ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (242,487)
  • 2015-2019  (242,487)
  • 1945-1949
Collection
Language
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 294 (1992), S. 466-478 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 317 (1993), S. 474-484 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-05
    Description: Submarine groundwater discharge (SGD) is an important component of chemical fluxes in the coastal ocean. The composition of SGD is influenced by biogeochemical reactions that take place within the subterranean estuary (STE), the subsurface mixing zone of fresh and saline groundwaters. The STE is characterized by redox gradients that affect the speciation and mobility of redox-sensitive elements (RSEs). We examined the distributions and behavior of the RSEs Mo, U, V, and Cr within the larger redox framework of a shallow STE and evaluated the source-sink function of the STE for these elements. We found that the advection of water through the STE and the apparent respiration of organic matter drives the formation of a “classic” redox sequence typically observed in diffusion-dominated fine-grained sediments. High concentrations of dissolved organic matter (up to 2.9 mM) lead to extensive sulfide production (up to 1.8 mM) within 3 m of the surface. Both Mo and U are quantitatively removed as oxic surface waters mix into ferruginous and sulfidic zones. Molybdenum removal appears to occur where sulfide concentrations exceed ~ 11 μM, a previously reported threshold for quantitative formation of highly particle-reactive thiomolybdate species. Uranium removal apparently occurs via reduction and formation of insoluble phases or sorption to sediments. It is not clear how readily sequestered metals may be returned to solution, but SGD may be an important sink in the marine budget for both Mo and U. In contrast, both V and Cr show non-conservative addition across the salinity mixing gradient. Increases in pH appear to promote dissolution of V from minerals within the shallow aquifer, and mobilization may also be associated with dissolved organic matter. Chromium enrichment is associated with higher dissolved organic matter and is likely due to the formation of soluble Cr-organic complexes. Fluxes of these elements were constrained using SGD volume fluxes, determined using radium isotopes as well as direct discharge measurements by Lee-type seepage meters, and concentrations in directly-sampled seepage (Mo: − 0.21 to − 7.7 μmol m− 2 day− 1; U: − 0.02 to − 0.6 μmol m− 2 day− 1; V: 0.05 to 2.0 μmol m− 2 day− 1; Cr: 0.12 to 4.4 μmol m− 2 day− 1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Alphaproteobacterium strain MOLA1416, related to Mycoplana ramosa DSM 7292 and Chelativorans intermedius CC-MHSW-5 (93.6% 16S rRNA sequence identity) was isolated from the marine lichen, Lichina pygmaea and its chemical composition was characterized by a metabolomic network analysis using LC-MS/MS data. Twenty-five putative different compounds were revealed using a dereplication workflow based on MS/MS signatures available through GNPS (https://gnps.ucsd.edu/). In total, ten chemical families were highlighted including isocoumarins, macrolactones, erythrinan alkaloids, prodiginines, isoflavones, cyclohexane-diones, sterols, diketopiperazines, amino-acids and most likely glucocorticoids. Among those compounds, two known metabolites (13 and 26) were isolated and structurally identified and metabolite 26 showed a high cytotoxic activity against B16 melanoma cell lines with an IC50 0.6 ± 0.07 μg/mL.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: Thyroid hormones (THs) are key regulators of growth, development, and metabolism in vertebrates and influence early life development of fish. TH is produced in the thyroid gland (or thyroid follicles) mainly as T4 (thyroxine), which is metabolized to T3 (3,5,3'-triiodothyronine) and T2 (3,5-diiodothyronine) by deiodinase (DIO) enzymes in peripheral tissues. The action of these hormones is mostly exerted by binding to a specific nuclear thyroid hormone receptor (THR). In this study, we i) cloned and characterized thr sequences, ii) investigated the expression pattern of the different subtypes of thrs and dios, and iii) studied how temperature affects the expression of those genes in artificially produced early life history stages of European eel (Anguilla anguilla), reared in different thermal regimes (16, 18, 20 and 22 °C) from hatch until first-feeding. We identified 2 subtypes of thr (thrα and thrβ) with 2 isoforms each (thrαA, thrαB, thrβA, thrβB) and 3 subtypes of deiodinases (dio1, dio2, dio3). All thr genes identified showed high similarity to the closely related Japanese eel (Anguilla japonica). We found that all genes investigated in this study were affected by larval age (in real time or at specific developmental stages), temperature, and/or their interaction. More specifically, the warmer the temperature the earlier the expression response of a specific target gene. In real time, the expression profiles appeared very similar and only shifted with temperature. In developmental time, gene expression of all genes differed across selected developmental stages, such as at hatch, during teeth formation or at first-feeding. Thus, we demonstrate that thrs and dios show sensitivity to temperature and are involved in and during early life development of European eel.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri–Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ44/40Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation–desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation–desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation–desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79° N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a Warm-Water-Anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-12
    Description: The geologic framework controls on modern barrier island transgression and the relationship of these controls to subsurface structure, hydrology and island geomorphology are not well understood. Recent evidence suggests that alongshore variations in pre-Holocene geology of barrier islands modify nearshore hydrodynamic processes and sediment transport, ultimately affecting how barrier islands will respond to relative sea-level rise. Explorations of Holocene barrier island geology are usually based on cores to supplement bathymetric, onshore/offshore seismic and/or ground-penetrating radar (GPR) surveys. The advantages and limitations of these methods with respect to barrier island investigations are briefly described in this review. Alternative near-surface geophysical methods including electromagnetic induction (EMI) sensors are increasingly being used for coastal research because they are non-invasive, provide continuous subsurface information across a variety of sub-environments, and are capable of characterizing large areas in a short time. Although these EMI sensors have shown promise in coastal applications, a number of issues primarily related to subsurface hydrology need to be addressed to fully assess the limitations of this technique. This paper reviews the theory, methodology and applications of EMI in support of geologic framework studies with particular reference to barrier islands. Resolution of these issues will allow EMI sensors to complement and offer significant advantages over traditional methods in support of an improved understanding of large-scale barrier island evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: Most of the anthropogenic radionuclide 129I released to the marine environment from the nuclear fuel reprocessing plants (NFRP) at Sellafield (England) and La Hague (France) is transported to the Arctic Ocean via the North Atlantic Current and the Norwegian Coastal Current. 129I concentrations in seawater provides a powerful and well-established radiotracer technique to provide information about the mechanisms which govern water mass transport in the Nordic Seas and the Arctic Ocean and is gaining importance when coupled with other tracers (e.g. CFC, 236U). In this work, 129I concentrations in surface and depth profiles from the Nordic Seas and the North Atlantic (NA) Ocean collected from four different cruises between 2011 and 2012 are presented. This work allowed us to i) update information on 129I concentrations in these areas, required for the accurate use of 129I as a tracer of water masses; and ii) investigate the formation of deep water currents in the eastern part of the Nordic Seas, by the analysis of 129I concentrations and temperature-salinity (T-S) diagrams from locations within the Greenland Sea Gyre. In the Nordic Seas, 129I concentrations in seawater are of the order of 109 at·kg− 1, one or two orders of magnitude higher than those measured at the NA Ocean, not so importantly affected by the releases from the NFRP. 129I concentrations of the order of 108 atoms·kg− 1 at the Ellet Line and the PAP suggest a direct contribution from the NFRP in the NA Ocean. An increase in the concentrations in the Nordic Seas between 2002 and 2012 has been detected, which agrees with the temporal evolution of the 129I liquid discharges from the NFRPs in years prior to this. Finally, 129I profile concentrations, 129I inventories and T-S diagrams suggest that deep water formation occurred in the easternmost area of the Nordic Seas during 2012.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-02-01
    Description: Highlights • Biogeochemical processes create CO2 sources/sinks by altering seawater AT and CT • Source/sink strength depends on local seawater ‘isocapnic quotient’ (Q) • Q depends on seawater temperature and the state of the marine carbonate system • Spatiotemporal variability in Q drives heterogeneous CO2 source/sink magnitude • Future warming and CO2 emissions will modify Q and the size of CO2 sources/sinks Abstract The ocean holds a large reservoir of carbon dioxide (CO2), and mitigates climate change through uptake of anthropogenic CO2. Fluxes of CO2 between the atmosphere and surface ocean are regulated by a number of physical and biogeochemical processes, resulting in a spatiotemporally heterogeneous CO2 distribution. Determining the influence of each individual process is useful for interpreting marine carbonate system observations, and is also necessary to investigate how changes in these drivers could affect air-sea CO2 exchange. Biogeochemical processes exert an influence primarily through modifying seawater dissolved inorganic carbon (CT) and total alkalinity (AT), thus changing the seawater partial pressure of CO2 (psw). Here, we propose a novel conceptual framework through which the size of the CO2 source or sink generated by any biogeochemical process, denoted Φ, can be evaluated. This is based on the ‘isocapnic quotient’ (Q), which defines the trajectory through (AT,CT) phase space for which there is no change in psw. We discuss the limitations and uncertainties inherent in this technique, which are negligible for most practical purposes, and its links with existing, related approaches. We investigate the effect on Φ of spatiotemporal heterogeneity in Q in the present day surface ocean for several key biogeochemical processes. This leads the magnitude of the CO2 source or sink generated by processes that modify AT to vary spatiotemporally. Finally, we consider how the strength of each process as a CO2 source or sink may change in a warmer, higher-CO2 future ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-01-31
    Description: The abundance, phosphorus solubilizing ability and community composition of phosphorus solubilizing bacteria (PSB) attached on two bloom-forming cyanobacteria, Microcystis and Anabeana, were investigated in Guanqiao ponds in 2014 and Lake Chaohu in 2015 and 2016. Thirty organic phosphate-mineralizing bacteria (OPB) and eighteen inorganic phosphate-solubilizing bacteria (IPB) isolated from Guanqiao ponds and Lake Chaohu were identified. The community compositions of PSB attached on Microcystis and Anabeana were found to be entirely different. Some PSB were found to be shared by OPB and IPB, especially the species attached on Microcystis, such as Rhizobium sp. Compared to the PSB attached on Anabeana, the PSB attached on Microcystis showed the lower numbers, higher phosphorus solubilizing ability and extensive substrate adaptability. This indicated that the PSB were important for the growth of Microcystis through meeting soluble reactive phosphorus (SRP) demand, which was further supported by the data from Guanqiao ponds where succession process from Anabeana to Microcystis was recorded. All these facts can explain why the succession from Anabeana to Microcystis frequently occurred in shallow eutrophic lakes. Therefore, the attached PSB should be considered as a crucial contributor on algal growth, succession and collapse, depending on algal species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-02-01
    Description: Highlights • Pb concentrations and isotope ratios presented for GEOTRACES section GA06. • Northern and southern hemisphere water masses have distinct Pb isotope ratios. • Pb isotope ratios consistent with ventilation timescales of northern water masses. • Mixing complicates interpretation of Pb distributions in southern water masses. Abstract Anthropogenic emissions have dominated marine Pb sources during the past century. Here we present Pb concentrations and isotope compositions for ocean depth profiles collected in the eastern Tropical Atlantic Ocean (GEOTRACES section GA06), to trace the transfer of anthropogenic Pb into the ocean interior. Variations in Pb concentration and isotope composition were associated with changes in hydrography. Water masses ventilated in the southern hemisphere generally featured lower 206Pb/207Pb and 208Pb/207Pb ratios than those ventilated in the northern hemisphere, in accordance with Pb isotope data of historic anthropogenic Pb emissions. The distributions of Pb concentrations and isotope compositions in northern sourced waters were consistent with differences in their ventilation timescales. For example, a Pb concentration maximum at intermediate depth (600–900 m, 35 pmol kg−1) in waters sourced from the Irminger/Labrador Seas, is associated with Pb isotope compositions (206Pb/207Pb = 1.1818–1.1824, 208Pb/207Pb = 2.4472–2.4483) indicative of northern hemispheric emissions during the 1950s and 1960s close to peak leaded petrol usage, and a transit time of ∼50–60 years. In contrast, North Atlantic Deep Water (2000–4000 m water depth) featured lower Pb concentrations and isotope compositions (206Pb/207Pb = 1.1762–1.184, 208Pb/207Pb = 2.4482–2.4545) indicative of northern hemispheric emissions during the 1910s and 1930s and a transit time of ∼80–100 years. This supports the notion that transient anthropogenic Pb inputs are predominantly transferred into the ocean interior by water mass transport. However, the interpretation of Pb concentration and isotope composition distributions in terms of ventilation timescales and pathways is complicated by (1) the chemical reactivity of Pb in the ocean, and (2) mixing of waters ventilated during different time periods. The complex effects of water mass mixing on Pb distributions is particularly apparent in seawater in the Tropical Atlantic Ocean which is ventilated from the southern hemisphere. In particular, South Atlantic Central Water and Antarctic Intermediate Water were dominated by anthropogenic Pb emitted during the last 50–100 years, despite estimates of much older average ventilation ages in this region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-02-01
    Description: A new cyclic hexapeptide, cyclo-(Gly-Leu-Val-IIe-Ala-Phe), named bacicyclin (1), was isolated from a marine Bacillus sp. strain associated with Mytilus edulis. The sequences of the amino acid building blocks of the cyclic peptide and its structure were determined by 1D- and 2D-NMR techniques. Marfey's analysis showed that the amino acid building blocks had L-configuration in all cases except for alanine and phenylalanine, which had D-configuration. Bacicyclin (1) exhibited antibacterial activity against the clinically relevant strains Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentration values of 8 and 12 μM, respectively. These results demonstrate the potential of marine bacteria as a promising source for the discovery of new antibiotics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-02-01
    Description: Highlights • The genetic model for Algoma-type BIF is modified taking into account S-MIF results. • Metal and sulfur sources are decoupled and reflect diverse microbial metabolisms. • Sulfur deposited with oxide-facies BIF is mostly atmospheric in origin. • Little juvenile sulfur is found, despite the proximity to volcanic sources. Abstract Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic–hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S–33S–34S–36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic–hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-02-01
    Description: Complex multifault earthquake ruptures involving secondary faults emphasize the necessity to characterize their seismogenic potential better and study their relationship with major faults to improve the seismic hazard assessment of a region. High-resolution geophysical data were interpreted to make a detailed characterization of the Averroes Fault and the North Averroes Faults, which are poorly known secondary right-lateral strike-slip faults located in the central part of the Alboran Sea (western Mediterranean). These faults appear to have evolved since the Pliocene as part of a distributed dextral strike-slip shear zone in response to local strain engendered by the diverging movement of the Carboneras Fault to the north, and the Yusuf and Alboran Ridge faults to the south. In addition, the architecture of these faults suggests that the Averroes Fault may eventually link with the Yusuf fault, thus leading to a higher seismogenic potential. Therefore, these secondary faults represent a hitherto unrecognized seismogenic hazard since they could produce earthquakes up to moment magnitude (Mw) 7.6. Our results highlight the importance of the role played by secondary faults in a specific kinematic framework. Their reciprocal linkage and their mechanical relationship with the main faults could lead to future complex fault ruptures. This information could improve fault source and earthquake models used in seismic and tsunami hazard assessment in this and similar regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-12-17
    Description: Highlights: • Shallow-water and deep-sea holothurians avoided copper-contaminated sediment. • Shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa. • Avoidance behaviour may have bioenergetic consequences. Abstract: Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5 mg l−1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5 mg l−1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96 h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24 h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that affect growth and/or reproductive output, potentially impacting fecundity and/or offspring fitness, and thus influencing source-sink dynamics and persistence of wider deep-sea populations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-02-01
    Description: Highlights • Hindon Maar Complex is a new mid-Miocene Fossil-Lagerstätte in New Zealand. • Anoxia in maar lakes allowed exquisite preservation of plant and animal fossils. • The biota is from a lake and Nothofagus/podocarp/mixed broadleaf forest ecosystem. • Fossils record high diversity at humid, warm Southern Hemisphere mid-latitudes. Abstract This paper highlights the geology, biodiversity and palaeoecology of the Hindon Maar Complex, the second Miocene Konservat-Lagerstätte to be described from New Zealand. The Lagerstätte comprises four partly eroded maar-diatreme volcanoes, with three craters filled by biogenic and highly fossiliferous lacustrine sediments. The exceptionally well-preserved and diverse biota from the site is derived from a mid-latitude Southern Hemisphere lake-forest palaeoecosystem, including many fossil taxa not previously reported from the Southern Hemisphere. The most common macrofossils are leaves of Nothofagus, but the flora also includes conifers, cycads, monocots (such as Ripogonum and palms), together with Lauraceae, Myrtaceae and Araliaceae leaves and flowers. The small maar lakes were surrounded by Nothofagus/podocarp/mixed broadleaf forest growing under humid, warm temperate to subtropical conditions. The fossil fauna comprises insects in the orders Odonata, Hemiptera, Thysanoptera, Coleoptera, Diptera, Hymenoptera and Trichoptera, and the fish assemblage includes a non-migratory species of the Southern Hemisphere Galaxias (Galaxiidae) and a significant new record of the freshwater eel Anguilla (Anguillidae). The fossil assemblage also includes the first pre-Quaternary bird feathers from New Zealand and abundant coprolites derived from fish and volant birds, presumably waterfowl. Palynomorph analysis and a 40Ar/39Ar age of 14.6 Ma obtained from basanite associated with the maar complex indicate that the Hindon Maar Complex is of mid-Miocene age (Langhian; New Zealand local stage: Lillburnian). It thus provides a new and unique perspective on Neogene terrestrial biodiversity and biogeography in the Australasian region, around the end of the mid-Miocene thermal optimum and prior to late Miocene–Pleistocene climate cooling episodes when many warm-temperate and subtropical forest components became extinct in New Zealand.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-02-01
    Description: Highlights • Epi melts have experienced no disequilibrium modification by mixing or assimilation • Melts fractionate continuously while ascending, rather than stagnating • Magma ascent is through a complex system of dykes and sills • Epi situated between compressional and extensional regime on thick island arc crust • Structural features have impact on focusing and composition of island arc magmas Abstract We present here new bathymetric, petrological and geochemical whole rock, glass and mineral data from the submarine Epi volcano in the New Hebrides (Vanuatu) island arc. The structure has previously been interpreted to be part of a larger caldera structure but new bathymetric data reveal that the volcanic cones are aligned along shear zones controlled by the local tectonic stress field parallel to the recent direction of subduction. We aim to test if there is an interaction between local tectonics and magmatism and to what extent the compositions of island arc volcanoes may be influenced by their tectonic setting. Primitive submarine Epi lavas and those from the neighbouring Lopevi and Ambrym islands originate from a depleted mantle wedge modified by addition of subduction zone components. Incompatible element ratios sensitive to fluid input (e.g., Th/Nb, Ce/Yb) in the lavas are positively correlated with those more sensitive to mantle wedge depletion (e.g., Nb/Yb, Zr/Nb) amongst the arc volcanoes suggesting that fluids or melts from the subducting sediments have a stronger impact on the more depleted compositions of the mantle wedge. The whole rock, glass and mineral major and trace element compositions and the occurrence of exclusively normally zoned clinopyroxene and plagioclase crystals combined with the absence of inversely zoned crystals and water-bearing phases in both mafic and evolved lavas suggest that the erupted melt was relatively dry compared to other subduction zone melts and has experienced little disequilibrium modification by melt mixing or assimilation. Our data also imply that differentiation of amphibole is not required to explain the incompatible element patterns but may rather result from extensive clinopyroxene fractionation in agreement with petrographic observations. Thermobarometric calculations indicate that the melts fractionated continuously during ascent, contrasting with fractionation during stagnation in an established crustal magma reservoir. We interpret the occurrence of this fractional crystallisation end-member in a relatively thick island arc crust (~30 km thickness) to result from isolated and relatively rapid ascent of melts, most likely through a complex system of dykes and sills that developed due to the tectonic positioning of Epi in a complex tectonic zone between a compressional environment in the north and an extensional setting in the south. We can show that the alignment of the cones largely depends on the local tectonic stress field at Epi that is especially influenced by a large dextral strike-slip zone, indicating that structural features have a significant impact on the location and composition of volcanic edifices.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-12-17
    Description: The boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs. Acoustic bathymetric profiles show ≈80 m deep canyons parallel to the NNW shore of the lake, part of a system of extensional normal faults striking parallel to the Red Sea. This system is intersected by oblique structures, some with strike-slip earthquakes, in what might evolve into a transform boundary. Given that the lake’s surface lies today about 112 m below sea level, the depressed (minus ≈190 m below sea level) lake’s bottom area may be considered the equivalent of the “nodal deep” in slow-slip oceanic transforms. The chemistry of the lake is compatible with the water having originated from hydrothermal liquids that had reacted with evaporites and basalts, rather than residual from evaporation of sea water. Bottom sediments include calcitic grains, halite and gypsum, as well as ostracod and diatom tests. The lake’s level appears to have dropped by over 10 m during the last ≈50 years, continuing a drying up trend of the last few thousand years, after a “wet” stage 9,800 and 7,800 years before present when according to Gasse (1973) Lake Afrera covered an area several times larger than at present. This “wet” stage corresponds to an early Holocene warm-humid climate that prevailed in Saharan and Sub Saharan Africa. Lake Abhé, located roughly 250 km south of Afrera, shows similar climate-driven oscillations of its level.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 198 . pp. 439-465.
    Publication Date: 2019-02-01
    Description: Minerals may undergo recrystallization reactions in low temperature (〈100 °C) aqueous systems, during which they exchange isotopes and trace elements with the dissolved reservoir without undergoing overt structural, bulk compositional, or morphological changes. These interfacial reactions, which are often referred to in the literature as “atom exchange” and herein as “stable mineral recrystallization”, have important implications for the use of isotopic and elemental proxies to interpret past temperatures, oxidation states, and aqueous chemistries on Earth. The reactions are also significant for modern environments, including engineered systems, as they imply that mineral lattices may be substantially more open to exchanging toxic elements and radionuclides with coexisting solutions than previously thought. To date, observations of stable mineral recrystallization are distributed among several disciplines, and no work has attempted to review their findings comprehensively. Accordingly, this review article presents laboratory evidence for stable mineral recrystallization, describes data collection and interpretation strategies, summarizes similar recrystallization systematics observed in multiple studies, explores the potential occurrence of stable mineral recrystallization in natural systems, and discusses possible mechanisms by which stable mineral recrystallization occurs. The review focuses primarily on carbonates, sulfates, and iron oxides because these minerals have been studied most extensively to date. The review concludes by presenting key questions that should be addressed in this field to further understand and account for stable mineral recrystallization in natural and engineered aqueous systems at low temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-02-01
    Description: Highlights • New high-resolution bathymetry and MCS images of the Palomares margin are presented. • Main geomorphological and tectonic features along the margin are analyzed. • Bathymetry is mainly controlled by erosive and halokinesis processes. Abstract The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike–slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw 〈 5.2) shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero-Balearic Basin is affected by surficial processes, associated to halokinesis of Messinian evaporites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-02-01
    Description: The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M ~ 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-02-01
    Description: Molybdenum (Mo) concentrations and isotope compositions in sediments and shales are commonly used as proxies for anoxic and sulfidic (i.e., euxinic) conditions in the water column of paleo-marine systems. A basic assumption underlying this practice is that the proxy signal extracted from the geological record is controlled by long-term (order of decades to millennia) Mo scavenging in the euxinic water column rather than Mo deposition during brief episodes or events (order of weeks to months). To test whether this assumption is viable we studied the biogeochemical cycling of Mo and its isotopes in sediments of the intermittently euxinic Gotland Deep in the central Baltic Sea. Here, multiannual to decadal periods of euxinia are occasionally interrupted by inflow events during which well‑oxygenated water from the North Sea penetrates into the basin. During these events manganese (Mn) (oxyhydr)oxide minerals are precipitated in the water column, which are known to scavenge Mo. We present sediment and pore water Mo and Mo isotope data for sediment cores which were taken before and after a series of inflow events between 2014 and 2016. After seawater inflow, pore water Mo concentrations in anoxic surface sediments exceed the salinity-normalized concentration by more than two orders of magnitude and coincide with transient peaks of dissolved Mn. A fraction of the Mo liberated into the pore water is transported by diffusion in a downward direction and sequestered by organic matter within the sulfidic zone of the sediment. Diffusive flux calculations as well as a mass balance that is based on the sedimentary Mo isotope composition suggest that about equal proportions of the Mo accumulating in the basin are delivered by Mn (oxyhydr)oxide minerals during inflow events and Mo scavenging with hydrogen sulfide during euxinic periods. Since the anoxic surface sediment where Mo is released from Mn (oxyhydr)oxides are separated by several centimeters from the deeper sulfidic layers where Mo is removed, the solid phase record of Mo concentration and isotope composition would be misinterpreted if steady state Mo accumulation was assumed. Based on our observations in the Gotland Deep, we argue that short-term redox fluctuations need to be considered when interpreting Mo-based paleo-records.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Elsevier
    In:  Analytica Chimica Acta, 1026 . pp. 69-76.
    Publication Date: 2019-02-01
    Description: Artificial neural network (ANN) is one of the most widely used methods to develop accurate predictive models based on artificial intelligence and machine learning. In the present study, the important practical aspects of developing a reliable ANN model e.g. appropriate assignment of the number of neurons, number of hidden layers, transfer function, training algorithm, dataset division and initialization of the network are discussed. As a case study, predictability of the flash point for a dataset of 740 organic compounds using ANNs was investigated via a total number of 484220ANNs to allow covering a wide range of parameters affecting the performance of an ANN. Among all studied parameters, the number of neurons or layers was found to be the most important parameters to develop a reliable ANN with low overfitting risk. To evaluate appropriate number of neurons and layers, a value of equal or greater than 10 for the ratio of the training samples to the ANN constants was suggested as a rule of thumb. More ever, a strategy for evaluation of the authentic performance of ANNs and deciding about the reliability of an ANN model was proposed which is applicable to other models developed by supervised learning. Based on the introduced considerations, an ANN model was proposed for predicting the flash point of pure organic compounds. According to the results, the new model was found to produce the lowest error compared to other available models.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-02-01
    Description: Reef-associated predators are thought to influence the distribution of invertebrates of surrounding sediment habitats. In this study, we analyzed the predation pressure and the distributional patterns of macro- and meiofaunal assemblages in soft sediments surrounding two coral reef sites at Rapa Nui (Easter Island), in the central South Pacific. We tested the hypothesis that reef-associated predators negatively affect sediment-dwelling invertebrates, causing macro- and meiofauna to be less abundant and diverse in soft sediments near the reefs. As expected, predation intensity was greater nearer the reef than farther away, but macro- and meiofaunal assemblages did not differ significantly with distance from the reef. Taxon richness of macro- and meiofaunal assemblages were similar irrespective of distance from the reef. Only meiofauna showed significant variation in total abundance with distance from the reef, but this trend was not consistent between the two study sites. No gradient in sediment texture was observed with distance from the reef. Underwater video recordings at one study site also revealed that local hydrodynamics cause frequent disturbance and resuspension of the upper sediment layers. Our results suggest that soft-sediment assemblages are constantly reshuffled by oceanic waves, thereby blurring the potential effects of predation on invertebrate assemblages closer to the reef.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-02-01
    Description: The last deglacial was marked by tremendous changes in ocean temperature and circulation as well as atmospheric CO2 and 14C. We employed the “14C plateau-tuning technique” to a centennial-scale planktic 14C record of core MD08-3180 retrieved S.W. of the Azores Islands at ∼3060 m water depth to establish both a new standard of absolute age control and a record of past 14C reservoir ages of ocean surface waters. Both δ18O minima of G. bulloides and high planktic reservoir ages of ∼1600 to 2170 yr suggest two major melt water incursions that reached from the Labrador Sea up to the subtropics over Heinrich Stadial 1 (HS-1). In parallel, we established a record of (apparent) benthic ventilation ages that add the planktic 14C reservoir ages together with the benthic-planktic 14C age difference at the site and time of deposition, a sum finally adjusted to past changes in atmospheric 14C that occurred since the time of deep-water formation. Near the Azores apparent deep-water ages of the Last Glacial Maximum were as low as 340–740 yr, which suggests a lateral advection of young North Atlantic Deep Waters (NADW) from subpolar regions south of Iceland, in harmony with recent model simulation and in contrast to a widely assumed major shoaling of glacial deep-water formation. During HS-1, local benthic ventilation ages increased up to 2200–2550 yr, thus suggest an incursion of old southern-source deep waters, an unstable regime that was interrupted by brief pulses of NADW incursion near 16, 15.6 cal. ka, and most salient, near 14.9/14.7 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-02-01
    Description: The lithium isotopic composition of foraminifera is an established tracer of long-term changes in the global silicate weathering cycle, following the assumption that foraminifera faithfully record the lithium isotopic composition (δ7Li) of seawater. In this study, we demonstrate by utilising benthic foraminifera (Amphistegina lessonii) that were cultured under decoupled pH-[CO32–] conditions, that foraminifera δ7Li is strongly dependent on pH. This is reinforced with δ7Li data from globally distributed core-top samples of Cibicidoides mundulus and Cibicidoides wuellerstorfi, which show the same negative correlation with pH. The dependency of δ7Li on pH is perhaps a surprising result given that lithium speciation in seawater is independent of both pH and carbonate ion speciation. The dependence of lithium incorporation on growth rate was assessed by measuring the calcium isotopic composition; no growth rate dependent incorporation was observed. Instead, we propose that the strength of the 6Li and 7Li hydration spheres (and hence their respective desolvation energy) is pH-dependent, resulting in a significant isotopic fractionation during the incorporation of lithium into foraminifer calcite. The core-top derived δ7Li-pH calibration is used to demonstrate the applicability of this δ11B-independent pH proxy in reconstructing deglacial variations in pH in the South Pacific. The use of foraminifera δ7Li to compliment δ11B-based pH reconstructions has the potential to provide insight into time-dependent variations in porewater/seawater δ11B, temperature and salinity, which were previously unresolvable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-02-01
    Description: Li/Ca in calcitic benthic foraminiferal tests has been suggested to co-vary with both temperature and carbonate chemistry, but these two influences have been difficult to disentangle. We use several new downcore records of Li/Ca in Cibicidoides wuellerstorfi and Uvigerina, paired with the carbonate proxy B/Ca, to further elucidate this behavior. We also combine the downcore measurements with a compilation of coretop Li/Ca data. Uvigerina B/Ca presumably records pore water saturation with respect to calcite (ΔCO32−), though downcore data show that it partially reflects bottom water ΔCO32− (inferred from C. wuellerstorfi B/Ca), with a relationship that is consistent with a previous global coretop calibration. Downcore Li/Ca is significantly correlated to B/Ca in both taxa, implying a positive relationship between Li/Ca and carbonate chemistry. This connection breaks down in the coretop compilation however, likely due to the confounding influence of temperature on Li/Ca. We attempt to isolate the temperature influence using a negative exponential equation previously derived from abiotic calcite precipitation experiments, and introduce a new quantity ΔLi/Ca, which is the observed departure from the temperature-based prediction. This transformation brings the downcore and coretop Li/Ca measurements into alignment, with up to 90% of the ΔLi/Ca variance explained by ΔCO32−. Finally, we perform preliminary tests of Li/Ca as a paleo-proxy for both ΔCO32− and temperature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-02-01
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-02-01
    Description: Highlights: • Lagrangian vortices are identified in a mesoscale eddy-permitting ocean model. • Rigorous sensitivity analysis of the methods tuning parameters is conducted. • The Coherency Index, a new Lagrangian diagnostic, is introduced to quantify the material coherency of a vortex. • The spectrum of vortex coherency is explored by identifying leaky, moderately coherent, and strictly coherent vortices. We identify Lagrangian coherent vortices in a global mesoscale eddy-permitting ocean model using the rotation-based method of Haller et al. (2016). We present an analysis of the acute sensitivity of the identification results to varying the method’s free parameters, and develop physically justified parameter choices that allow for systematic vortex identification. In contrast to prior vortex studies, we probe the broad spectrum of coherency in the ocean by determining free parameter choices that partition the spectrum into distinct allowing for the identification of strictly coherent, moderately coherent, and leaky vortices. Our tuning methodology is grounded in a combination of sensitivity analysis, convergence tests, and consideration of the ocean model’s physics. To aid in this process, we introduce the a novel Lagrangian diagnostic for mathematically quantifying the degree of material coherency of a Lagrangian vortex. We aim for this manuscript and the accompanying open-access code to serve as a manual and toolset for the oceanographer interested in harnessing a rigorous Lagrangian method to uncover coherent structures in ocean models and observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-02-01
    Description: The orange-back flying squid, Sthenoteuthis pteropus, plays an important role in the eastern tropical Atlantic Ocean (ETA) pelagic food web, as both predator and prey. Specimens of S. pteropus were caught off the Cape Verde Islands and concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn were measured in the digestive gland. Among the analysed elements, Cd showed the highest average concentration with values among the highest ever recorded in cephalopods. In addition to the digestive gland, Hg concentrations were also analysed in the buccal mass and mantle tissue. Among the three tissues, buccal mass showed the highest Hg concentrations. In females, Hg concentrations in the buccal mass were positively correlated with stable isotope ratios (δ13C and δ15N) and mantle length, showing both bioaccumulation with age and bioamplification along the trophic levels. High Cd and Hg concentrations in the digestive gland and muscle respectively would lead to elevated exposure of squid-eating top predators such as yellowfin tuna, swordfish or dolphinfish, which are commercially harvested for human consumption. This study provides a deeper understanding of the trace element contamination in an abundant and ecologically important, but poorly studied pelagic squid in the ETA.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-02-01
    Description: To assess one of the dimensions of mesozooplankton functional diversity, this study quantifies energy density during the springtime in the Bay of Biscay considering both taxonomic and size-classes diversity. Energy density among copepods species (Centropages typicus, Anomalocera patersoni, Calanus helgolandicus, and Labidocera wollastoni), as well as anchovy eggs (Engraulis encrasicolus) ranges from 0.5 to 6.7 kJ/g on a taxonomic basis. Considering size-classes, energy density varies from 0.74 to 1.26 kJ/g. C. helgolandicus exhibits with average energy density estimates generally higher in the plume of the Gironde estuary. In contrast, no spatial coherence is found in the variability of mesozooplankton energy density by size-classes. Our results show that the mesozooplanktonic resource is not homogeneous in terms of quality in the Bay of Biscay. During spring, some species and some geographical areas seems thus to be more profitable to predators than others. We argue that the energy density is a key functional trait of mesozooplankton, but the assessment of mesozooplankton quality should be preferentially based on taxonomy rather than on size-classes. We conclude that interspecific and spatial variability of energy density among the mesozooplankton community can have important implications on fish population dynamics
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-12-17
    Description: Ocean acidification (OA) threatens coral reef ecosystems by slowing calcification and enhancing dissolution of calcifying organisms and sediments. Nevertheless, multiple factors have been shown to modulate OA's impact on calcification, including the nutritional status of the coral host. In three separate experiments, we exposed juveniles of the Atlantic golf ball coral, Favia fragum, to elevated CO2 and varied nutritional (light or feeding) conditions. Juveniles reared from planulae larvae were significantly larger and produced more CaCO3 when fed, regardless of CO2 level. However, corals subjected to elevated CO2 produced less CaCO3 per mm2 regardless of feeding condition. Additionally, unfed corals reared under elevated light levels exhibited lower chlorophyll a and higher total lipid content, but light had no significant effect on coral calcification. Conversely, elevated CO2 had a significant, negative affect on calcification, regardless of light condition but no detectable effect on physiological tissue parameters. Our results indicate that the sensitivity of juvenile F. fragum calcification to OA was neither modulated by light nor by feeding, despite physiological indications of enhanced nutritional status. This suggests that corals do not necessarily divert energy to maintain calcification under high CO2, even when they have the energetic resources to do so.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-02-04
    Description: Highlights • 3D seismic imaging of an entire landslide complex. • Shallow gas accumulation within and underneath Tuaheni Landslide Complex. • Imaging of a basal shear zone within a subaqueous landslide complex. Abstract The Hikurangi margin is an active continental margin east of New Zealand's North Island. It is well recognized as a seismically active zone and is known for the occurrence of free gas and gas hydrates within the shallow sediments. A variety of subaqueous landslides can be observed at the margin, including the Tuaheni Landslide Complex off Poverty Bay. This slide complex has been interpreted previously as a slowly creeping landform, as its morphology and internal deformation is comparable to terrestrial earthflows and rock glaciers. In 2014, we acquired a high-resolution 3D seismic volume covering major parts of the Tuaheni South landslide. The 3D data show a variety of fluid migration indicators, free gas accumulations and manifestations of the base of gas hydrate stability in the pre-slide sedimentary units and the lower unit of the landslide system. The data also show that the landslide system is composed of an upper and lower unit that are separated by an intra-debris negative-polarity reflection. Free gas accumulations directly beneath the landslide units suggest that the debris acts as a boundary for rising fluids and only few migration pathways to the intra-debris reflector are observed in the distal parts of the landslide. Deformation within the landslide's debris is focused in the upper landslide unit, and we interpret the intra-debris reflector as a basal shear zone or ‘glide plane’ upon which the debris has been remobilized. The origin of the intra-debris reflector is unclear, but we suggest it could be a relatively coarse-grained horizon that would be prone to fluid flow focusing and the development of excess fluid pressure. Our seismic study provides one of the most detailed examples of a subaqueous landslide system and reveals insights into the fluid flow system and potential basal shear zone development of the Tuaheni Landslide Complex.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-02-01
    Description: Two Fe-Ni sulfides, resembling the chemical composition of a typical mantle base metal sulfide (BMS), were synthesized and used to test micro-analytical procedures (sample digestion and chemical separation) to determine Os-187/Os-188 and highly siderophile element (HSE) mass fractions in single BMS grains. The bulk Os-187/Os-188 and HSE mass fractions of the synthetic sulfides were independently determined after high pressure asher (HPA) digestion and conventional HSE separation (Os solvent extraction and Ir, Ru, Pt, Pd, Re separation via anion exchange chromatography), while the homogenous distribution of HSE was assessed via LA-ICP-MS. Tests were performed following the protocol of Pearson et al. (1998), where sulfides are digested in H2SO4/CrO3 and Os is simultaneously extracted as OsO4. Additional tests were performed adding a pre-digestion step in HBr and/or HCl. The duration and the temperature of the pre-digestion and micro-distillation steps, as well as different chromatographic separations of the HSE were also evaluated. While the majority of the tests yielded Os-187/Os-188 in agreement with that obtained after HPA digestion, HSE mass fractions show large deviations from the reference content, depending on the used procedure. Such variations are interpreted as the result of incomplete sulfide digestion, Os spike loss, and the possible presence of undigested sub-micrometric platinum group minerals (PGM). Overall, the bulk sulfide HSE mass fractions obtained after HPA digestion are best reproduced (mean deviations 〈= 10%) using a pre-digestion step in HBr+HCl at 120 degrees C. This study highlights the need for matrix-matched sulfide reference materials for routine use in laboratories determining HSE mass fractions and Os isotope ratios on single BMS grains. Such an approach is fundamental for comparing and compiling Re-Os ages collected on BMS in many different laboratories. This study also demonstrates that there is need for further testing and for methodological developments/improvement of the analytical procedure(s) used for Re-Os dating and HSE mass fraction determinations in single BMS grains.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth-Science Reviews, 184 . pp. 29-45.
    Publication Date: 2019-02-01
    Description: Because of anthropogenic global warming, the world ocean is currently losing oxygen. This trend called ocean deoxygenation is particularly pronounced in low-latitude upwelling-related oxygen minimum zones (OMZs). In these areas, the temperature-related oxygen drawdown is additionally modulated by biogeochemical feedback mechanisms between sedimentary iron (Fe) and phosphorus release, water column nitrogen cycling and primary productivity. Similar feedbacks were likely active during past periods of global warming and ocean deoxygenation. However, their integrated role in amplifying or mitigating climate change-driven ocean anoxia has not been evaluated in a systematic fashion. Moreover, many studies on past (de)oxygenation events emphasize anoxic-sulfidic (i.e., euxinic) basins such as the Black Sea rather than upwelling-related OMZs as modern analogue systems. In this review, I summarize the current state of knowledge on biogeochemical processes in the water column and sediments of OMZs. Nitrate-reducing (i.e., nitrogenous) to weakly sulfidic conditions in the water column and Fe-reducing (i.e., ferruginous) to sulfidic conditions in the surface sediment are identified as key-features of anoxic OMZs in the modern ocean. A toolbox of paleo-redox proxies is proposed that can be used to identify OMZ-type biogeochemical cycling in the geological record. By using a generalized model of sedimentary Fe release and trapping, I demonstrate that the extent of Fe mobilization and transport in modern OMZs is comparable to that inferred for the euxinic Black Sea and ferruginous water columns in Earth history. Based on this result, I suggest that many sedimentary Fe enrichments in the geological record are broadly consistent with OMZ-type redox conditions in the water column and surface sediment, especially if enhanced chemical weathering and reactive Fe supply to the ocean during past periods of global warming are taken into account. Future studies on paleo-(de)oxygenation events with a combined focus on Fe, sulfur and nitrogen cycling may reveal that OMZ-type redox conditions were an important feature of the ocean through Earth's history.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-02-01
    Description: While the mantle roots directly beneath Archean cratons have been relatively well studied because of their economic importance, much less is known about the genesis, age, composition and thickness of the mantle lithosphere beneath the regions that surround the cratons. Despite this knowledge gap, it is fundamentally important to establish the nature of relationships between this circum-cratonic mantle and that beneath the cratons, including the diamond potential of circum-cratonic regions. Here we present mineral and bulk elemental and isotopic compositions for kimberlite-borne mantle xenoliths from the Parry Peninsula and Central Victoria Island, Arctic Canada. These xenoliths provide key windows into the lithospheric mantle underpinning regions to the North and Northwest of the Archean Slave craton, where the presence of cratonic material has been proposed. The mantle xenolith data are supplemented by mineral concentrate data obtained during diamond exploration. The mineral and whole rock chemistry of peridotites from both localities is indistinguishable from that of typical cratonic mantle lithosphere. The cool mantle paleogeotherms defined by mineral thermobarometry reveal that the lithospheric mantle beneath the Parry Peninsula and Central Victoria Island terranes extended well into the diamond stability field at the time of kimberlite eruption, and this is consistent with the recovery of diamonds from both kimberlite fields. Bulk xenolith Se and Te contents, and highly siderophile element (including Os, Ir, Pt, Pd and Re) abundance systematics, plus corresponding depletion ages derived from Re-Os isotope data suggest that the mantle beneath these parts of Arctic Canada formed in the Paleoproterozoic Era, at ∼2 Ga, rather than in the Archean. The presence of a diamondiferous Paleoproterozoic mantle root is part of the growing body of global evidence for diamond generation in mantle roots that stabilized well after the Archean. In the context of regional tectonics, we interpret the highly depleted mantle compositions beneath both studied regions as formed by mantle melting associated with hydrous metasomatism in the major Paleoproterozoic Wopmay-Great Bear-Hottah arc systems. These ∼2 Ga arc systems were subsequently accreted along the margin of the Slave craton to form a craton-like thick lithosphere with diamond potential thereby demonstrating the importance of subduction accretion in building up Earth’s long-lived continental terranes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-02-01
    Description: Hanang volcano is the southern volcano of, the southern area of the east part of the East African Rift (the North Tanzanian Divergence) and represents volcanic activity of the first stage of continental break-up. In this study, we investigate glassy melt inclusions in nepheline phenocrysts to constrain the late stage of Mg-poor nephelinite evolution and the behaviour of volatiles (C02, H20, S, F, Cl) during magma storage and ascent during early stage rifting. The melt inclusions have a green silicate glass, a carbonate phase and a shrinkage bubble free of gas phase indicating that carbonatite:silicate (18:82) liquid immiscibility occurred during nephelinite magmatic evolution. The silicate glasses have trachytic composition (Na + K/Al = 1.6-7.2, Si02 = 54-65.5 wt%) with high C02 (0.43 wt% C02), sulfur (0.21-0.92 wt% S) and halogens (0.28-0.84 wt% Cl; 0.35-2.54 wt% F) contents and very low H20 content ( 〈0.1 wt%). The carbonate phase is an anhydrous Ca-Na-K-S carbonate with 33 wt% Cao, 20 wt% Na20, 3 wt% K20, and 3 wt% S. The entrapped melt in nepheline corresponds to evolved interstitial COrrich phonolitic composition (Na + K/Al = 6.2-6.9) with 6 ± 1.5 wt% C02 at pressure of 800 ± 200 MP a after crystallization of cpx ( 17%), nepheline ( 40%) garnet (6.5%) and apatite (1.7%) from Mg-rich nephelinitic magma. During ascent, immiscibility in phonolitic melt inclusions leads to Ca-Na carbonate melt with composition within the range of carbonate melt from Oldoinyo Lengai and Kerimasi, in equilibrium with trachytic silicate melt (closed-system, P 〈 500 MPa). The COrrich phonolitic melt inclusions from Hanang volcano may represent an early stage of differentiation before Na carbonatitic magmatism observed at Oldoinyo Lengai.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-02-01
    Description: One of the most remarkable natural events on Earth are the large lateral flank collapses of oceanic volcanoes, involving volumes of rock exceeding tens ofkm3• These collapses are relatively frequent in recent geological times as supported by evidence found in the geomorphology of volcanic island edifices and associated debris flows deposited on the proximal ocean floor. The Island of Fogo in the Cape Verde archipelago is one of the most active and prominent oceanic volcanoes on Earth. The island has an average diameter of 25 km and reaches a maximum elevation of 2829 m above sea level (m a.s.l.) at Pico do Fogo, a young stratovolcano located within a summit depression open eastward due to a large lateral flank collapse. The sudden collapse of the eastern flank of Fogo Island produced a megatsunami -73 ky ago. The limits of the flank collapse were deduced as well from geomorphologic markers within the island. The headwall of the collapse scar is interpreted as either being located beneath the post-collapse volcanic infill of the summit depression or located further west, corresponding to the Bordeira wall that partially surrounds it. The magnetotelluric (MT) method provides a depth distribution of the ground resistivity obtained by the simultaneous measurement of the natural variations of the electric and magnetic field of the Earth. Two N-S magnetotelluric profiles were acquired across the collapsed area to determine its geometry and boundaries. The acquired MT data allowed the determination of the limits of the collapsed area more accurately as well as its morphology at depth and thickness of the post-collapse infill. According to the newly obtained MT data and the bathymetry of the eastern submarine flank of Fogo, the volume involved in the flank collapse is estimated in -110 km3 • This volume -the first calculated onshore- stands between the previously published more conservative and excessive calculations -offshore- that were exclusively based in geomorphic evidence. The model for the summit depression proposing two caldera collapses preceding the collapse of the eastern flank of Fogo is supported by the MT data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 499 . pp. 74-82.
    Publication Date: 2019-02-01
    Description: The geochemical record of Hawaiian basalts has been interpreted to reflect vertically stretched, partly filament-like heterogeneities in the Hawaiian plume, but one alternative interpretation has been that this record reflects intra-conduit mixing, caused by rheological contrasts across the conduit. Here we present numerical simulations of a mantle plume carrying rheological heterogeneities λ times more viscous than the surrounding fluid. Our first objective is to quantify how the heterogeneity deforms during upwelling. We find a full spectrum of shapes, from stretched filaments to nearly undeformed blobs, and we map the respective stability domain as a function of the viscosity ratio λ and of the flow characteristics, including the plume buoyancy flux. Our second objective is to test the hypothesis that a rheological heterogeneity can cause intra-conduit mixing. Although horizontal velocities do appear across the plume conduit, we have not found any toroidal “doughnut-shaped swirl” mode. Instead we show that perturbations of the flow trajectories are a local phenomenon, unable to cause permanent mixing. Our third objective is to determine over which time-scales a rheological heterogeneity crosses the magma capture zone (MCZ) beneath a hotspot volcano. For a blob-like heterogeneity of radius 30–40 km and viscosity ratio 15–20, the crossing time-scale is less than 1 Myr. Contrary to a stretched filament, a blob can entirely fill the MCZ, thereby representing the unique source rock of partial melts feeding a volcano. If the heterogeneity has a distinct isotopic fingerprint (or a distinct fertility), surface lavas will then record an isotopic fluctuation (or a fluctuation in melt productivity) lasting 0.5–0.8 Myr. Our simulations predict that such fluctuations should occur preferentially in low buoyancy flux hotspots, where blob-like rheological heterogeneities are more easily preserved than in the vigorous Hawaiian plume.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-02-01
    Description: Highlights • Application of mobile underwater in situ gamma-ray spectroscopy. • Localization of pockmarks emanating groundwater. • Radon progeny 214Bi proved an efficient radiotracer for localization purposes. • Potassium 40K is suggested as additional to radon radiotracers to localize fluid emanation areas whenever sediment is in mixture with the fluid or resuspension of sediment occurs. Abstract Eckernförde Bay in the Baltic Sea is well-known for the pockmarks areas which are located in the centre and off the southern shore-line of the bay emanating groundwater in a non-continuous but episodic way. Mobile underwater in situ gamma-ray spectroscopy is exploited proving that both 214Bi and 40K are efficient radiotracers for localization of seepage areas whenever either sediment is in mixture with the emanating fluid or resuspension of surface sediment occurs as a side effect of the fluid emanation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 138 . pp. 60-71.
    Publication Date: 2019-02-01
    Description: Sulfate reduction could go through dissimilatory sulfate reduction and anaerobic methane oxidation couple with sulfate reduction (AOM-SR) with pyrite the end product. While AOM-SR is an important process in oxidizing methane and limiting methane entering the ocean, there is limited information available regarding pyrite formation and preservation under methane dominated environment. The purpose of this study is to report pyrite formation and preservation at a methane dominated environment, the YuanAn Ridge, where methane seeps have been observed, and to evaluate how would that differ from typical anoxic environment. Pore water methane, sulfate, dissolved sulfide, barium, and sediment pyrite, barium/Al ratio and organic carbon in sediments were analyzed from sediments collected by piston cores on board the R/V Ocean Researcher I (OR-I) from the study environment. The results showed methane flux is controlling pyrite formation in this methane dominated environment. Pyrite concentration is linearly correlated with methane flux with exceptions to shallower sulfate methane transition zone (SMTZ) sites where methane could have vent directly to the overlying water and contribute less to the pyrite formation. The more methane entering the SMTZ, the more pyrite formed and preserved in the sulfate methane transition zone sediments. Authigenic pyrite from dissimilatory sulfate reduction is a small fraction of the pyrite found in the methane dominant and low in organic carbon environment, with majority of pyrite derived from AOM-SR. Large spatial variations on rate of sulfate reduction, pyrite and methane concentrations were observed in the studied area sediments. Depth of sulfate methane transition zone varied between 1 and 14 m and is a log function of methane flux. Pore water sulfate profiles displayed three different types, linear, concave up and down, indicating methane flux have varied in time. Pyrite burial efficiency is high, approximately 50% of sulfate entering the SMTZ were preserved in sediments as pyrite. This efficiency of sulfate reduction through AOM-SR is much higher than pyrite formation from dissimilatory sulfate reduction in normal marine sediments. The AOM-SR and pyrite formation occurred at depth within the SMTZ favor a higher degree of pyrite preservation. Time require for the pyrite formation is about 4400 years in the YAR sediments, based on diffusion model calculation of barium sulfate precipitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-12-17
    Description: The spatial distribution of reactive silica (RSi) and organic carbon (OC) in the Bohai Sea was determined on the basis of field measurements, and budgets were calculated with support from literature data. The riverine input, primary production and water exchange between the Bohai Sea and Yellow Sea have a strong effect on the distributions of RSi and OC, with particularly high contents in sediments in the estuarine and mud areas in the Bohai Sea. Silica preservation in the sediment is more efficient than that of carbon. Exchanges via the Bohai Strait result in a net export of RSi and OC for the Bohai Sea. Increasing riverine inputs of RSi in the Bohai Sea due to water and sediment regulation since 2002 have induced a 10% increase in primary production. As a result, RSi has declined due to enhanced diatom growth and sedimentation. The Bohai Sea has thus shifted from a nitrogen to a silica limited ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-02-01
    Description: We have studied the rock magnetic characteristics of 31 multicores and 7 gravity cores from deep-sea sediments of the distal Amazon Fan and Demerara Abyssal Plain. This study has permitted us to delineate the space/time pattern of Holocene physical sedimentation along the northeastern margin of South America associated with the Amazon River sediment plume. The rock magnetic variability is correlatable over the entire study region. This degree of correlation has permitted us to develop a composite picture of Holocene rock magnetic (and overall physical elastic) sedimentation. 26 radiocarbon dates have been combined with the rock magnetic correlations to provide a composite Holocene chronostratigraphy for that variability. We have built isopach maps of overall sedimentation for three windows in the Holocene (3000, 4500, and 7000 calendar years BP). The overall sedimentation in the center of our region is -5 cm/kyr. But, sedimentation rates are faster closer to the coastline and associated with the distal elastic flux from the Amazon Plume. There is a secondary high in sediment accumulation under the North Brazil Current retroflection. Our maps suggest that the retroflection has been active at the millennial scale for at least the last 7000 years. We estimate that the mid­Holocene (-4.5-9000 calendar years BP) pattern of sedimentation was distinctly different from that of the last few thousand years. The elastic sediments were -25% reduced in concentration (with the biogenic sediments similarly increased by -25%), they were finer-grained, and significantly less rich in ferric iron phases (hematite/goethite). We think these three covarying elastic parameters are due to an interval of reduced elastic flux from the Amazon River Plume with a reduced proportion of Amazon Basin sediments (as opposed to Andes-derived sediments). We hypothesize this was due to significantly drier Amazon Basin environmental conditions during that time interval.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-02-01
    Description: The formation of authigenic phosphate minerals in marine sediments is an important process for the burial and long-term storage of the bio-essential nutrient phosphorus (P). In this context, we report the composition of pore waters, bulk sediments, and the speciation of P in four sediment cores recovered on the continental margins off the Amazon, Rio de la Plata and Zambezi rivers. Here, pronounced sulphate-methane transitions (SMTs) occur between 4.5 and 6.5 m sediment depth where sulphate is consumed by the anaerobic oxidation of methane and free hydrogen sulphide builds up in the pore waters. This leads to the reductive dissolution of primary Fe (oxyhydr)oxides (FeOx) by hydrogen sulphide, and the subsequent liberation of FeOx-adsorbed phosphate into pore waters at the SMT. The released phosphate builds up to significant concentrations, making it available for the precipitation of authigenic minerals within and below the SMT. Using a sequential P extraction, we find consistently high contributions of carbonate fluorapatite (CFA) to the total P pool within the SMT, where it likely precipitates due to high local phosphate concentrations, high alkalinity and abundant dissolved Ca in the pore waters. PHREEQC calculations confirm these results, with highest saturation states with respect to authigenic apatite calculated at all SMTs. CFA authigenesis, however, is insufficient to completely consume pore water phosphate, leading to diffusive loss of phosphate from the SMT. While the upward decrease in phosphate above the SMT is relatively gentle, the significantly steeper phosphate gradient into underlying sediments suggests the formation of another authigenic mineral phase. Sequential P extraction and PHREEQC results clearly show that the dominant authigenic phase below the SMT is not CFA. Instead, geochemical conditions below the sulphidic zone at all four sites are favourable for the precipitation of Fe(II) phosphate minerals (e.g., vivianite). These conditions are summarized as the absence of sulphate and free hydrogen sulphide, but the presence of Fe2 + and phosphate in pore waters, and low calcium carbonate contents in the sediment. While we did not directly detect or quantify Fe(II) phosphate minerals, Fe-bound P clearly increases in the sediments below the sulphidic zones at all studied sites, and this is where highest pore water saturation states with respect to vivianite are calculated with PHREEQC. In addition, geochemical inverse models performed in PHREEQC show that vivianite formation is an important geochemical process controlling the observed patterns of dissolved P and Fe, pH and redox potential of the pore waters analysed below the SMT. We therefore argue that Fe(II) phosphate minerals are formed in these ocean margin sediments on a large scale, and pore water and sediment data indicate that this Fe­bound P largely originates from FeOx-adsorbed phosphate liberated within the sulphidic SMT. This study sug­gests that under specific but not unusual depositional conditions, SMTs are hotspots for biogeochemical P cycling in marginal marine sediments worldwide, with CFA precipitating within the SMT, and Fe(II) phosphates forming below it. It also adds to the growing evidence that Fe(II) phosphates may contribute significantly to the long­term burial of reactive P phases in Fe-rich, methanic marine sediments, and thus act as a previously under­estimated sedimentary P sink.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-02-01
    Description: In the present work, spatial and temporal variability of benthic fluxes of total alkalinity (AT) and the effect of pyrite burial on sedimentary AT release was studied in the Gdansk Deep (max. depth of 118 m) located in the southern Baltic Sea. Cores of surface sediment were collected in summer and winter at three locations. Concentrations of carbonate and non-carbonate (dissolved sulfide, ammonia, phosphate, silicate, borate and sulfate) constituents of AT were analyzed in pore water and their sediment-water diffusive fluxes were estimated using Fick'sI L aw.B enthic flux of AT was calculated as the sum of fluxes of particular components. Pyrite burial rate in sediment was estimated based on analysis of pyrite sulfur. The average diffusive flux of AT was 1397 ± 511 μmol m- 2 day- 1 and was dominated by bicarbonate and carbonate. The main non-carbonate component of AT flux was hydrogen sulfide with contribution of 1-30%. Assuming complete oxidation of sulfide released from the sediment to the bottom water, the net flux of AT in the study area was 1263 ± 518 μmo! m- 2 day- 1. The average pyrite burial rate estimated for the last several hundred years was 242 ± 28 μmo! m - 2 day- 1. This indicates that pyrite formation on average generates 38% of the net AT flux from sediment into the water column of the Gdansk Deep.T hese findings suggest that anaerobic respiration of organic matter and subsequent pyrite formation may have considerable effect on the benthic fluxes of alkalinity in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-02-27
    Description: We evaluate the potential of ophiolites as archives of paleoseawater and hydrothermal fluid compositions by analysing the chemical and isotopic composition of abiogenic carbonates, precipitated from fluids within the oceanic crust of the 91 Ma Troodos Ophiolite, Cyprus. Calculated variations in fluid Mg/Ca, Sr/Ca and Sr-87/ Sr-86 with temperature within the upper sections of the ophiolite are similar to those from drilled oceanic crust, and yield literature values for late Cretaceous seawater Mg/Ca, Sr/Ca and Sr-87/ Sr-86. This indicates that carbonates from ophiolites could be used to estimate the composition of ancient seawater at times before the age of the oldest preserved in-situ oceanic crust. Whereas most carbonates recovered from in-situ oceanic crust were precipitated at temperatures 〈 60 degrees C, abiogenic carbonates from the Troodos Ophiolite formed over a temperature range of 7 degrees C to 218 degrees C. These provide unique insights into the chemical and mineralogical processes that transform seawater into a high temperature hydrothermal fluid within the oceanic crust. We use 'hydrothermal variation diagrams' of Mg/Ca, Sr/Ca, Sr-87/ Sr-86 and delta(44)/Ca-40 versus calculated temperature (delta O-18) to trace this fluid evolution within the Troodos oceanic crust. We find that successive fluid-crust-interaction, the precipitation of Mg- and Ca-bearing minerals and the early formation of anhydrite (〉 44 degrees C) gradually transform Cretaceous seawater into a Troodos hydrothermal fluid. Comparison of the Troodos data with a global dataset of abiogenic carbonates from in-situ oceanic crust shows that the chemical pathways of low-temperature fluid evolution are similar for all Cretaceous sites. These different sites represent varied geotectonic settings (midocean ridge vs. suprasubduction zone), with different basement composition (basalt, basaltic andesite/boninite) and situated in different ocean basins (Atlantic, Pacific, Mediterranean [Tethys]). The similarity in the carbonate record indicates that these differences do not significantly influence seafloor weathering and hydrothermal alteration at low temperatures. However, abiogenic carbonates from younger oceanic crust differ from the Cretaceous trends and follow different fluid evolution pathways. This indicates, that temporal variations in the composition of seawater may control the nature and the extent of seafloor weathering and hydrothermal alteration at low temperatures. A thermodynamic model of fluid-crust interaction, in which modern and Cretaceous seawater are heated to 200 degrees C while an average Troodos basaltic andesite is successively added under otherwise identical conditions predicts that fluid evolution and alteration of the oceanic crust were different in the Cretaceous than they are today, and that initial seawater chemistry affects the nature and the extent of seafloor alteration up to moderate fluid temperatures. For example, twice the amount of carbonate formed during alteration of the oceanic crust in the Cretaceous compared to modern times, indicating that the flux of CO2 from the hydrosphere-atmosphere system into the oceanic crust was greater in the Cretaceous than it is nowadays, and that it probably varied throughout geologic time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-02-01
    Description: Over the last two decades, popular opinion about prevailing conditions in the mid-Proterozoic deep ocean has evolved from fully oxygenated to globally euxinic (sulfidic) to a more heterogeneous, stratified water column with localized pockets of euxinia existing in predominantly iron-rich (ferruginous) deep waters. The Animikie Basin in theL ake Superior region has been essential in shaping our view of marine redox evolution over this time period. In this study, we present a multi-proxy paleoredox investigation of previously unanalyzed strata of the late Paleoproterozoic AnimikieB asin using drill cores through the -1.85 Ga Stambaugh Formation (PaintR iver Group) in the Iron River-Crystal Falls district of the Upper Peninsula of Michigan, USA. Based on previous tectonic reconstructions and analysis of sedimentary regimes, theI ronR iver-Crystal Falls section captures strata from among the deepest-water facies of the AnimikieB asin.I n contrast to previous work on sedimentary rocks in this basin, we find evidence from iron speciation, trace metal, and Mo isotope data for episodes of at least local deep-water oxygenation within a basin otherwise dominated by ferruginous and euxinic conditions. While tracemetal enrichments and iron speciation data suggest predominantly anoxic conditions, the occurrence of Mn-rich intervals (up to 12.3 wt% MnO) containing abundant Mn-Fe carbonate, and a wide range of Mo isotope data with extremely negative values (8 98195 Mo = -1.0 to + 1.1 %0), record the shuttling of Mn-oxides from surface waters through oxic or suboxic waters to the sediment-water interface. We propose that such conditions are analogous to those of locally restricted modern and Holocene basins in the Baltic Sea, which receive episodic inflow of oxygenated water, producing similar geochemical signatures to those observed for the AnimikieB asin. We argue that the mid-Proterozoic was characterized by a lack of a strong redox buffer (low sulfide, ferrous iron, and oxygen contents), and thus was vulnerable to dramatic, and at least local, redox shifts-including briefly oxygenated bottom waters. A refined view of the mid-Proterozoic ocean is emerging: one that was still predominantly anoxic, but marked by regional heterogeneities and short-term redox variability that may, in part, reflect a transitional state between prevailingly anoxic Archean and predominantly oxic Phanerozoic oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-02-01
    Description: Highlights • Petrogenesis of highly-depleted basalt • Subarc residual mantle and flux melting beneath an arc or back-arc environment • Residual eclogite and partial melting of subducted altered oceanic crust. Abstract Seafloor spreading in the Woodlark Basin is taking place on pre-existing arc crust that was produced by the subduction of the Indo-Australian Plate into the Pocklington Trough (now inactive) to the south during the Paleogene. The Woodlark Basin has a unique tectonic setting characterized by two surrounding subduction zones. To the east, a spreading ridge is also currently being subducted beneath the Solomon Arc. Moreover, long-term subduction of the Pacific Plate occurred in this area, which was halted by the collision of the Ontong–Java Plateau with the Vitiaz Trench at ca. 10 Ma. Any one of these subduction zones could have influenced the mantle beneath the Woodlark Basin. In this study, basalts from the eastern Woodlark Basin spreading center (EWLB; eastern Woodlark Basin basalts) were analyzed for major and trace element compositions and Sr-Nd-Pb isotopic compositions to investigate the melting processes and mantle heterogeneity in this unusual tectonic setting. Our results show that the EWLB can be classified into three types based on major and trace elements, and Sr–Nd–Pb isotopic characteristics: normal EWLB (N-EWLB), very depleted EWLB (VD-EWLB), and ultra-depleted EWLB (UD-EWLB). N-EWLB are similar to normal mid-ocean ridge basalts (N-MORB) and comprise most of the EWLB. The EWLB formed from local mantle, which is similar to depleted MORB mantle. VD-EWLB are more depleted than N-EWLB and have a weak subduction fingerprint. These rocks are characterized by increasing Nb/La with increasing Sm/La, which is a trend that is not produced by peridotite melting. As such, VD-EWLB may have formed by melting of a source containing residual eclogite that had previously undergone low-degree partial melting during subduction, leaving residual rutile in the source. UD-EWLB are extremely depleted relative to global MORB, have elevated H2O/Ce and Ba/Nb ratios similar to back-arc basin basalts (BABB), and lower concentrations of H2O and Ba than N-MORB. We propose that UD-EWLB was derived from sub-arc residual mantle that was enriched by fluid and then experienced melt depletion. The subduction fingerprints in the VD- and UD-EWLB are not related to the current ridge subduction or earlier, long-term subduction of the Pacific Plate in the northeast of the basin, as they are geochemically distinct from the Solomon Arc, which was strongly influenced by both these subduction systems. Instead, we suggest that the subduction fingerprint of the VD- and UD-EWLB was produced during Paleogene subduction of the Indo-Australian Plate to the south.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-02-01
    Description: Spanning the northern sector of High Asia, the Altai region contains a rich landform record of glaciation. We report the extent, chronologies, and dynamics of two paleoglaciers on opposite flanks of the Ikh Turgen mountains (In Russian: Chikhacheva Range), straddling the border between Russia and Mongolia, using a combination of remote sensing-based glacial geomorphological mapping, 10Be surface exposure dating, and geomorphometric analysis. On the eastern side (Mongolia), the Turgen-Asgat paleoglacier, with its potential for developing a large accumulation area (∼257 km2), expanded 40 km down valley, and mean ages from a latero-frontal moraine indicate deglaciation during marine oxygen isotope stage (MIS) 3 (45.1 ± 1.8 ka, n = 4) and MIS 2 (22.8 ± 3.3 ka, n = 5). These minimum age constraints are consistent with other 10Be glacial chronologies and paleoclimate records from the region, which indicates glacier culmination during cold and wet conditions coinciding with MIS 3 (piedmont-style glaciation; inferred for a few sites across the region) and glacier culmination during cold and dry conditions coinciding with MIS 2 (mainly valley-style glaciation; inferred from several sites across the region). On the western side (Russia), the Boguty paleoglacier had a smaller accumulation area (∼222 km2), and advanced 30 km down valley across a low gradient forefield. Surface exposure ages from two moraine complexes on this side of the mountains exhibit wide scatter (∼14–53 ka, n = 8), making paleoclimate inferences and comparison to other proxies difficult. Ice surface profile reconstructions imply that the two paleoglaciers likely shared an ice divide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-02-01
    Description: Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (Pann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7°N, 100.5°E; north-east Tibetan Plateau), Gonghai Lake (38.9°N, 112.2°E; north China) and Sihailongwan Lake (42.3°N, 126.6°E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (〈800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (〉1500 km radius) will include taxa with very different pollen-climate relationships.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Structural Geology, 115 . pp. 82-90.
    Publication Date: 2018-12-17
    Description: The interplay of faulting and folding has long been recognized in extensional systems and numerous investigations have documented the importance of mechanical layering on development of normal-fault related monoclines. In this study we use discrete element modeling to explore the impact of mechanical layering and fault geometry on normal-fault related folding for a well-exposed field example in southwestern Iceland. The model honors the mechanically stratified character of the deformed sequence and replicates the monocline geometry by simulating displacement and upward propagation of a buried fault. A close match between model geometry and field observations was obtained using a refracted fault geometry and a cover sequence with alternating 40-m-thick relatively strong and 10-m-thick relatively weak layers. Initial deformation is accommodated by folding of mechanically weaker intervals and fracturing of mechanically stronger layers, and maximum monocline width is developed early. As overall fault displacement increases, throughgoing fracture connections along the footwall side of the monocline develop, leaving the monocline limb attached to the hanging wall. Consistent with field observations, model results suggest that significant near-surface and subsurface fracture porosity is developed in strong layers. Reproducing the complexity of the natural normal fault-related monocline in Iceland requires incorporating strongly contrasting mechanical properties within a layered cover sequence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Elsevier
    In:  Current Biology, 27 (23). R1280-R1282.
    Publication Date: 2018-12-17
    Description: When methane-producing microbial communities are mixed experimentally, the resulting community is dominated by the community with the greatest resource-use efficiency. These results suggest a degree of community cohesion, or the maintenance of that initial community in the mix.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-02-01
    Description: Quantitative calcareous plankton analyses have been performed at the Ocean Drilling Program Site 977 in the Alboran Sea through the mid-Brunhes interval (300–540 ka). The results evidence orbital-suborbital and millennial scale climate variability which primary reflects temperature change. The patterns of increase/decrease of coccolithophore and planktonic foraminifera warm water taxa reproduce the stage and substage climate variability in the planktonic δ18O in good agreement with other planktonic isotope records from Mediterranean Sea and Atlantic Ocean. Variable conditions, characterized by alternating cool nutrient-rich or warm and stable sea-surface waters, occurred during interglacial Marine Isotope Stage (MIS) 13 in response to high amplitude oscillations of insolation during obliquity maximum and to North Africa monsoon strength, influencing distribution of taxa. MIS 13a resulted warmer than MIS 13c based on the higher abundances of warm water taxa; they increase just after insolation maxima, suggesting a primary response of calcareous plankton to precessional orbital control. Following short-term warm (MIS 11e) and more humid (MIS 11d) phases, a climate optimum lasting about 16 kyr is recognized during MIS 11c, when major tropical-subtropical water arrival into the Alboran Sea occurred as evidenced by the presence of Trilobatus sacculifer. MIS 11c records unstable climate condition that persisted up to the late MIS 11, indicating multiple pulses of southward migrations of subpolar front following the full interglacial MIS 11c. Warm and oligotrophic conditions occurred during MIS 9 as during MIS 11, especially in MIS 9e, although without a climate optimum. Reduced abundance of warm water taxa and decrease of Globorotalia inflata highlight colder surface water conditions and decreased Atlantic-Mediterranean water exchange during glacials, especially during the prominent sea-level low-stand of MIS 12. Short-term prominent peaks of the polar-subpolar Neogloboquadrina pachyderma and Coccolithus pelagicus ssp. pelagicus, and additional key taxa preferring fresher and turbid water, together with minima in total Nannofossil Accumulation Rate and enhanced coccolith reworking, sustain a correlation with the North Atlantic Heinrich-type (Ht) events Ht1, Ht1a, Ht3, Ht4-6, thus documenting the sensitiveness of the Alboran Sea in recording European and Laurentide ice-sheet dynamics. The comparable chronology of most of these cold spells in the available Balearic and Ionian calcareous plankton records highlights that Atlantic melt water entering Alboran basin through Gibraltar Strait may have reached the central Mediterranean preserving some of its original polar signature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-02-01
    Description: The cause of rapid hydrological changes in the tropical West Pacific during the last deglaciation remains controversial. In order to test whether these changes were triggered by abrupt climate change events in the North Atlantic Ocean, variations in precipitation during the last deglaciation (18–10 ka) were extracted from proxy records of chemical weathering and terrigenous input in the western Philippine Sea (WPS). The evolution of chemical weathering and terrigenous input since 27 ka was reconstructed using the chemical index of alteration (CIA), elemental ratios (K/Al, TOC/TN and Ti/Ca), δ13Corg, terrigenous fraction abundance and flux data from International Marine Global Change Study Program (IMAGES) core MD06-3054 collected on the upper continental slope of eastern Luzon (northern Philippines). Sediment deposited during the Last Glacial Maximum (LGM) shows weathering equal to or slightly greater than Holocene sediment in the WPS. This unusual state of chemical weathering, which is inconsistent with lower air temperatures and decreased precipitation in Luzon during the LGM, may be due to reworking of poorly consolidated sediments on the eastern Luzon continental shelf during the LGM sea-level lowstand. Rapid changes in chemical weathering, characterized by higher intensity during the Heinrich event 1 (H1) and Younger Dryas (YD) and lower intensity during the Bølling-Allerød (B/A), were linked to rapid variations in precipitation in the WPS during the last deglaciation. The higher terrigenous inputs during the LGM relative to those of the Holocene were controlled by sea-level changes rather than precipitation. The terrigenous inputs show a long-term decline during the last deglaciation, punctuated by brief spikes during the H1 and YD related to sea-level rises and rapid precipitation changes in the WPS, respectively. The proxy records of chemical weathering and terrigenous input from eastern Luzon suggest high rainfall during the H1 and YD events, consistent with inferred rainfall patterns based on Fe/Ca records from offshore Mindanao. Rapid precipitation changes in the WPS did not coincide with migrations of the Intertropical Convergence Zone (ITCZ) but, rather, were related to state shifts of the El Niño-Southern Oscillation (ENSO) during the last deglaciation. Based on proxy records and modeling results, we argue that the Atlantic meridional overturning circulation (AMOC) controlled rapid precipitation changes in the tropical West Pacific through zonal shifts of ENSO or meridional migration of the ITCZ during the last deglaciation. Our findings highlight the dominant role of the North Atlantic Ocean in the tropical hydrologic cycle during the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-02-01
    Description: Constraints on the variability of chromium (Cr) isotopic compositions in the modern ocean are required to validate the use of Cr isotopic signatures in ancient authigenic marine sediments for reconstructing past levels of atmospheric and ocean oxygenation. This study presents dissolved Cr concentrations (Cr-T, where Cr-T = Cr(VI) + Cr(III)) and Cr isotope data (delta Cr-53) for shelf, slope and open ocean waters within the oxygen minimum zone (OMZ) of the eastern sub-tropical Atlantic Ocean. Although dissolved oxygen concentrations were as low as 44-90 mu mol kg(-1) in the core of the OMZ, there was no evidence for removal of Cr(VI). Nonetheless, there was significant variability in seawater delta Cr-53, with values ranging from 1.08 to 1.72 parts per thousand. Shelf Cr-T concentrations were slightly lower (2.21 +/- 0.07 nmol kg(-1)) than in open ocean waters at the same water depth (between 0 and 160 m, 2.48 +/- 0.07 nmol kg(-1)). The shelf waters also had higher delta Cr-53 values (1.41 +/- 0.14 parts per thousand compared to 1.18 +/- 0.05 parts per thousand for open ocean waters shallower than 160 m). This is consistent with partial reduction of Cr(VI) to Cr(III), with subsequent removal of isotopically light Cr(III) onto biogenic particles. We also provide evidence for input of relatively isotopically heavy Cr from sediments on the shelf. Intermediate and deep water masses (AAIW and NADW) show a rather limited range of delta Cr-53 values (1.19 +/- 0.09 parts per thousand) and inputs of Cr from remineralisation of organic material or re-oxidation of Cr (III) appear to be minimal. Authigenic marine precipitates deposited in deep water in the open ocean therefore have the potential to faithfully record seawater delta Cr-53, whereas archives of seawater delta Cr-53 derived from shelf sediments must be interpreted with caution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-02-01
    Description: Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial–interglacial climate variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-02-01
    Description: Iron isotopes in ocean floor basalts (OFB) away from convergent margins comprising mid-ocean-ridge and ocean island lavas show significant variation of 〉0.4‰ (expressed in the delta notation δ57Fe relative to IRMM-014), but processes responsible for this variation remain elusive. Bond-valence theory predicts that valence states (Fe3+ vs. Fe2+) control Fe isotopes during partial melting and crystal fractionation along the liquid line of descent and thus contribute substantially to this variation. Memory of past melt extraction or metasomatic re-enrichment in the source of OFB may further add to the observed variability, but systematic investigations to elucidate the respective contributions of these effects have been lacking. Submarine ridges and rifts in the Lau back-arc basin offer a unique opportunity to compare Fe isotopes in OFB from different melting regimes and variably depleted mantle sources. New Fe isotope data is presented for submarine lavas from the Rochambeau Ridges (RR) and the Northwest Lau Spreading Centre (NWLSC), and is compared with published data from the Central Lau Spreading Centre (CLSC). In line with first principle calculations and observations from a range of natural systems, crystal fractionation is identified as the dominant, controlling process for elevating δ57Fe in the lavas with olivine tentatively identified as the key driver. To compensate for the effect of crystal fractionation, olivine is mathematically added towards calculated primitive melt compositions (δ57Feprim). For this, we used a constant Ol-melt isotope fractionation factor based on published equilibrium partition functions adapted to decreasing temperature in a cooling melt. The degree of calculated Fe isotope fractionation through olivine crystal fractionation (monitored as Δ57Fe = δ57Femeasured − δ57Feprim) is positively correlated with increasing S and decreasing Ni content in the cooling lavas, fortifying the validity of the approach. Primitive lavas from individual Lau spreading centres and ridges vary to 0.1‰ in δ57Feprim, similar to primitive open-ocean MORB. However, the entire spread in Fe isotope variability in the primitive melts remains at 0.3‰, which we propose to be the extent of isotope heterogeneity in Earth’s upper mantle, with few extreme exceptions. The largest variability in δ57Feprim is observed for RR intra-plate lavas, which have been associated with the Samoan mantle plume and melting in an edge-driven convection scenario. Low, mid-ocean ridge-like 87Sr/86Sr in RR lavas excludes significant influence of isotopically heavy Samoan EM2-type components. However, co-variations with rare earth element pattern in some RR intra-plate lavas indicate garnet plays a role in elevating δ57Feprim during deeper melting. Excluding these deep-seated melts uncovers systematically decreasing δ57Feprim coupled to the degree of mantle source depletion, as recorded in Lu/Hf and Sm/Nd, in the back-arc basin basalts. This, however, holds only true for a comparison between sources of individual ridges, whereas no co-variation is observed within ridge segment data. This suggests that a process other than source depletion and crystal fractionation further adds to Fe isotope variability in the order of 0.1‰ on scales of individual ridge segments. This either marks the degree of Fe isotope variability below ridge segments, or is caused by secondary processes, such as melt-wallrock interaction or RTX (recharge and crystal fractionation) magma chambers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-11-12
    Description: We present a transport-reaction model (TRACTION) specifically designed to account for non-ideal transport effects in the presence of thermodynamic (e.g. salinity or temperature) gradients. The model relies on the most fundamental concept of solute diffusion, which states that the chemical potential gradient (Maxwell’s model) rather than the concentration gradient (Fick’s law) is the driving force for diffusion. In turn, this requires accounting for species interactions by applying Pitzer’s method to derive species chemical potentials and Onsager coefficients instead of using the classical diffusion coefficients. Electrical imbalances arising from varying diffusive fluxes in multicomponent systems, like seawater, are avoided by applying an electrostatic gradient as an additional transport contribution. We apply the model to pore water data derived from the seawater mixing zone at the submarine Mercator mud volcano in the Gulf of Cadiz. Two features are particularly striking at this site: (i) Ascending halite-saturated fluids create strong salinity (NaCl) gradients in the seawater mixing zone that result in marked chemical activity, and thus chemical potential gradients. The model predicts strong transport-driven deviations from the mixing profile derived from the commonly used Fick’s diffusion model, and is capable of matching well with the profile shapes observed in the pore water concentration data. Even better agreement to the observed data is achieved when ion pairs are transported separately. (ii) The formation of authigenic gypsum (several wt%) occurs in the surface sediments, which is typically restricted to evaporitic surface processes. Very little is known about the gypsum paragenesis in the subseafloor and we first present possible controls on gypsum solubility, such as pressure, temperature, and salinity (pTS), as well as the common ion and ion pairing effects. Due to leaching of deep diapiric salt, rising fluids of the MMV are saturated with respect to gypsum (as well as celestite and barite). Several processes that could drive these fluids towards gypsum supersaturation and hence precipitation were postulated and numerically quantified. In line with the varied morphology of the observed gypsum crystals, gypsum paragenesis at the MMV is likely a combination of two temperature-related processes. Gypsum solubility increases with increasing temperature, especially in strong electrolyte solutions and the first mechanism involves the cooling of saturated fluids along the geothermal gradient during their ascent. Secondly, local temperature changes, i.e. cooling during the transition from MMV activity towards dormancy results in the cyclic build-up of gypsum. The model showed that the interpretation of field data can be majorly misguided when ignoring non-ideal effects in extreme diagenetic settings. While at first glance the pore water profiles at the Mercator mud volcano would indicate strong reactive influences in the seawater mixing zone, our model shows that the observed species distributions are in fact primarily transport-controlled. The model results for SO4 are particularly intriguing, as SO4 is shown to diffuse into the sediment along its increasing (!) concentration gradient. Also, a pronounced gypsum saturation peak can be observed in the seawater mixing zone. This peak is not related to the dissolution of gypsum but is simply a result of the non-ideal transport forces acting on the activity profile of SO4 and Ca profiles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Encyclopedia of Ecology. , ed. by Fath, B. D. Elsevier, Oxford, UK, pp. 108-115. 2. ed. ISBN 978-0-444-63768-0
    Publication Date: 2018-10-16
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-02-01
    Description: Highlights • Hydrologic, biologic processes play key roles in barite formation and geochemistry. • Sulfur and oxygen isotopes distinguish sulfate sources and (bio)chemical processes. • Radiogenic Sr identifies fluid sources, stable Sr isotopic signatures are not unique. • Marine pelagic barite stable Sr isotopes have consistent offset from seawater. Abstract Barite (BaSO4) is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks of all ages, as well as in soils, aerosol dust, and extraterrestrial material. Barite can form in a variety of settings in the oceans (hydrothermal deposits, cold seeps, water column, or within sediments) and on the continents (soils, sulfidic springs and in the subsurface) when (1) two fluids mix – one containing barium and another containing sulfate, (2) sulfur is oxidized forming sulfate in a barium containing solution, or (3) barium or sulfate is concentrated in microenvironments where either sulfate or barium are already present. Hydrologic and biologic processes can therefore play key roles in the formation of barite and affect its geochemical composition. Characteristics of barite from various modern settings are identified here to serve as analogs for ancient systems, summarizing previous work and adding new details from the pelagic marine, hydrothermal, cold seep and continental setting. Radiogenic strontium in barite clearly identifies the source(s) of fluid forming barite with the most radiogenic values measured in continental sulfidic spring settings associated with a deep fluid component that interacts with ancient crustal rocks. Sulfur and oxygen isotopes can distinguish between sources of sulfate and identify settings where the influence of (bio)chemical processes such as sulfate reduction is prominent. There are no unique stable strontium isotopic signatures for barite formed in any of the settings investigated here, but Holocene coretop marine pelagic barite appears to have a constant offset from seawater of approximately −0.53‰ in coretop samples in contrast to the wide range of values in barite precipitated in other settings. Stable strontium mass dependent fractionation could be useful in understanding post-depositional and diagenetic processes such as authigenic precipitation and recrystallization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-10-30
    Description: Highlights • New 40Ar/39Ar age and geochemical (major, trace element, Sr-Nd-Pb-Hf isotope) data are presented from the Walvis Ridge, belonging to the Tristan-Gough hotspot track in the South Atlantic. • The entire Tristan-Gough hotspot system, including Walvis Ridge, display a spatially continuous age progression. • The Gough-type component is the dominant geochemical flavor of the Tristan-Gough plume and has also been identified in the Discovery and Shona hotspot systems. • The geochemical heterogeneity in the South Atlantic DUPAL region can be reproduced by mixing of Gough-type enriched mantle with continental crust and a FOZO/PREMA-like component. • The HIMU-type alkalic lavas on the Walvis Ridge and older part of Shona hotspot track are ∼30 Ma younger in age than the EMI-type primarily tholeiitic basement lavas at a given locality. Abstract Long-lived spatial geochemical zonation of the Tristan-Gough and Discovery hotspot tracks and temporal variations from EMI-type basement to HIMU-type late-stage volcanism at the Walvis Ridge and Shona hotspot tracks point to a complex evolution and multiple source areas for the South Atlantic hotspots. Here we report 40Ar/39Ar age and geochemical (major and trace element, Sr-Nd-Pb-Hf isotope) data for samples from 16 new sites on the Walvis Ridge. This aseismic ridge is the oldest submarine expression of the Tristan-Gough mantle plume and represents the initial reference locality of the EMI end member in the South Atlantic Ocean. The EMI-type lavas display an excellent age progressive trend of ∼31 mm/a along the entire Tristan-Gough hotspot track, indicating constant plate motion over a relatively stationary melt anomaly over the last ∼115 Ma. The Gough-type EMI composition of the Tristan-Gough hotspot track is the dominant composition on the 〉70 Ma part of the Walvis Ridge, the Etendeka and Parana flood basalts, and along the Gough sub-track, extending from DSDP Site 525A on the SW Walvis Ridge to Gough Island, whereas Tristan-type EMI dominates on the Tristan Track, extending from DSDP Sites 527 and 528 to Tristan da Cunha Island. Gough-type EMI is also the dominant composition of the northern Discovery and Shona hotspot tracks, suggesting that these hotspots tap a common source reservoir. The continuous EMI-type supply over ≥132 Ma, coupled with high 3He/4He (〉10 RA), points to a deep-seated reservoir for this mantle material. The Tristan and Southern Discovery EMI-type flavors can be reproduced by mixing of the Gough-type component with (1) FOZO/PREMA to produce Tristan-type lavas, and (2) marine sediments or upper continental crust to generate the Southern Discovery-type composition. South Atlantic hotspots with EMI-type compositions overlie the margin (1 % ∂Vs velocity contour) of the African Large Low Shear Velocity Province (LLSVP), which may promote the emergence of geochemical “zonation”. The St. Helena HIMU-type volcanism, however, is located above internal portions of the LLSVP, possibly reflecting a layered LLSVP.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-02-01
    Description: The parameterization of sub-grid scale processes is one of the key challenges towards improved numerical simulations of the atmospheric and oceanic circulation. Numerical weather prediction models as well as climate models would benefit from more sophisticated turbulence closures that allow for less spurious dissipation at the grid-scale and consequently higher and more realistic levels of eddy kinetic energy (EKE). Recent studies propose to use a hyperviscous closure in combination with an additional deterministic forcing term as a negative viscosity to represent backscatter of energy from unresolved scales. The sub-grid EKE is introduced as an additional prognostic variable that is fed by dissipation at the grid scale, and enables recycling of EKE via the backscatter term at larger scales. This parameterization was previously shown to work well in zonally re-entrant channel configurations. Here, a generalization in the form of a Rossby number-dependent scaling for the strength of the backscatter is introduced to represent the emergence of a forward energy-cascade in unbalanced flows near the boundaries. We apply the parameterization to a shallow water model of a double gyre basin and provide evidence for its general applicability. In terms of mean state and variability, a low resolution model is considerably improved towards a high resolution control run at low additional computational cost.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-02-01
    Description: The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and element fluxes in the different exploration areas is required. Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to 25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3 m to more than 8 m. Our data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ultimately determined by the (1) low flux of particulate organic carbon (POC) of 1–2 mg Corg m−2 d−1 to the seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM degradation. Due to very low POC fluxes of 1 mg Corg m−2 d−1 to the seafloor at the site investigated in the protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction of bottom water currents with seafloor topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-02-01
    Description: Gas and water permeability through hydrate-bearing sediments essentially governs the economic feasibility of gas production from gas hydrate deposits. Characterizing a reservoir's permeability can be difficult because even collocated permeability measurements can vary by 4–5 orders of magnitude, due partly to differences between how various testing methods inherently measure permeability in different directions and at different scales. This study uses a customized flow anisotropy cell to investigate geomechanical and hydrological properties of hydrate-bearing sediments focusing on permeability anisotropy (i.e., horizontal, kh, to vertical, kv, permeability ratio) and relative permeability. Two cores recovered during India's National Gas Hydrate Program Expedition 02 (NGHP-02) are tested in this study. Near in situ effective vertical stress, ∼ 2 MPa, the permeability anisotropy is approximately kh/kv = 1.86 for the “seal core” (from a fine-grained non-reservoir overburden sedimentary section) and kh/kv = 4.24 for the gas hydrate reservoir core with tetrahydrofuran (THF) hydrate saturation Sh = 0.8. Permeability anisotropy increases exponentially with effective vertical stress, as described by kh/kv = α(σv/MPa)β, with α = 1.6, β = 0.22 for seal sediment and α = 3, β = 0.5 for THF hydrate-bearing sediment. Results imply the measured permeability from permeameter tests with vertical flow may underestimate the reservoir's flow performance, which is mainly horizontal (radial) toward a vertical well. Hydrate in sediment increases the gas-entry pressure and residual water saturation, but decreases the water retention curve's shape factor (m), resulting in a steeper curve. Distributions of available pore space sizes for flow in sediment with and without THF hydrate (Sh = 0.8) follow a log-normal distribution. Hydrate formation decreases the apparent mean pore size from ∼10 μm to ∼2 μm, without evidently changing the pore size distribution's standard deviation. Gas hydrate dissociation increases effective permeability and relative permeability to gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-02-01
    Description: Widely distributed cold seeps are crucial sources of carbon to the seawater, whereas anaerobic oxidation of methane (AOM) and precipitation of authigenic carbonate might change the compositions of the methane-rich fluids and thus reduce the outputs of dissolved carbon to seawater. In this work, we analyze the pore water compositions of four gravity cores with high methane concentration abnormalities in pore water or in overlying seawater in the western slope of the Mid-Okinawa Trough. For the northern research area, active weak methane seepage through the seafloor is identified in the vicinity of mud volcanoes (sites C01 and C10), and strong emissions of gas and fluids may occur in the central mud volcanoes. In a submarine canyon at the south, C23 site exhibits rarely methane seepage, while high rate transportation of methane from deep sediments and associated AOM are identified at site C25 where small vertical faults and gas-bearing layers are developed at the surrounding. AOM at site C25 is indicated by (1) quasi-linearly decrease of sulfate concentrations with depths, (2) intense increases of dissolved inorganic carbon (DIC) concentrations and (3) significantly negative δ13C values (vary from −7.2 to −26.3‰) of DIC. Organoclastic degradation in the shallow sediments is not obviously recognized in the study area because of the low concentrations of NH4+, as well as negligible sulfate consumption at three of the four sites. Our data reveal that the cold systems are one of the DIC sources (the fluxes are ca. 11.2 mmol/m2/yr) to the seawater in the Okinawa Trough, which can be tracked by high depletion of 13C (δ13CDIC ranges from −7.2 to −26.3‰ VPDB).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-02-01
    Description: The Harstad Basin is a structural block on the continental shelf of SW Barents Sea where gas hydrates likely occurred below the grounded ice-sheet during the last glaciation and it hosts active gas seepage at numerous seafloor sites. We present an integrated study of fluid flow systems in the Harstad Basin by combining seismic profile interpretations and gas flare mapping data with the geochemical results obtained on seafloor seeping gas and methane-derived carbonate crusts. More than 190 acoustic gas flares were registered in water column, many of them in association with pockmarks and carbonate crust fields. However, weak or absent seepage observed during remotely operated underwater vehicle transects across many pockmarks and crust fields suggests that seepage activity may have decreased since the last deglaciation. In the western Harstad Basin, seeps of microbial methane occur mainly above Tertiary formations that are pinching out below the glacial sediments. High amplitude seismic anomalies suggest the presence of gas pockets at the base of the glacial sediments and within Tertiary deposits. In contrast, gas seeping in the eastern Harstad Basin originates from a biodegraded thermogenic source tentatively connected to the deeply faulted Mesozoic rocks occurring below glacial sediments. This spatial variability in fluid sources is also recorded in the carbon isotope data of seafloor carbonate crusts, with δ13C values typically between −55 and −42‰ and −40 and −20 ‰VPDB for carbonate crusts associated with microbial and thermogenic fluids, respectively. U-Th chronology combined with the stable isotope data suggests that this discrepancy in fluid sources over a distance of about 20 km has been stable since the last glaciation and highlights the significance of regional underlying geology in mediating fluid supply to the seafloor
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...