ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
  • ELSEVIER  (2)
  • Museo Friulano di Storia Naturale  (2)
  • Wiley-Blackwell  (2)
  • Nature Publishing Group
  • 1
    Publication Date: 2017-04-04
    Description: We present a high resolution DTM of the Palinuro Seamount (PS, Tyrrhenian Sea, Italy) resulting from the processing of multibeam swath bathymetry records acquired during the second leg of the “Aeolian 2007” cruise. PS consists of several superimposed volcanoes aligned along a N100°E strike and measures 55×25 km. The western and the central sectors result from the coalescence of collapse structures (calderas) with younger volcanic cones. The eastern sector reveals a more complex and articulated structure. In the central sector, a volcanic crater with a well-preserved rim not obliterated by erosional events suggests a volcanological rejuvenation of this sector. The presence of flat surfaces on the top of the seamount may be due to the formation of marine terraces during the last sea-level lowering. Lateral collapses on the northern and southern flanks of the seamount are probably related to slope instability, as suggested by the presence of steep slopes (25–40°). The main fault affecting PS strikes N65°E and shows a right lateral component of movement. E–W and N10°E striking faults are also present. Assuming that theN100°E deep-seated fault,which is responsible for theemplacement of PS,movedwith sinistral slips, we interpret the N65°E and the N10°E faults as right-lateral (second order) shear and left-lateral (third order) shear, respectively. Due to the particular location of the Palinuro Seamount, the data presented here allow us to better understand the volcanism and the geodynamic processes of the Tyrrhenian Sea.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Multibeam bathymetry ; Marine volcanoes ; Tyrrhenian Sea ; Seamount ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We analyzed a broad region around L’Aquila in search of seismogenic faults similar to that responsible for the 6 April 2009 earthquake (Mw 6.3). Having the lessons learned from this earthquake in mind, we focused on adjacent areas displaying similar morphotectonic, geological and structural evidence. The basin running from Barisciano to Civitaretenga-Navelli, notably located near the southeastern edge of the 2009 aftershock pattern, appears to be one of such areas. We collected morphotectonic and structural data indicating that this basin is underlain by a major active normal fault (San Pio Fault). All the observations are very much reminiscent of the morphotectonic, geological and structural setting of area struck by the L’Aquila earthquake, suggesting that the newly identified fault has the potential for a Mw 6.2-6.4 shock.
    Description: Published
    Description: Pages: 108–115
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismotectonics ; Morphotectonics ; Active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: The authors present the work undertaken on the lithic material collected in the spring area between Orcenico Superiore and Savorgnano (Pordenone-Italy). The sites are located on an NE-SW elongated Lateglacial gravel ridge, which to the present day is to be considered a stable area (i.e. preserved from alluvial and erosive action of Tagliamento and Meduna rivers). Different periods are represented in the lithic industries, spanning from the Mesolithic to the Bronze Age. This paper presents the results of the study carried out on the Mesolithic industries, mainly to be ascribed to the Castelnovian tradition. The typological composition of the assemblages shows different activities which could be associated with residential camps, without any particular specialization although this kind of interpretation could be biased by the non systematic nature of the findings. Different operational chains were in place, aiming to produce either bladelets or flakes. Raw materials are mostly of local origin, although few pieces were brought in from the Prealps, showing a North-South mobility along river routes. At the same time, there are scarce lithic materials imported from the upper part of the Udine plain, which is rich in good quality flint pebbles. Further technological and typological differences show a rather neat separation between sites on either sides of Tagliamento river. When we consider the distribution of Mesolithic sites in Friuli, a logistical settlement system seems to emerge: bigger sites are located at the edge of ecologically differentiated areas in connection with stable water sources such as the spring area between Orcenico and S. Vito al Tagliamento and the piedmont; complementary to those, task-related short-term sites characterised by less materials and fewer lithic types are found in the Prealps at middle altitude.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: Mesolithic ; Castelnovian ; Friulian Plain ; geomorphology ; lithic industry ; raw material ; settlement system ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-24
    Description: Integration of geologic, geomorphologic and seismologic data sets is used to reconstruct the recent tectonic evolution and active deformation pattern in the Val d’Agri area, located in the seismically active axial sector of the Southern Apennines (Italy). The western portion of the Apennines thrust belt has been affected by Pliocene–Quaternary extension during easterly roll-back and crustal delamination of the Adriatic slab. The bulk of Quaternary extension has been accommodated bySW-dipping oblique and normal faults,which have attained mature morphologic and structural features and, nowadays, separate mountain ranges from intermontane basins. However, in the present seismogenic belt, coseismic faulting locally occurs on NE-dipping structures, which might cut the inherited Pleistocene landscape. In theVal d’Agri basin, in spite of the large Early–Middle Pleistocene, displacement occurred on SW-dipping faults bordering its eastern flank, our investigations show that the recent basin evolution has been controlled by a NE-dipping fault system (Monti della Maddalena fault system, MMFS). This fault system cuts across the Monti della Maddalena range, west of the Agri valley and has not yet created an evident tectonic landscape. Notwithstanding, fault motion since the Middle Pleistocene might explain geomorphologic and hydrographic anomalies of the Agri river and its valley, where fault-controlled subsidence has captured the river course and produced an aggrading plain within a regional uplift context. Recent and ongoing motion is documented by fault scarplets in loose deposits, 14C ages of palaeosols and the spatial relation with low to moderate instrumental seismicity. Results from fault kinematic analysis are compatible with fault-plane solutions of local and regional seismic events, and indicate ∼NE–SW oriented extension. Recognition of the MMFS as a potential seismogenic fault increases the longitudinal extent of the NE-dipping, morphologically immature seismic sources in the Southern Apennines and argues against the range-bounding fault model for active extension in the region. The regional size of the NE-dipping seismogenic belt may result from impingement of a mantle wedge beneath the Apenninic chain and possibly track the external front of crustal delamination.
    Description: Published
    Description: 591-609
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active tectonics ; crustal deformation ; earthquakes ; geomorphology ; normal faulting ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We present a high resolution DTM of the Palinuro Seamount (PS, Tyrrhenian Sea, Italy) resulting from the processing of multibeam swath bathymetry records acquired during the second leg of the “Aeolian 2007” cruise. PS consists of several superimposed volcanoes aligned along a N100°E strike and measures 55×25 km. The western and the central sectors result from the coalescence of collapse structures (calderas) with younger volcanic cones. The eastern sector reveals a more complex and articulated structure. In the central sector, a volcanic crater with a well-preserved rim not obliterated by erosional events suggests a volcanological rejuvenation of this sector. The presence of flat surfaces on the top of the seamount may be due to the formation of marine terraces during the last sea-level lowering. Lateral collapses on the northern and southern flanks of the seamount are probably related to slope instability, as suggested by the presence of steep slopes (25–40°). The main fault affecting PS strikes N65°E and shows a right lateral component of movement. E–W and N10°E striking faults are also present. Assuming that theN100°E deep-seated fault,which is responsible for theemplacement of PS,movedwith sinistral slips, we interpret the N65°E and the N10°E faults as right-lateral (second order) shear and left-lateral (third order) shear, respectively. Due to the particular location of the Palinuro Seamount, the data presented here allow us to better understand the volcanism and the geodynamic processes of the Tyrrhenian Sea.
    Description: Published
    Description: 129–140
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Multibeam bathymetry ; Marine volcanoes ; Tyrrhenian Sea ; Seamount ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The authors present the work undertaken on the lithic material collected in the spring area between Orcenico Superiore and Savorgnano (Pordenone-Italy). The sites are located on an NE-SW elongated Lateglacial gravel ridge, which to the present day is to be considered a stable area (i.e. preserved from alluvial and erosive action of Tagliamento and Meduna rivers). Different periods are represented in the lithic industries, spanning from the Mesolithic to the Bronze Age. This paper presents the results of the study carried out on the Mesolithic industries, mainly to be ascribed to the Castelnovian tradition. The typological composition of the assemblages shows different activities which could be associated with residential camps, without any particular specialization although this kind of interpretation could be biased by the non systematic nature of the findings. Different operational chains were in place, aiming to produce either bladelets or flakes. Raw materials are mostly of local origin, although few pieces were brought in from the Prealps, showing a North-South mobility along river routes. At the same time, there are scarce lithic materials imported from the upper part of the Udine plain, which is rich in good quality flint pebbles. Further technological and typological differences show a rather neat separation between sites on either sides of Tagliamento river. When we consider the distribution of Mesolithic sites in Friuli, a logistical settlement system seems to emerge: bigger sites are located at the edge of ecologically differentiated areas in connection with stable water sources such as the spring area between Orcenico and S. Vito al Tagliamento and the piedmont; complementary to those, task-related short-term sites characterised by less materials and fewer lithic types are found in the Prealps at middle altitude.
    Description: Published
    Description: 141-164
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: restricted
    Keywords: Mesolitico ; Castelnoviano ; Pianura Friulana ; Geomorfologia ; Industria Litica ; Materia Prima ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...