increased bycatch of other species dominated by whiting (Merlangius merlangus) and European flounder (Platichthys flesus). Cod anglers can reduce the catch of sublegal cod and non-target species and minimize hooking injuries of released fish by using lures instead of bait in the western Baltic Sea. Thus, voluntary terminal gear recommendations may be an effective tool for anglers and managers to increase selectivity in recreational cod fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-11-28
    Description: Protodunes emerge from a flat sand bed at the upwind margin of White Sands Dune Field, and, over several hundred meters, transition into fully developed dunes. Here, we investigate spatial and temporal changes in topography across this transition from 2007 to 2016 using lidar-derived topography, structure-from-motion-derived topography, and RTK GPS. We characterize the deposits present in 2015 using ground penetrating radar. Symmetric protodunes give way downwind to an asymmetric protodune at the transition to slipface development. Between 2007 and 2016, protodune amplitude increased from 0.2 m to 4.0 m, migration rate increased from 3.2 m/yr to 6.1 m/yr, and wavelength increased from 76 m to 122 m. Ground-penetrating radar surveys show strata between flat and 15° make up the stratigraphic architecture of the protodunes. Strata increase in steepness commensurate with an increase in amplitude. Decimeter accumulations of low-angle strata associated with initial protodune stages give way to 4 m of accumulation composed of sets up to 1 m thick prior to slipface development. Topsets present in the thickest sets indicate near critical angles of bedform climb. Growth and slipface development occur by aerodynamic sand trapping and protodune merging. Changes in asymmetry erase initial slipfaces prior to permanent slipface development, after which efficient sand trapping and scour promotes the transition to a dune across 20 m in 5 years. Protodune stratification has hallmarks of sandsheet stratification and can be appreciated within the greater suite of processes that create low-angle eolian stratification found in modern and ancient environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-12-04
    Description: Highlights • Increased glacial sedimentation rates do not generate sufficient overpressure to trigger a landslide. • Simulated overpressures for different sedimentation scenarios do not significantly differ. • A glacimarine layer underneath rapidly-deposited sediments is important for overpressure build-up. • An earthquake of M6.9 or larger at a short distance from the Tampen Slide headwall could have triggered the Tampen Slide. Abstract Trough mouth fans are environments characterized by high sediment supply during glacial stages and the occurrence of large-scale instabilities. The geological record indicates that several of these environments have failed repeatedly resulting in large submarine landslides. The roles of sedimentation rate, weak layers, glacial loading and unloading as well as seismic activity on triggering megaslides in trough-mouth-fan systems is still unclear. A better understanding of the preconditioning factors, triggers and consequences of these landslides is crucial due to the hazard they pose to coastal communities and offshore industries. In this paper, we focus on the North Sea Trough Mouth Fan, which is the result of massive glacial sediment input delivered to the shelf edge through the Norwegian Channel, southeast Nordic Seas margin. The Tampen Slide, one of several large paleo-landslides that have happened within the North Sea Trough Mouth Fan, took place at c. 130 ka (end of MIS 6), and removed an estimated 1800 km3 of sediment. Here, we use boundary conditions from the Tampen Slide and 2D Finite Element Modeling (Abaqus software from Simulia) to evaluate the effects of variations in sedimentation rates as well as sediment properties on the generation of excess pore pressure, fluid flow, and slope stability along the axis of the trough-mouth-fan system. The model domain, 40 km in length and 2 km in height, is dominated by glacigenic debris flows and glacimarine sediment deposits. We use geotechnical data measured on samples of glacigenic and glacimarine sediment deposits from the nearby Ormen Lange gas field area to constrain the model. We evaluate the stability of the slope under various scenarios, including constant sediment loading, episodic changes in sedimentation rates and abrupt pulses in sediment delivery for a 61 kyr period (MIS 6). The models show that increased sedimentation rates during glacial stages do not generate sufficient excess pore pressure to set off a landslide. Furthermore, the simulated overpressures for the different sedimentation scenarios do not significantly differ at the end of the model runs. The results also highlight the importance of a basal glacimarine sediment layer underneath the rapidly-deposited sediments for the build-up of overpressure. Consequently, this glacimarine sediment layer has the inherited potential to act as a weak layer facilitating instability. However, as overpressure due to sediment deposition alone does not result in slope failure, we couple the preconditioned slope with earthquake ground shaking. Based on attenuation models, an earthquake of approximately M6.9 or larger at a short distance from the Tampen Slide headwall could have triggered the landslide. Therefore, we suggest glacial sedimentation and a glacimarine sediment layer to represent preconditioning factors, and seismic shaking as the final trigger mechanism for the Tampen Slide, i.e. similar to the situation that lead to the development of the Storegga Slide in the same area.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-11-27
    Description: The neodymium isotope proxy has become a valuable tool for the reconstruction of past ocean water mass provenance and mixing. For its accurate application, knowledge about the origin and preservation of Nd in sedimentary archives is crucial. Recently, concerns have emerged regarding the applicability of neodymium isotopes as a conservative palaeo water mass tracer, given potential Nd fluxes from sediments into bottom waters (Abbott et al., 2015a) and inferred relabelling of ocean waters by settling detrital material (Roberts and Piotrowski, 2015). Consequently, a decoupling of water mass provenance and proxy variations may arise. We investigate the mobility of Nd around extreme detrital sedimentation events such as glacial ice rafting pulses and turbidite deposition in the Northeast Atlantic. The constructed records from sediment leachates span extreme Nd isotope variations including volcanic (εNd ∼ 0) and Laurentian (εNd ∼ −27) sources. We find that Nd was released into pore waters from reactive detritus inside some detrital layers during early diagenesis, thereby overprinting any archived bottom water Nd signature and precluding the reconstruction of past water mass provenance during the affected time intervals. However, we do not observe any definite indication of diffusive vertical migration of Nd into adjacent layers. Furthermore, bottom water Nd isotope signatures were not modified to a measurable degree by any potential benthic flux of Nd during the deposition of these detrital sediment layers. Consequently, the Nd isotope composition of the pelagic glacial Northeast Atlantic water masses were resilient to such episodic large detrital fluxes. Apart from extreme local sedimentation events, we confirm the presence of detritally overprinted deep waters north of 47°N during the peak glacial from comparison of Northeast Atlantic depth transects. We furthermore suggest that the sensitivity of deep waters to this overprinting effect increased during periods of reduced Atlantic Meridional Overturning Circulation and elevated ice rafting. Overall, our study demonstrates that a thorough evaluation of the proportion of Nd originating from physical water mass advection versus in situ chemical inputs is crucial for the reliable application of Nd isotopes as a water mass tracer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-01-08
    Description: Stable isotope compositions of methane (δ13C and δD) and of short-chain alkanes are commonly used to trace the origin and fate of carbon in the continental crust. In continental sedimentary systems, methane is typically produced through thermogenic cracking of organic matter and/or through microbial methanogenesis. However, secondary processes such as mixing, migration or biodegradation can alter the original isotopic and composition of the gas, making the identification and the quantification of primary sources challenging. The recently resolved methane 'clumped' isotopologues Δ13CH3D and Δ12CH2D2 are unique indicators of whether methane is at thermodynamic isotopic equilibrium or not, thereby providing insights into formation temperatures and/or into kinetic processes controlling methane generation processes, including microbial methanogenesis. In this study, we report the first systematic use of methane Δ13CH3D and Δ12CH2D2 in the context of continental sedimentary basins. We investigated sedimentary formations from the Southwest Ontario and Michigan Basins, where the presence of both microbial and thermogenic methane was previously proposed. Methane from the Silurian strata coexist with highly saline brines, and clumped isotopologues exhibit large offsets from thermodynamic equilibrium, with Δ12CH2D2 values as low as -23‰. Together with conventional δ13C and δD values, the variability in Δ13CH3D and Δ12CH2D2 to first order reflects a mixing relationship between near-equilibrated thermogenic methane similar to gases from deeper Cambrian and Middle Ordovician units, and a source characterized by a substantial departure from equilibrium that could be associated with microbial methanogenesis. In contrast, methane from the Devonian-age Antrim Shale, associated with less saline porewaters, reveals Δ13CH3D and Δ12CH2D2 values that are approaching low temperature thermodynamic equilibrium. While microbial methanogenesis remains an important contributor to the methane budget in the Antrim Shale, it is suggested that Anaerobic Oxidation of Methane (AOM) could contribute to reprocessing methane isotopologues, yielding Δ13CH3D and Δ12CH2D2 signatures approaching thermodynamic equilibrium.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-01-07
    Description: Highlights • The youngest known (2 Ma) volcanically-active subduction system. • Exceptionally diverse range of magma compositions coeval and spatially juxtaposed. • Mixing of an upwelling asthenospheric mantle melt and a slab melt. • Modern example of an immature subduction system building its proto forearc. • Modern analog of the environment where SSZ ophiolites lithosphere forms. Abstract The development of ideas leading to a greater understanding of subduction initiation is limited by the scarcity of present-day examples. Furthermore, the few examples identified so far unfortunately provide few insights into the nature of magmatism at the inception of subduction. Here we report new observations from the Matthew and Hunter (M&H) subduction zone, a very young subduction zone located in the South-West Pacific. Tectonics of the area show it is younger than 2 Ma, making the M&H the youngest known volcanically-active subduction system and hence providing unique insights into the earliest stages of subduction initiation. Volcanism in this area comprises an exceptionally diverse range of contemporaneously erupting magma compositions which are spatially juxtaposed. Pb isotopic compositions and abundance of LILE and REE strongly suggest melting of upwelling asthenospheric mantle (Indian MORB) and subducted oceanic crust (Pacific MORB of the South Fiji Basin) and the mixing of these two components. Volcanism occurs much closer to the trench compared to volcanism in more mature subduction zones. We demonstrate that the M&H subduction zone is a modern example of an immature subduction system at the stage of pre-arc, near-trench magmatism. It is not yet building an arc but what we propose to call a Subduction Initiation Terrane (SITER). Today, the proto-forearc of the M&H subduction zone is a collage of these SITERs, coeval back-arc domains and remnants of pre-existing terranes including old Vitiaz Arc crust. The M&H area represents a modern analog of a Supra Subduction Zone setting where potentially a majority of ophiolites have formed their crustal and lithospheric components. Present-day magmatism in the M&H area therefore provides clues to understanding unforeseen distribution of contrasted magmatic rock types in fossil forearcs, whether they are at the front of mature subduction zones or in ophiolites.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-01-09
    Description: Highlights • Continental margin-scale spatial variability in C values among grain size fractions is presented. • Two different hydrodynamic modes influencing in 14C heterogeneity are identified. • A new index (H14 index) is defined to describe overall 14C heterogeneity within marine surface sedimentary OC. Abstract The deposition and long-term burial of sedimentary organic matter (OM) on continental margins comprises a fundamental component of the global carbon cycle. A key unknown in interpretation of carbon isotope records of sedimentary OM is the extent to which OM accumulating in continental shelf and slope sediments is influenced by dispersal and redistribution processes. Here, we present results from an extensive survey of organic carbon (OC) characteristics of grain size fractions (ranging from 〈20 to 250 μm) retrieved from Chinese marginal sea surface sediments in order to assess the extent to which the abundance and isotope composition of OM in shallow shelf seas is influenced by hydrodynamic processes. Our findings show that contrasting relationships exist between 14C contents of OC and grain size in surface sediments associated with two different hydrodynamic modes, suggesting that transport pathways and mechanisms imparted by the different hydrodynamic conditions exert a strong influence on 14C contents of OM in continental shelf sediments. In deeper regions and erosional areas, we infer that bedload transport exerts the strongest influence on (decreases) OC 14C contents of the coarser fraction, while resuspension processes induce OC 14C depletion of intermediate grain size fractions in shallow inner-shelf settings. We use the inter-fraction spread in 14C values, defined here as 14H , to argue that the hydrodynamic processes amplify overall 14C heterogeneity within corresponding bulk sediment samples. The magnitude and footprint of this heterogeneity carries implications for our understanding of carbon cycling in shallow marginal seas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-01-14
    Description: The Earth’s ocean floor deforms continuously under the influence of plate tectonic processes. In recent years, the development of deep-sea instruments using acoustic direct-path ranging allows observations of ocean floor deformation with unprecedented spatial and temporal resolution. Due to rapid technological progress, acoustic ranging emerged as a central research field to monitor seafloor deformation. Here we review recent developments and the progress of direct-path ranging applications. We discuss the methodology and examine the effects of the oceanographic environment on the measurement precision. Comparing the resolution of previous deployments, we find that the baseline uncertainty increases linearly with baseline length, at least for distances up to 3 km, but with different linear relations for each deployment. Measurements of displacement at millimeter-level precision across normal, thrust or strike-slip faults are discussed to evaluate the influence of dedicated network designs appropriate for the discrete fault geometries. Furthermore, tectonically quiet areas, such as flanks of coastal or ocean island volcanoes and passive continental margins pose substantial hazards that often lack in-situ monitoring and are therefore a significant target for the application of seafloor geodetic techniques.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-02-22
    Description: The role of accessory minerals in the incongruent release of Hf and Pb during continental weathering and its implications for the generation of distinct seawater isotope compositions is subject of debate. While it has been suggested that radiogenic Hf and Pb isotope signatures released during the dissolution of rocks are controlled by the relative abundances of minerals with distinct isotope compositions and differences in their resistance to dissolution there has not been a comprehensive experimental investigation of these processes to date. We carried out systematic sequential leaching experiments on fresh and partly weathered granitic rock samples as well as separated zircons from the Central Aar Granite in Switzerland. Combined with major and rare earth element concentrations our new quantitative experimental data reveal systematic preferential release of radiogenic Nd, Hf and Pb isotopes primarily controlled by dissolution characteristics of the host rock's easily dissolvable accessory and major minerals, in particular apatite and sphene, during weak chemical weathering. Moreover, Pb isotope signatures of incipient weathering conditions, contrary to expectations, indicate initial congruent release of Pb from freshly exposed mineral surfaces that becomes subsequently incongruent. During more advanced chemical weathering stages, as well as enhanced physical weathering conditions, the dissolution of major minerals (i.e. feldspars) becomes dominant for Nd and Pb isotope signatures, whereas Hf isotopes are still dominated by contributions from highly radiogenic accessories. Additional leaching experiments of zircon separates were performed to test the specific role of zircons for Hf isotope compositions of riverine runoff. It is demonstrated that zircon is more efficiently dissolved when physical weathering is enhanced. This increased Hf release originating from partial dissolution of zircons, however, is quantitatively not sufficient to explain less radiogenic Hf isotope signatures in seawater during episodes of enhanced mechanical erosion alone. Moreover, the observed addition of Hf from the more congruent dissolution of the zircon-free fractions of the parent rock due to enhanced physical weathering indicate that these minerals also play an important role in controlling Hf isotope signatures released under deglacial conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-01-07
    Description: Highlights: • Designing spawning closures requires consideration of the mechanisms through which the closures can affect the fish stocks. • Small area closures may have unintended negative effects to the stocks due to fishing effort reallocation. • Closures covering most of the stock distribution are more robust to gaps in biological knowledge than small area closures. Abstract: Fisheries management measures often include spatio-temporal closures during the spawning period of the fish with an overarching aim of improving the stock status. The different mechanisms how a spawning closure potentially can influence the stock are often not explicitly considered when designing such closures. In this paper, we review and synthesize the available data and knowledge on potential effects of the implemented spawning closures on cod in the Baltic Sea. The Baltic cod example represents a relatively data rich case, which allows demonstrating how a closure might affect different parameters of stock status via different mechanisms, including potential unintended negative effects. We conclude that designing relatively small area closures appropriately is highly complex and data demanding, and may involve tradeoffs between positive and negative impacts on the stock. Seasonal closures covering most of the stock distribution during the spawning time are more robust to data limitations, and less likely to be counterproductive if suboptimally designed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 246 . pp. 213-233.
    Publication Date: 2019-02-08
    Description: The development of weathering profiles shapes Earth’s surface and regulates its climate via chemical weathering. Hence, it is essential to be able to determine the age of weathering profiles and quantify how fast they form. Uranium-series isotopes allow for such quantification. However, isotope compositions are generally measured in bulk regolith, which represents a complex mixture of mineral and organic phases of different origins that can impact the reliability of the information derived from U-series isotopes. Thus, in this study, we assess whether sequential extraction and mineral separation could provide more reliable estimates of weathering ages and rates. We focus on a granitic profile developed under temperate climate in southeastern Australia, a tectonically quiescent environment. Regolith production rates have been independently estimated in the region using cosmogenic isotopes. As expected, the mineralogy and geochemistry of the bulk regolith show that biotite and feldspar are the main phases lost during weathering, progressively replaced by clay minerals. There is no evidence for significant input of element from external sources, such as via aerosol deposition. While sequential extraction does not seem to affect major mineral phases and element concentrations, it is suspected of producing artificial radioactive disequilibrium. Biotite separates show very large accumulation of U and Th, which increases with decreasing depth. Regolith production rates and mineral dissolution rates calculated with weathering rates estimated using the bulk saprolite and quartz separate compositions yield values comparable to independent estimates. Conversely, weathering ages derived from the compositions of saprolite leached experimentally or biotite separates underestimate regolith production rates and mineral dissolution rates. Thus, sequential extraction or biotite separation are not recommended methods to derive reliable rates of regolith production and mineral dissolution. Despite the potential complexity of the composition of bulk regolith, the use of regolith without any pre-treatment seems to yield satisfying estimates of regolith production and mineral dissolution rates. The composition of quartz separates yields rates similar to those derived from bulk compositions. This provides an alternative method, potentially allowing reliable results to be obtained from a single mineral phase rather than a complex mixture of weathering products.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-04-16
    Description: Atmospheric deposition can be an important source of nutrients and trace metals to oligotrophic alpine lakes, affecting their biogeochemistry. We measured trace metal concentrations and lead (Pb) isotope ratios in lake water, river water, ground water, and aerosol total suspended particles (TSP), as well as nutrient (NO 3 − , NH 4 + , PO 4 3− ) concentrations in TSP in the Tahoe Basin. The contribution of TSP deposition to the lake trace metal budget was assessed. Our results show seasonality in TSP and associated trace metal concentrations with higher concentrations during Oct – April. However, trace metal solubilities are higher during May – Sept, resulting in a higher contribution of soluble trace metals to the lake water. The source of most of the trace metals in TSP in the Lake Tahoe Basin is mineral dust; however, Zn, Cu, and Cd also have an anthropogenic origin. Among major nutrients, NO 3 − concentrations are slightly higher during Oct – April, while NH 4 + and soluble reactive phosphorus (SRP) are higher during May – Sept. The distributions of trace metal concentrations and Pb isotopic ratios are homogenous throughout the lake water column, suggesting that the residence time of the trace metals in the lake is longer than the lake water mixing time. The contribution of atmospheric TSP deposition to the upper 20 m of lake water trace metal inventory is low, ranging from 0.03% for V to 5.7% for Mn. A triple-isotopes plot of Pb indicates that riverine and groundwater inputs are the major Pb sources, but aerosols still contribute some Pb to the lake. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-03-28
    Description: Highlights • Geochronology and provenance analysis from the Cosinas and Machiques Basins show a new tectono-sedimentological evolution. • Multiproxy analysis are required to understand tectono-sedimentological evolution in extensional basins. • Paleogeographic evolution shows a closer connection between Maya and Guajira blocks since the early Jurassic. Abstract Jurassic extensional basins developed along the northwestern margin of South America during the break-up of Pangea. Presently, these basins are dispersed in several tectonic blocks of the northern Andes and Mexico, hindering reconstruction of western equatorial Pangea before break-up. This is the case of the Cosinas Basin (Guajira block) and the Machiques Basin (Perijá Range), in northern Colombia, which are filled by Jurassic sedimentary and volcano-sedimentary successions. Autochthonous and para-autochthonous hypotheses on the origin of this basins have been proposed. The purpose of this research is to document the sedimentological evolution, depositional age (Sr-isotope + U-Pb geochronology), sediment provenance and paleogeography of the Cosinas and Machiques basins in order to constrain whether these basins formed within a single extensional margin or they formed as extensional basins in different tectonic blocks. Volcanic detrital zircon U-Pb ages documented in La Quinta Formation in the Machiques Basin and at the base of Rancho Grande Formation in the Cosinas Basin suggest that extensional basins were active in Early Jurassic time. However, a significant difference exists in their subsequent history. Whereas in the Machiques Basin dominates the accumulation of Lower and Middle Jurassic volcanoclastic deposits with abrupt lateral thickness changes, accumulation in the Cosinas Basin is dominantly of siliciclastic strata, with the record of two major marine incursions in Late Jurassic time. Integration of provenance results indicates that the Santander Massif supplied sediments to the Machiques Basin. In contrast, Middle to Upper Jurassic sandstones of the Cosinas Basin document unroofing of basement blocks that include metamorphic, sedimentary and plutonic rocks from the Guajira and Maya blocks. The similarity in age and composition of pre-Jurassic rocks in northwestern South America and the so-called peri-Gondwana blocks in the Mexican subcontinent (i.e., Maya and Oaxaquia blocks) challenge the use of detrital zircon population as an indicator of the autochthonous or para-autochthonous origin of the Guajira block. Large uncertainty of paleomagnetic results, and the lack of constraints for the time magnetization acquisition preclude estimating paleolatitudes for the Guajira block in Jurassic time but support previous interpretation of ca. 70°-90° clockwise rotation of the Guajira block relative to stable South America craton. Our preferred paleogeography considers that the Cosinas and Machiques basins were close to each other along the western continental margin of Pangea during the onset of extension in Early Jurassic time. The change from continental to marine depositional environments in Middle to Late Jurassic time along the Cosinas Basin, which have not been identified in the Machiques Basin or other autochthonous Jurassic basins in northwestern South America, allow us to propose that these blocks were separated during the Callovian - Tithonian interval, with the Cosinas Basin remaining closer to a conjugate Mexican margin, that we interpret as the Maya block. Collision of the Guajira block with the South American margin occurred near the Jurassic-Cretaceous boundary, as documented by deformation of Jurassic units previous to deposition of Berriasian strata in the Guajira block.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-04-03
    Description: Sediments were sampled at nine stations on a transect across a 7–10 m thick Holocene mud layer in Aarhus Bay, Denmark, to investigate the linkages between CH4 dynamics and the rate and depth distribution of organic matter degradation. High-resolution sulfate reduction rates determined by tracer experiments (35S-SRR) decreased by several orders of magnitude down through the mud layer. The rates showed a power law dependency on sediment age: SRR (nmol cm−3 d−1) = 106.18 × Age−2.17. The rate data were used to independently quantify enhanced SO42− transport by bioirrigation. Field data (SO42–, TCO2, T13CO2, NH4+ and CH4 concentrations) could be simulated with a reaction-transport model using the derived bioirrigation rates and assuming that the power law was continuous into the methanogenic sediments below the sulfate-methane transition zone (SMTZ). The model predicted an increase in anaerobic organic carbon mineralization rates across the transect from 2410 to 3540 nmol C cm−2 d−1 caused by an increase in the sediment accumulation rate. Although methanogenesis accounted for only ∼1% of carbon mineralization, a large relative increase in methanogenesis along the transect led to a considerable shallowing of the SMTZ from 428 to 257 cm. Methane gas bubbles appeared once a threshold in the sedimentation accumulation rate was surpassed. The 35S-measured SRR data indicated active sulfate reduction throughout the SO42− zone whereas quasi-linear SO42− gradients over the same zone indicated insignificant sulfate reduction. This apparent inconsistency, observed at all stations, was reconciled by considering the transport of SO42− into the sediment by bioirrigation, which accounted for 94 ± 2% of the total SO42− flux across the sediment-water interface. The SRR determined from the quasi-linear SO42− gradients were two orders of magnitude lower than measured rates. We conclude that models solely based on SO42− concentration gradients will not capture high SRRs at the top of the sulfate reduction zone if they do not properly account for (i) SO42− influx by bioirrigation, and/or (ii) the continuity of organic matter reactivity with sediment depth or age.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-04-03
    Description: Highlights • Novel approach to constrain past export production using Ba isotopes. • Ba isotopes improve reliability of the Ba accumulation productivity proxy. • Higher productivity during PETM recovery contributed to rapid carbon sequestration. Abstract The Paleocene–Eocene thermal maximum (PETM; ∼56 Ma) was a transient global warming event associated with a huge perturbation to the global carbon cycle. Changes in marine biological productivity may have contributed to the rapid recovery from this climate change event, by driving the burial of inorganic and organic carbon. Disagreement between proxy reconstructions, however, makes the response of biological productivity to climatic changes experienced during the PETM uncertain. Accumulation of non-detrital barium (Ba) in marine sediments is a commonly used proxy for export production. This proxy however can be compromised by artifacts resulting from dilution and changes in barite preservation, issues that have been debated for its application to sediments deposited during the PETM. Here we present a new approach to address these limitations, by combining non-detrital Ba accumulation with Ba isotope data for marine PETM sediments. Observed positive correlation between these variables is consistent with their control by local changes in export production. These results help resolve previous discrepancies between productivity reconstructions, and indicate export production at sites in the Southern Ocean and South Atlantic decreased or remained unchanged following the PETM onset, followed by an increase to maximum values in the PETM recovery period. This increase in export production coincides with elevated carbonate accumulation rates, representing an important mode of carbon sequestration. These new constraints therefore support the idea that increased production and export of calcifying nannoplankton, perhaps driven by changes in ocean stratification and/or terrestrial runoff, played an important role in rapid recovery from the PETM. This work also demonstrates the utility of sedimentary Ba isotope compositions for understanding past changes in the marine carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-04-03
    Description: Highlights • Exposure ages that constrain ice sheet thickness collated from an online database. • Thinning rates are reconstructed from 23 sites across Antarctica. • Palaeo-thinning rates are comparable to modern observations. • Wide-spread thinning during the Holocene, but after Meltwater Pulse 1A. Abstract Constraining Antarctic ice sheet evolution provides a way to validate numerical ice sheet models that aid predictions of sea-level rise. In this paper we collate cosmogenic exposure ages from exposed nunataks in Antarctica that have been used, or have the potential to be used, to constrain rates of thinning of the Antarctic Ice Sheets since the Last Glacial Maximum. We undertake quality control of the data and adopt a Bayesian approach to outlier detection. Past thinning rates are modelled by Monte Carlo linear regression analysis. We present thinning rates from 23 sites across Antarctica. The resulting data set is the first Antarctic-wide collation of past ice sheet thinning rates and provides an empirical starting point for future model-data comparisons. Palaeo-thinning rates are spatially variable with high rates appearing to correlate to areas of contemporary rapid changes. On centennial timescales past thinning rates are comparable to modern day observations implying that modern day thinning has the potential to persist for centuries in numerous parts of Antarctica. The onset of abrupt thinning from all sites post-dates Meltwater Pulse 1A suggesting that its source region(s) are distal to areas where exposure age constraints on ice surface geometry exist.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-04-03
    Description: Highlights • Robust increase in silt size at 5 ka reflects increased flow of Labrador Sea Water. • Ice-rafted debris likely affects on the Labrador Slope during the last deglacial. • End member modeling and corrections provide insight into deglacial sediments. Abstract The Labrador Sea is a vital region for the Atlantic Meridional Overturning Circulation (AMOC), where overflow waters from the Nordic Seas mix with locally produced Labrador Sea Water (LSW), before exiting to the interior of the Atlantic Ocean. The dynamical sedimentary proxy of mean sortable silt size ( ) can give information on past changes in deep water circulation speed and the strength of AMOC. We have produced records from two core sites at depths between 1500 and 2000 m on the continental slope east of Newfoundland, to reconstruct changes in intermediate depth water circulation speed, including Glacial North Atlantic Intermediate Water and Labrador Sea Water over the past 22,000 years. Increases in appear to coincide with much of the deglaciation as well as the mid-late Holocene. End-member modeling suggests that ice-rafted debris (IRD) is an important factor in interpreting during the deglaciation. We find that a robust increase in is likely unrelated to IRD during the past 5 ka, and probably reflects increased flow at intermediate depths due to local production of LSW strengthening as Nordic Seas overflows weakened at this depth. Our results highlight both the complications of producing records in IRD-rich, slope environments and the promise that this proxy nevertheless has for reconstructing dynamical changes in deep ocean currents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-04-03
    Description: Highlights • Volcanic activity of Harrat Uwayrid (NW Arabia) lasted from 8.2 to 0.3 Ma. • Alkali olivine basalts are followed by basanites, tephrites and tephriphonolites. • Sr-Nd-Pb isotopic ratios of all volcanic rocks suggest a PREMA source. • Different degrees of partial melting of amphibole-garnet-spinel lherzolite • Lithospheric mantle source rather than asthenosphere or plume-type mantle Abstract The volcanic field of Harrat ar Rahah-’Uwayrid (NW Saudi Arabia) consists of an older plateau basalt sequence that overlies Cambrian sandstone and younger cinder cones with smaller flows that are concentrated in the central part of this field. Petrographic and whole rock geochemical data indicate that the older plateau basalts are alkali olivine basalts, while the younger volcanic products are basanites and tephrites with some phonotephrites and tephriphonolites. KAr model ages on 22 bulk-rock samples were obtained for variable grain size fractions (125–250, 250–500 μm). These dates range from 8.2 to 0.34 Ma, whereby three phases of volcanic activity during the Upper Miocene, Pliocene and Quaternary can be distinguished. Sr-Nd-Pb isotopic ratios are similar for all age groups with 87Sr/86Sr = 0.70307–0.70324, 143Nd/144Nd = 0.512912–0.512957, 206Pb/204Pb = 19.360–19.717, 207Pb/204Pb = 15.603–15.633 and 208Pb/204Pb = 39.083–39.521 (present-day ratios are indistinguishable from calculated initial ratios) suggesting that chemical differences among the lavas were probably produced by different degrees of partial melting rather than by different source compositions. Trace element ratios indicate an origin of all volcanics by small degrees of partial melting of amphibole-spinel-garnet peridotite. Geochemical and isotopic data of the Harrat ar Rahah-’Uwayrid are similar to those from the small volcanic fields of Harrat Kura (about 200 km SSE of Harrat al ‘Uwayrid) and of Wadi Jizan in SW Saudi Arabia, but clearly more enriched than those of the volcanic fields that are located in the more central parts of the eastern shoulder of the Red Sea Rift. The lithospheric thickness underneath Harrat ar Rahah-’Uwayrid is estimated to about 60 km based on published results from seismic tomography. Our data support the model that the metasomatized lithospheric mantle was the primary source of the magmas, while the asthenospheric mantle or a plume-type component played an unsignificant role. The composition of the lithospheric mantle source was similar to prevalent mantle (PREMA). There is no need to postulate the participation of a HIMU component and/or enriched mantle components (EM-1, EM-2) in the source of the investigated magmas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-04-04
    Description: Global warming is already affecting the oceans through changes in water temperature, acidification, oxygen content and sea level rise, amongst many others. These changes are having multiple effects on marine species worldwide, with subsequent impacts on marine fisheries, peoples' livelihoods and food security. This work presents a review of the recent literature on the current and projected impacts of climate change on Canada's Pacific marine ecosystem. We find that there is an increasing number of studies in British Columbia focusing on changes in ocean conditions and marine species responses under climate change, including an emerging literature on the socio-economic impacts of these changes considered to be a knowledge gap. According to the literature, it is well established that ocean temperatures are increasing over the long-term, especially, in southern areas of British Columbia. Warming trends are increasing in the spring and are strongest in summer. However, there are important uncertainties regarding other climate drivers, such as oxygen concentration and acidification, stemming mainly from the insufficiency of data. Pacific salmon, elasmobranchs, invertebrates and rockfishes are amongst the most vulnerable species groups to climate change in British Columbia. Also, shifts in stock distribution and fish abundance under climate change may have a significant impact on fish supply affecting the livelihoods and food security of some British Columbians. The magnitude of these impacts is likely to vary according to a latitudinal gradient, with southern coastal areas being more affected than northern and central areas; challenging multiple areas of governance, such as equity and fishing access amongst First Nations; and institutional arrangements for transboundary stocks between the U.S. and Canada.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-04-16
    Description: Fouling organisms in bivalve aquaculture cause significant economic losses for the industry. Husbandry strategies to reduce biofouling can involve avoidance, prevention, and treatment. In this way, the type of rope used to collect spat or grow bivalves may prevent or reduce fouling by particularly harmful species but remains largely untested. Further, while a range of eco-friendly control methods exist, their effect on widespread, common biofoulers is poorly known. We tested biofouling accumulation and spat collection for seven commercially used ropes, and evaluated treatments of ambient and heated seawater, acetic and citric acid, and combinations of both applied across a range of exposure times to two commercially grown shellfish (Mytilus galloprovincialis and Ostrea angasi) and three biofouling species (Ectopleura crocea, Ciona intestinalis and Styela clava). Rope types differed significantly in terms of fouling rates and spat collection, with specific rope types clearly advantageous, despite not being used commercially in our study area. Treatments proved variably successful, with E. crocea highly susceptible to all treatments, Ciona intestinalis moderately susceptible, and Styela clava relatively resistant. Excluding S. clava, efficacious treatments were attainable that did not adversely affect shellfish. Combining heat and acid treatments were more successful than individual treatments and provide a useful avenue for further trials. This study provides baseline evidence for treatment efficacy that will tailor longer-term, field trials to validate and streamline biofouling treatments in shellfish aquaculture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-05-02
    Description: Highlights • New experiments with melt inclusions in olivine at 1200 °C and 300 MPa. • Coupled behavior H2O and SiO2 in inclusions during re-hydration and dehydration. • SiO2 mobility results from formation/destruction of metal vacant olivine. • SiO2-undersaturated arc melt inclusions may originate by dehydration. • New method to assess initial H2O in dehydrated inclusions. Abstract Primary subduction-related magmas build up modern continental crust and counterbalance massive recycling of crustal material into the deep mantle occurring at this tectonic setting. Melt inclusions in Mg-rich olivine are believed to be the best probes of primary subduction-related melts. However, unexpectedly, most of such inclusions are SiO2-undersaturated, in contrast to predominantly SiO2-saturated island-arc rocks. The origin of these melts has been explained by melting of amphibole-bearing pyroxenites in the lower crust or upper mantle. The current models fail, however, to explain the high abundance of SiO2-undersaturated melts as well as their compositional difference with host rocks for the major elements but not for incompatible trace elements. Here we report results from the investigation of rocks and melt inclusions in olivine from Klyuchevskoy volcano in Kamchatka. We show that experimental re-hydration of SiO2-undersaturated melt inclusions in olivine Fo85−90 at 300 MPa pressure and 1200 °C causes a concomitant enrichment of melt in H2O and SiO2 so that re-hydrated inclusions (4–5 wt% H2O) become as silica-saturated as primitive Klyuchevskoy rocks. An experimental dehydration of previously re-hydrated inclusions also resulted in coupled depletion of melt in H2O and SiO2. The estimated stoichiometry of SiO2 and H2O gain/loss is consistent with dissolution/crystallization of metal-defect olivine on inclusion walls. The migration mechanism of water is controlled by hydrogen diffusion in the octahedral metal (Mg, Fe) vacancies through olivine structure as confirmed by FTIR spectroscopy. We conclude that the previously reported SiO2-undersaturated composition of many melt inclusions from hypersthene-normative island-arc rocks can be explained by the coupled loss of up to several weight percent of H2O and SiO2 from the initially trapped primitive SiO2-saturated hydrous melts. Thus, SiO2-undersaturated melt inclusions may not be representative of primitive island-arc magmas. The discovery of the coupled SiO2 and H2O loss from inclusions allowed us to propose a method for reconstruction of the initial water content even for completely dehydrated inclusions. The results of this study may indicate that the majority of primitive island-arc inclusions have not preserved their initial H2O content, and that primary arc melts contain on average ≥4 wt% H2O. The higher H2O concentration in primary arc melts implies the existence of a ‘crustal filter’ controlling the water content, which can be preserved in melt inclusions, and also the lower mantle melting temperatures and higher output H2O fluxes in subduction zones than previously estimated based on direct determination of H2O in potentially dehydrated melt inclusions.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-05-06
    Description: Highlights • Present original 2D/3D seismic data to reveal the geologic setting of a potential gas hydrate prospect off SW Taiwan. • Active fluid flow processes are studied by analyzing water column and seismic data. • A conceptual model is proposed for the gas hydrate system of Pointer Ridge by detailed seismic attribute analysis. • Potential gas hydrate reservoirs that might be targets for future exploration are identified. Abstract Pointer Ridge is a gas hydrate prospect on the South China Sea continental slope offshore SW Taiwan. It is characterized by densely distributed bottom simulating reflections (BSRs), active gas seepage, and potential sandy gas hydrate reservoirs. To understand how the fluids have migrated toward the seafloor, and the role of geological processes in the gas hydrate system, we have collected and analyzed high-quality 2D and 3D reflection seismic data. We first mapped the spatial distribution of the BSRs, and interpreted a major normal fault, Pointer Ridge Fault (PR Fault). The NE-SW trending fault dips to the east, and separates the erosional regime to the west from the depositional regime to the east. One active vent site was identified directly above the PR Fault, while another is located on a topographic high to the west of the fault. On the hanging block of the fault we found at least one major unconformity. The seismic data indicate refilled channels with coarser-grained sediments in the hanging wall of the normal fault. Seismic attribute analysis shows subsurface fluid conduits and potential gas hydrate reservoirs. We propose two types of gas chimneys, which are separated by the fault. Gas plumes derived from hydroacoustic data are mostly from the footwall block of the fault. We infer that fluid flow is more active in the erosional environment compared to the depositional one, and that this is the result of reduced overburden. The methane-bearing fluids migrate upward along the PR Fault and chimneys and form hydrates above the base of the gas hydrate stability zone. Based on seismic interpretation and seismic attribute analysis, we postulate that the channel infill constitutes the most promising hydrate reservoirs in this geological setting. In the surveyed area of Pointer Ridge these channels occur mainly below the gas hydrate stability zone.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-05-06
    Description: Silicon (Si) isotopes are useful tracers for the modern and ancient Si cycle, but their interpretation is limited by inadequate understanding of Si isotope exchange kinetics and fractionation factors at low temperature. This study investigated Si isotope exchange and fractionation between aqueous and amorphous Si at circumneutral pH and room temperature through a series of 29Si-spiked isotope-exchange experiments. Four different amorphous Si solids with varied surface areas were reacted with aqueous Si solutions of high ionic strength similar to seawater, or low ionic strength typical of freshwater, under conditions close to chemical equilibrium with respect to amorphous Si solubility. In contrast to the common perception of negligible Si isotope exchange at low temperature, ∼50–85% isotope exchange was achieved between aqueous and amorphous Si within ∼60 days. Larger solid surface areas and higher aqueous ionic strength generally promoted Si isotope exchange. Drying/aging of Si gel, however, impedes Si isotope exchange between amorphous and aqueous Si relative to freshly prepared Si gels. Excluding the experiments that used the aged Si gel, temporal trajectories of Si isotope evolution of the two phases from all other experiments showed significant curvature in three-isotope space (29Si/28Si and 30Si/28Si). These results can be best explained by a model that comprises two Si isotope exchange processes with different exchange rates and fractionation factors during the interactions between aqueous and amorphous Si towards isotope equilibrium. The faster exchange is associated with surface sites, and slower exchange occurs between exterior and interior Si atoms of the solid. Exchange with surface sites tends to partition heavy Si isotopes in the aqueous phase relative to the solid surface, whereas exchange between surface and interior sites in the solid tends to enrich heavy Si isotopes in the interior. Two experiments that achieved 〉80% isotope exchange provided the best estimates of equilibrium Si isotope fractionation factors between bulk amorphous Si solid and aqueous monomeric silicic acid H4SiO4 (Δ30Siamorphous–aqueous) at 23 °C: +0.52‰ (±0.15‰, 1sd) at seawater ionic strength, and −0.98‰ (±0.12‰) at freshwater ionic strength. The observed “salt effect” on Si isotope exchange kinetics and fractionation factor is interpreted to reflect an influence of cations on Si speciation of solid surfaces. This work highlights the value of three-isotope method in studying both reaction kinetics and isotope fractionation mechanisms. The observed Si isotope exchange between amorphous and aqueous Si at low temperature implies that Si isotope re-equilibration, a previously neglected process, may be important in controlling Si isotope compositions of natural samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-05-06
    Description: The Pb isotope compositions of galena in hydrothermal deposits obtained by drillings from two hydrothermal fields in the middle Okinawa Trough were studied. One of the study fields was the Iheya North field located on a volcanic complex and the other was the Izena field located in the sediment-filled caldera structure. LA-MC-ICP-MS was applied to directly measure Pb isotope compositions in individual galena grains which highlighted variations not only in regional scale, but also in microscopic scale so that changes of Pb isotope compositions within a galena grain can be tracked. Homogeneous Pb isotope compositions were found within the same hydrothermal site, irrespective of the mineral assemblage, texture and sampling depth beneath the seafloor. In contrast, the isotope compositions varied significantly between the two hydrothermal fields. The Pb isotope composition from the Iheya North field was isotopically close to the volcanic rocks of the Okinawa Trough, whereas that from the Izena field was more radiogenic with values intermediate between sediments and volcanic rocks of the Okinawa Trough. Within the Iheya North field, intra-field variation of Pb isotope compositions was recognized between two active sites 2.5 km apart from each other. The intra-field variation was recognized also in the Izena field. The sub-seafloor massive sulfide layer has a more sediment-like Pb isotope composition, compared to the inactive sulfide mound. These results illustrate that the Pb-mineralizing hydrothermal fluids originate from their local host rocks with/without sediment and that the isotope compositions of the galena grains reflect their metal sources; either the volcanic rocks and/or the sediments via water-rock interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-05-06
    Description: A simple and general relation between the solubility of quartz and the density of solution is derived rigorously. Based on this relation and the pressure-volume-temperature-composition model of Mao et al. (2010), an accurate density-based model is developed for the solubility of quartz in aqueous NaCl and/or CO2 solution up to 1273 K and 20,000 bar. The model parameters are regressed with carefully assessed experimental data. Compared to a large number of experimental data, the average absolute deviations of calculated quartz solubilities in water, aqueous NaCl solution and aqueous CO2 solution are 5.50%, 5.24% and 7.55%, respectively, which are within experimental uncertainties, and are much better than the most competitive models in literature. Particularly, this model can predict the experimental solubility of quartz in aqueous NaCl and CO2 solution without using any additional parameter. This model can be incorporated in software for accurate geochemical modeling. The strategy of this model should be promising for the solubilities of other minerals in water or multicomponent aqueous solutions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-05-07
    Description: Emplacement of Large Igneous Provinces (LIPs) had a major effect on global climate, ocean chemistries as traced in sedimentary records and biotic turnovers. The linkage between LIPs and oceanic anoxic events has been documented with the Cenomanian/Turonian boundary event and Oceanic Anoxic Event 2 (OAE2). The Caribbean LIP and High Arctic Large Igneous Province (HALIP) are regarded as possible triggers. The pericratonic Arctic Sverdrup Basin is the partial location of the HALIP, where little is known about sedimentary, geochemical and biotic responses to the HALIP phases. Sedimentary strata at Glacier Fiord, Axel Heiberg Island, exhibit a dynamic Cretaceous polar carbon burial history within the lower to middle Cenomanian Bastion Ridge Formation and upper Cenomanian to Turonian part of the Kanguk Formation. We present the first initial 187Os/188Os (Osi) composition profile for a polar Cenomanian/Turonian boundary interval (∼100–93.9 Ma) linked to recently dated magmatic phases of the Strand Fiord Formation, part of the HALIP. The carbon isotope record coupled with the Osi profile show two events in the upper Cenomanian interval marked by positive carbon perturbations and shifts to more non-radiogenic Osi compositions. The earlier short-lived event is interpreted as result of weathering of the surrounding Strand Fiord volcanics causing a local non-radiogenic Osi signal. Coinciding transgressive shorelines let to an increase in marine and terrestrially derived organic matter. Subsequently, injection of mantle-derived basalts into organic rich sediments is credited with causing the release of methane documented in a distinct negative carbon isotope excursion. We speculate that the methane release of the HALIP was an important contribution for rapid global warming caused by increasing atmospheric CO2 levels associated with the OAE2 event likewise recognized in the Sverdrup Basin. As climate cooled in the middle and late Turonian, carbon burial decreased under increasingly oxygenated benthic conditions. Epifaunal foraminiferal species, adapted to low oxygen conditions, persisted during the OAE2. Our Cenomanian to Turonian multiproxy record of the Sverdrup Basin distinguishes between local and global signals within a restricted High Arctic basin. Our results demonstrate the interplay between basin tectonism and sea-level change, increased weathering during transgressive phases, seafloor processes such as hydrothermal activity and methane release and biotic response to a complex paleoceanography. With future reliable dated frameworks this unique polar record will facilitate correlations to other polar basins and records of lower paleolatitudes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-05-07
    Description: Oceanic carbonate chemistry during the Cenozoic has affected the climatology, ecology, and marine geology of our planet; yet, we have limited means to know the evolution of that chemistry, due to a lack of preserved and unaltered seawater samples and a continuing paucity of proxies. Modeling is often used to address this problem; here, we offer a simple, data-driven, secular timescale, inverse model for the mean, Cenozoic, carbonate chemistry of the oceans. Inputs for the model include carbonate compensation depth (CCD), CaCO3 burial, seawater temperature, atmospheric CO2 and carbonate ion records, as well as a simple set of original, but justified, assumptions. The model retrodicts the total dissolved inorganic carbon (DIC), carbonate alkalinity (CAlk), and pH of the surface and deep waters of the ocean. The retrodicted DIC and CAlk records do not indicate any unusually elevated values in the early Cenozoic, as found in some past studies. If the CCD record from Lyle et al. (2008) is employed, the changes in DIC and CAlk appear entirely related to changes in the alkalinity input to the pelagic oceans and atmospheric CO2; however, with the CCD from Pälike et al. (2012), the increases in DIC and CAlk during the last 15 Ma reflect the effects of ocean cooling. Using either CCD-record, our model provides consistent retrodictions of the available pH record. Our results are not consistent with many past modeling assumptions, such as constancy of alkalinity in surface waters, or the ratio of shallow and deep carbonate ion concentrations. Finally, we use our results to provide new estimates of atmospheric CO2 based on Boron isotopes and find significantly lower CO2 values in the early Cenozoic than previous values.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-05-07
    Description: Sulfur (S) isotope compositions of pyrites in the sedimentary record have played an important part in our understanding of biogeochemical cycling in the geologic record. However, the kinetics of pyritization are complex and depend strongly on the reactivity and mineralogy of available iron. As a second major sink for sulfide in anoxic sediments, organic matter (OM) provides essential context for reconstructing the distribution and isotopic composition of environmental sulfide. To first order, roughly parallel pyrite and OM δ34S profiles reflect changes in sulfide, while independent patterns require alternative explanations, including changes in iron availability or OM characteristics. We apply this framework to Ocean Anoxic Event 2 (OAE-2, 94 Mya), a period of enhanced reduced C and S burial (in OM and pyrite) that was associated with expanded marine anoxia. We present paired S-isotope records for pyrite and OM along with profiles of OM S:C ratio and S redox speciation from four well-characterized lithologic sections (Pont d’Issole, Cismon, Tarfaya Basin, and Demerara Rise) to reconstruct both local redox structure and global mechanisms impacting the C, S and Fe cycles around OAE-2. OM sulfurization appears to be a major control on OM preservation at all four sites. Similar to modern anoxic environments, there is a positive correlation between OM S:C ratios and OM concentrations for sites with more reducing conditions, implying a link between OM sulfurization and burial. At consistently anoxic sites like Tarfaya Basin and Demerara Rise, strongly sulfurized OM with a consistent S redox speciation and S-isotope composition most likely formed rapidly in sinking particles before, during, and after OAE-2. Particle-hosted OM sulfurization may therefore have been a central mechanism facilitating the massive burial of OM in anoxic environments during this and other periods of enhanced global carbon burial. At the same time, a nearly 25‰ negative shift in the δ34S values of pyrite – but not OM – occurs at multiple, globally distributed sites near the onset of OAE-2, indicating slower pyritization reactions that likely reflect changes in iron delivery due to expanding regional or global anoxia. The combination of pyrite and organic S isotopes thus provides novel constraints on the interwoven cycles of carbon, iron, and sulfur across a major carbon cycle perturbation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-03-13
    Description: In this study, an idealized eddy-resolving model is employed to examine the interplay between the downwelling, ocean convection and mesoscale eddies in the Labrador Sea and the spreading of dense water masses. The model output demonstrates a good agreement with observations with regard to the eddy field and convection characteristics. It also displays a basin mean net downwelling of 3.0 Sv. Our analysis confirms that the downwelling occurs near the west Greenland coast and that the eddies spawned from the boundary current play a major role in controlling the dynamics of the downwelling. The magnitude of the downwelling is positively correlated to the magnitude of the applied surface heat loss. However, we argue that this connection is indirect: the heat fluxes affect the convection properties as well as the eddy field, while the latter governs the Eulerian downwelling. With a passive tracer analysis we show that dense water is transported from the interior towards the boundary, predominantly towards the Labrador coast in shallow layers and towards the Greenland coast in deeper layers. The latter transport is steered by the presence of the eddy field. The outcome that the characteristics of the downwelling in a marginal sea like the Labrador Sea depend crucially on the properties of the eddy field emphasizes that it is essential to resolve the eddies to properly represent the downwelling and overturning in the North Atlantic Ocean, and its response to changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-03-14
    Description: Transgenerational effects of multiple stressors on marine organisms are emerging environmental themes. We thus experimentally tested for transgenerational effects of seawater acidification and hypoxia on the early development traits of the mussel Mytilus edulis. Fertilization rate, embryo deformity rate, and larval shell length were negatively impacted by acidification, while hypoxia had little effect except for increasing deformity rates under control pH conditions. Offspring from low pH/O2 parents were less negatively affected by low pH/O2 conditions than offspring from control parents; however, low pH/O2 conditions still negatively affected developmental traits in offspring from acclimated parents compared to control seawater conditions. Our results demonstrate that experimental seawater acidification and hypoxia can adversely affect early developmental traits of M. edulis and that parental exposure can only partially alleviate these impacts. If experimental observations hold true in nature, it is unlikely that parental exposure will confer larval tolerance to ocean acidification for M. edulis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-04-02
    Description: Highlights • Accounting for systematic bias is required for a realistic analytical uncertainty • Gas segmented flow techniques achieved a combined uncertainties of 1-4 % • Lab-on-Chip nitrate + nitrite analysers achieved a combined uncertainties 〈 5% Abstract Accurate and precise measurements of marine macronutrient concentrations are fundamental to our understanding of biogeochemical cycles in the ocean. Quantifying the measurement uncertainty associated with macronutrient measurements remains a challenge. Large systematic biases (up to 10 %) have been identified between datasets, restricting the ability of marine biogeochemists to distinguish between the effects of environmental processes and analytical uncertainty. In this study we combine the routine analyses of certified reference materials (CRMs) with the application of a simple statistical technique to quantify the combined (random + systematic) measurement uncertainty associated with marine macronutrient measurements using gas segmented flow techniques. We demonstrate that it is realistic to achieve combined uncertainties of ~1-4 % for nitrate + nitrite (ΣNOx), phosphate (PO43-) and silicic acid (Si(OH)4) measurements. This approach requires only the routine analyses of CRMs (i.e. it does not require inter-comparison exercises). As CRMs for marine macronutrients are now commercially available, it is advocated that this simple approach can improve the comparability of marine macronutrient datasets and therefore should be adopted as ‘best practice’. Novel autonomous Lab-on-Chip (LoC) technology is currently maturing to a point where it will soon become part of the marine chemist’s standard analytical toolkit used to determine marine macronutrient concentrations. Therefore, it is critical that a complete understanding of the measurement uncertainty of data produced by LoC analysers is achieved. In this study we analysed CRMs using 7 different LoC ΣNOx analysers to estimate a combined measurement uncertainty of 〈 5%. This demonstrates that with high quality manufacturing and laboratory practices, LoC analysers routinely produce high quality measurements of marine macronutrient concentrations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-03-18
    Description: Rapid anthropogenic climate change is a major threat to ocean biodiversity, increasing the challenge for marine conservation. Strategic conservation planning, and more recently marine spatial planning (MSP) are among the most promising management tools to operationalize and enforce marine conservation. As yet, climate change is seldom incorporated into these plans, potentially curtailing the effectiveness of designated conservation areas under novel environmental conditions. Reliable assessment of current and future climate change threats requires the ability to map climate-driven eco-evolutionary changes and the identification of vulnerable and resistant populations. Here we explore the heretofore largely unrecognized value of information gained from physiological, ecological and evolutionary studies to MSP under ongoing climate change. For example, we explore how climate threats do not necessarily follow latitudinal gradients, such that both risk hotspots and refugia occur in mosaic distributions along species ranges - patterns that may be undetectable without knowledge of biological vulnerabilities at regional and local scales. Because co-occurring species can exhibit markedly different vulnerabilities to the same environmental changes, making ecological predictions requires, when possible, measuring the fundamental niches of key species (e.g., with the use of thermotolerance experiments). Forecasting also requires development of tools to identify the likelihood of community-level thresholds or tipping points (e.g., with the use of near-real world mesocosms), and assessment of the potential of populations for adaptation (e.g., with common garden experiments). Such research will facilitate better predictive models for the fate of populations, species, ecosystems and their functions. Ultimately, unfolding the complexity of the processes underlying climate change impacts will facilitate quantifying and reducing uncertainty in spatial planning decision processes and will enable the development of practical tools to validate adaptive conservation strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-03-27
    Description: Highlights: • MPA is the most widely employed marine management tools. • Five potential habitats selected for MPA declaration in Bangladesh. • These habitats cover 7% of total maritime area of Bangladesh. • Local community involvement is required for a successful implementation of MPA. Abstract: Marine protected areas (MPAs) have become one of the most widely employed marine management tools worldwide for conserving species and habitats, maintaining ecosystem functioning, and ensuring sustainable use of marine resources. In this study, we adopted a science-based, stakeholder-driven and ecosystem based approach to identify coastal and marine habitats for potential MPA declaration towards achieving Aichi target 11. In addition, we also proposed an integrated management approach for MPA management in Bangladesh. Primary data were collected through stakeholder consultations from the three coastal zones of Bangladesh and secondary data were collected from an extensive literature review. We developed a priority index to select the most important habitats for MPA declaration. Our analysis suggests five potential habitats within the maritime boundary of Bangladesh for MPA declaration. These habitats cover an area of 8838 km2 which is about 7.5% of the total maritime area of Bangladesh. Declaration of the MPAs will contribute to conserve the nursing and breeding habitats of fishes, crabs and seabirds, and thus will protect the marine biodiversity. To achieve this goal, local community involvement is required. This study will serve as a baseline for declaring MPAs in a solid scientific way through community engagement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-04-24
    Description: Volcanic island flank collapses have the potential to trigger devastating tsunamis threatening coastal communities and infrastructure. The 1888 sector collapse of Ritter Island, Papua New Guinea (in the following called Ritter) is the most voluminous volcanic island flank collapse in historic times. The associated tsunami had run-up heights of more than 20 m on the neighboring islands and reached settlements 600 km away from its source. This event provides an opportunity to advance our understanding of volcanic landslide-tsunami hazards. Here, we present a detailed reconstruction of the 1888 Ritter sector collapse based on high-resolution 2D and 3D seismic and bathymetric data covering the failed volcanic edifice and the associated mass-movement deposits. The 3D seismic data reveal that the catastrophic collapse of Ritter occurred in two phases: (1) Ritter was first affected by deep-seated, gradual spreading over a long time period, which is manifest in pronounced compressional deformation within the volcanic edifice and the adjacent seafloor sediments. A scoria cone at the foot of Ritter acted as a buttress, influencing the displacement and deformation of the western flank of the volcano and causing shearing within the volcanic edifice. (2) During the final, catastrophic phase of the collapse, about 2.4 km³ of Ritter disintegrated almost entirely and travelled as a highly energetic mass flow, which incised the underlying sediment. The irregular topography west of Ritter is a product of both compressional deformation and erosion. A crater-like depression underlying the recent volcanic cone and eyewitness accounts suggest that an explosion may have accompanied the catastrophic collapse. Our findings demonstrate that volcanic sector collapses may transform from slow gravitational deformation to catastrophic collapse. Understanding the processes involved in such a transformation is crucial for assessing the hazard potential of other volcanoes with slowly deforming flanks such as Mt. Etna or Kilauea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-04-08
    Description: Highlights • Systematic analysis of ship bathymetry enables segment scale geological mapping. • The Menez Gwen segment experiences magmatic periods every 300 to 500 ka. • Periods of enhanced magmatic activity are a regional phenomenon. • Hydrothermalism at Menez Gwen accompanies a waning, intense magmatic period. • Faulting and along-axis permeability variations focus hydrothermal venting. Abstract Slow-spreading mid-ocean ridges have the potential to form large seafloor massive sulphide (SMS) deposits. Current exploration for SMS deposits commonly targets associated active hydrothermal venting on the ridge axis, which makes the discovery of inactive vent sites and SMS deposits in the off-axis regions unlikely. Geological maps of the seafloor, which help understand the timing and location of SMS formation, usually focus on individual hydrothermal vent sites and their immediate surroundings, and are often too small to aid in SMS exploration. This study uses ship-based multibeam echosounder (MBES) data and a systematic classification scheme to produce a segment-scale geological map. When combined with spreading rate, this allows us to not only reconstruct the segment's spreading history, but also reveals important processes that localize hydrothermal venting. Geological mapping around two known hydrothermal vent sites on the Menez Gwen segment at 37°50′N on the slow-spreading Mid-Atlantic Ridge showed that hydrothermal venting accompanies the tectonic break-up of a large, cooling magmatic body. Venting is focussed by faulting and resulting permeability changes. The large magmatic body is associated with an axial volcano that formed as a last stage of a period with intense magmatic accretion. Such magmatic accretion periods occur every 300 to 500 ka at the Menez Gwen segment, with increasing intensity over the past 3.5 Ma years. The most recent, most intense magmatic period appears to be a regional phenomenon, also affecting the neighbouring Lucky Strike and Rifted Hills segments. Understanding the accretional setting and the spatial and temporal constraints of hydrothermal venting enables us to develop criteria in MBES data to aid exploration for inactive SMS deposits.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-05-10
    Description: Highlights • There is a shallow low-velocity, high-porosity volume in the north-central caldera. • Vents of the first 3 LBA eruption phases correlate with this inner structure. • Inner collapse involved reverse faults, volcanic deposits, and/or rock fractures. • The low-density volume may have caused 2011-2012 inflation to localize beneath it. • The outer topographic caldera formed by relatively coherent down drop. Abstract Volcanic calderas are surface depressions formed by roof collapse following evacuation of magma from an underlying reservoir. The mechanisms of caldera formation are debated and predict differences in the evolution of the caldera floor and distinct styles of magma recharge. Here we use a dense, active source, seismic tomography study to reveal the sub-surface physical properties of the Santorini caldera in order to understand caldera formation. We find a ∼3-km-wide, cylindrical low-velocity anomaly in the upper 3 km beneath the north-central portion of the caldera, that lies directly above the pressure source of the 2011-2012 inflation. We interpret this anomaly as a low-density volume caused by excess porosities of between 4% and 28%, with pore spaces filled with hot seawater. Vents that were formed during the first three phases of the 3.6 ka Late Bronze Age (LBA) eruption are located close to the edge of the imaged structure. The correlation between older volcanic vents and the low-velocity anomaly suggests that this feature may be long-lived. We infer that collapse of a limited area of the caldera floor resulted in a high-porosity, low-density cylindrical volume, which formed by either chaotic collapse along reverse faults, wholesale subsidence and infilling with tuffs and ignimbrites, phreatomagmatic fracturing, or a combination of these processes. Phase 4 eruptive vents are located along the margins of the topographic caldera and the velocity structure indicates that coherent down-drop of the wider topographic caldera followed the more limited collapse in the northern caldera. This progressive collapse sequence is consistent with models for multi-stage formation of nested calderas along conjugate reverse and normal faults. The upper crustal density differences inferred from the seismic velocity model predict differences in subsurface gravitational loading that correlate with the location of 2011-2012 edifice inflation. This result supports the hypothesis that sub-surface density anomalies may influence present-day magma recharge events. We postulate that past collapses and the resulting topographical and density variations at Santorini influence magma focusing between eruptive cycles, a feedback process that may be important in other volcanoes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-05-10
    Description: Highlights • Volcanological evidences were useful for modelling the slope movements of Stromboli. • Subvertical dyke intrusion affects only local stability of the dry subaerial slope. • Larger instabilities can be triggered only by dyke intrusion with relevant horizontal component. • Static liquefaction due to grain crushing can explain the submarine slide. • Submarine sliding can propagate backwards and influence the subaerial sector. Abstract The aim of the paper is to provide quantitative elements on the mechanisms that controlled the slope instabilities occurred after two major recent eruptions at Stromboli volcano (i.e. 2002–2003 and 2007). After a brief description of the geological setting and of the largest well documented instability phenomena on volcano flanks, the main objective is pursued using three-dimensional stress-strain analyses for modelling the effects of the magma intrusion on the stability of the volcano flank. Modelling is based on the results of an extensive geotechnical characterization of the volcaniclastic and lava materials. The numerical analyses investigate the influence of different paths and geometry of magma intrusion as well as the spatial variation of mechanical properties. As a result, favourable conditions for specific failure modes are identified. The stress-strain analyses show that magma intrusion can cause both a local failure of a wedge immediately downslope from the dyke or deep-seated movement involving large part of the slope; these two mechanisms were consistent with the deformative patterns observed during the 2007 and 2002–2003 eruptions, respectively. The magma thrust induces shear strains up to levels associated to appreciable grain crushing even below the sea level, where flow liquefaction can be invoked to explain the occurrence of past submarine slides. The submarine landslide is analysed by a combined finite element – limit equilibrium approach that demonstrates that instability conditions can develop if the loading exerted by the upper portion of the slope is sufficiently fast to produce undrained conditions. The analyses also support the hypothesis that at the 2002 subaerial failure occurred, due to combined effects of a magma mild thrust and the removal of the toe support caused by the preceding submarine slide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-01-29
    Description: Rapid declines in Arctic sea ice have captured attention and pose significant challenges to a variety of stakeholders. There is a rising demand for Arctic sea ice prediction at daily to seasonal time scales, which is partly a sea ice initial condition problem. Thus, a multivariate data assimilation that integrates sea ice observations to generate realistic and skillful model initialization is needed to improve predictive skill of Arctic sea ice. Sea ice data assimilation is a relatively new research area. In this review paper, we focus on two challenges for implementing multivariate data assimilation systems for sea ice forecast. First, to address the challenge of limited spatiotemporal coverage and large uncertainties of observations, we discuss sea ice parameters derived from satellite remote sensing that (1) have been utilized for improved model initialization, including concentration, thickness and drift, and (2) are currently under development with the potential for enhancing the predictability of Arctic sea ice, including melt ponds and sea ice leads. Second, to strive to generate the “best” estimate of sea ice initial conditions by combining model simulations/forecasts and observations, we review capabilities and limitations of different data assimilation techniques that have been developed and used to assimilate observed sea ice parameters in dynamical models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-03-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-11-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-11-19
    Description: The present study is based on a series of two-dimensional simple shear numerical simulations of two-phase non-linear viscous materials used to investigate the mechanical behaviour of two-phase aggregates representing partially molten rocks. These simulations couple viscoplastic deformation with dynamic recrystallisation (DRX). The aim of these simulations is to investigate the competition between deformation and recrystallisation, and how they affect the mechanical behaviour and resulting microstructures of the deforming material. We systematically vary the melt to solid rock ratio, the dihedral angle of melt and the ratio of DRX vs. deformation. The results show that the amount of DRX and the dihedral angle have a first-order impact on the bulk rheology and the melt distribution in the aggregate. The numerical results allow defining two regimes, depending on the relative contribution of deformation and DRX: (1) a deformation-dominated regime at high strain rates (i.e., with a low ratio of recrystallisation vs. viscoplastic deformation) and (2) a recrystallisation-dominated regime at low strain rates (i.e., with a high ratio of recrystallisation vs. viscoplastic deformation). The first case results in systems bearing large connected melt pockets whose viscous flow controls the deformation of the aggregate, while disconnected smaller melt pockets develop in models where dynamic recrystallisation dominates. The results of this study allow us to better understand the development of connected melt pockets, which may focus melt flow. The distribution of the melt phase plays a key role in the formation of larger-scale melt-enriched shear bands, which in turn has a direct influence on large-scale convective mantle flow.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-11-28
    Description: Life cycle and reproduction of Calanus hyperboreus were studied during a year of record low ice cover in the southeastern Beaufort Sea. Stages CIV, adult females and CV dominated the overwintering population, suggesting a 2- to 3-year life cycle. Within two spring-summer months in the upper water column females filled their energy reserves before initiating their downward seasonal migration. From February to March, vigorous reproduction (20–65 eggs f−1 d−1) delivered numerous eggs (29 000 eggs m−2) at depth and nauplii N1-N3 (17 000 ind. m−2) in the water column. However, CI copepodite recruitment in May, coincident with the phytoplankton bloom, was modest in Amundsen Gulf compared to sites outside the gulf. Consequently, C. hyperboreus abundance and biomass stagnated throughout summer in Amundsen Gulf. As a mismatch between the first-feeding stages and food was unlikely under the favourable feeding conditions of April-May 2008, predation on the egg and larval stages in late winter presumably limited subsequent recruitment and population growth. Particularly abundant in Amundsen Gulf, the copepods Metridia longa and C. glacialis were likely important consumers of C. hyperboreus eggs and nauplii. With the ongoing climate-driven lengthening of the ice-free season, intensification of top-down control of C. hyperboreus recruitment by thriving populations of mesopelagic omnivores and carnivores like M. longa may counteract the potential benefits of increased primary production over the Arctic shelves margins for this key prey of pelagic fish, seabirds and the bowhead whale.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-05-09
    Description: Highlights • Methane hydrate formation was studied by low-field NMR technology under formation conditions. • The spatial distribution of methane hydrate is heterogeneous. • The mechanism of methane hydrate formation in small pores is different from that in large pores. • Methane hydrate tends to form in the pore center of sandstone. Abstract Kinetics of hydrate formation in the porous media is important for carbon storage and the feasibility assessment of developing natural gas hydrates. In this study, we used a novel and real-time monitoring apparatus which combined the hydrate formation system with the low-field nuclear magnetic resonance measurement system to study on the characteristics of methane hydrate formation in a partially saturated sandstone. Results show that hydrate coexists with water and methane in the sandstone at the end of methane hydrate formation by an excess-gas method. Magnetic resonance imaging shows that the spatial distribution of hydrate is affected by the initial distribution of water in the sandstone. Water content plays a role in controlling the termination of hydrate formation. Based on the transverse relaxation time distribution analysis, free gas exists mainly in the large pores, while methane molecules can enter the small pores by dissolution and diffusion, forming methane hydrate with water molecules in the absence of free gas. Methane hydrate is formed in the center of both large and small pores by the excess-gas method. The rate of methane hydrate formation is slower in the small pores than that in the large pores. The range of pore size gradually decreases with the hydrate formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-01-24
    Description: The synchrony of pelagic fish population dynamics with climate variability may impose significant alterations in their distribution and biomass, as well as catch composition, with potential effects on ecosystems and fisheries. This work examines the effect of the Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO) signals across the Mediterranean Sea sub-regions (western, central and eastern), with respect to small (European sardine Sardina pilchardus, European anchovy Engraulis encrasicolus, round sardinella Sardinella aurita and European sprat Sprattus sprattus) and medium (Atlantic mackerel Scomber scombrus, Atlantic chub mackerel Scomber japonicus, Atlantic horse mackerel Trachurus trachurus, Mediterranean horse mackerel Trachurus mediterraneus) pelagic fishes using various catch ratios and the mean temperature of the pelagic catch (MTpC) method for the period 1970–2014. The time until the pelagic fish communities react to the signals of the AMO and NAO, as revealed by the MTpC and catch ratios, varied among the Mediterranean sub-regions. The pelagic fishes of the central and eastern Mediterranean are those that responded most strongly to AMO variability, whereas those of the central and western Mediterranean also responded to the NAO. The effect of the NAO on pelagic fishes of the eastern Mediterranean was not significant.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-10-29
    Description: Highlights • Thermodynamic and kinetic influences of NaCl on HFC-125a hydrate were investigated. • NaCl enrichment in the unconverted solution resulted in a lower conversion. • The presence of NaCl had little effect on the ΔH of HFC-125a hydrate. • The hydrate dissociation was retarded due to the formation of NaCl⋅2H2O. In this study, HFC-125a was selected as a hydrate-forming guest for gas hydrate-based desalination. The thermodynamic and kinetic effects of NaCl on HFC-125a hydrates were investigated with a primary focus on phase equilibria, gas uptake, dissociation enthalpy, and dissociation behavior. The equilibrium curve of HFC-125a hydrate shifted to higher pressure regions at any given temperature depending on the concentration of NaCl. The presence of NaCl also reduced the gas uptake and conversion to hydrates, because of the enrichment of NaCl in the solution during gas-hydrate formation. Even though NaCl did not affect the dissociation enthalpy of the HFC-125a hydrate, the thermograms obtained using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) demonstrated that HFC-125a + NaCl hydrates started to dissociate at lower temperatures due to NaCl in unconverted solutions. Rietveld refinement of powder X-ray diffraction (PXRD) patterns indicated that the HFC-125a hydrate (sII) was transformed into Ih as it dissociated. The dissociation of HFC-125a + NaCl hydrates was retarded and completely ended at higher temperatures compared to the pure HFC-125a hydrate by the sodium chloride dihydrate (NaCl⋅2H2O). Overall, these results could facilitate a better understanding of HFC-125a hydrates in the presence of NaCl; further, they might also be useful in the design and operation of hydrate-based desalination plants using HFC-125a.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-04-02
    Description: Dissolved neodymium (Nd) and its radiogenic isotope composition (143Nd/144Nd, expressed as εNd) belong to the key parameters of the international GEOTRACES program, which aims to investigate the processes controlling the distribution of trace elements and their isotopes in the global ocean. We present Nd isotope and concentration ([Nd]) data from eleven full depth water