ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (21)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (15)
  • 04.06. Seismology
  • Creep observations and analysis
  • Elsevier Science Limited  (31)
  • Wiley  (7)
  • EGU - Copernicus
Collection
Keywords
  • 11
    Publication Date: 2017-04-04
    Description: The main goal of this study is to provide moment tensor solutions for small and moderate earthquakes of the Matese seismic sequence in southern Italy for the period of December 2013–January 2014. We estimate the focal mechanisms of 31 earthquakes with local magnitudes related to the Matese earthquake seismic sequence (December 2013–January 2014) in Southern-Central Italy which are recorded by the broadband stations of the Italian National Seismic Network and the Mediterranean Very Broadband Seismographic Network (MedNet) run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The solutions show that normal faulting is the prevailing style of seismic deformation in agreement with the local faults mapped outin the area. Comparisons with already published solutions and with seismological and geological information available allowed us to properly interpret the moment tensor solutions in the frame of the seismic sequence evolution and also to furnish additional information about less energetic seismic phases. Focal data were inverted to obtain the seismogenic stress in the study area. The results are compatible with the major tectonic domain of the area.
    Description: Published
    Description: 118-124
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Moment tensors ; Southern Italy ; Apennines ; Stress inversion ; Seismicity and tectonics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: An automatic analysis code called ANISOMAT+ has been developed and improved to automatically retrieve the crustal anisotropic parameters fast polarization direction (ϕ) and delay time (δt) related to the shear wave splitting phenomena affecting seismic S-wave. The code is composed of a set of MatLab scripts and functions able to evaluate the anisotropic parameters from the three-component seismic recordings of local earthquakes using the cross-correlation method. Because the aim of the code is to achieve a fully automatic evaluation of anisotropic parameters, during the development of the code we focus our attention to devise several automatic checks intended to guarantee the quality and the stability of the results obtained. The basic idea behind the development of this automatic code is to build a tool able to work on a huge amount of data in a short time, obtaining stable results and minimizing the errors due to the subjectivity. These behaviors, coupled to a three component digital seismic network and a monitoring system that performs automatic pickings and locations, are required to develop a real-time monitoring of the anisotropic parameters.
    Description: Published
    Description: 62-68
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: shear wave splitting, Earthquake forecast, Anisotropy, Cross-correlation method ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Understanding the behavior of natural faults at cosesimic slip velocities (v ~ 1–10 m/s or more) has become a challenging achievement for experimentalists and modelers of earthquake instabilities. The rate– and state–dependent friction laws, originally obtained in slow slip rate conditions, have been widely adopted in dynamic rupture models by assuming their validity well above the experimental range of observations. In this paper we consider a modification at high speeds, in which the steady state friction becomes independent on v above a transitional value vT . Our results show that this modification has dramatic effects on the dynamic propagation; as long as vT decreases the breakdown stress drop decreases, as well as the slip–weakening distance and the fracture energy density. Moreover, we found that the subshear regime is favored as vT decreases; we found that for the strength parameter S greater than 1.482 the supershear rupture propagation is inhibited. Finally, we demonstrate that the exponential weakening, often observed in laboratory experiments, can be theoretically explained in the framework of the rate and state laws.
    Description: Published
    Description: 223-230
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Rheology of faults ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: In this paper we present a reconstruction of the stratigraphic setting of the continental sedimentary sequences that were deposited by the Paleo-Tiber River within the greater area of Rome between 0.9 and 0.6 Ma, carried out through analyses of a large number of borehole data. Through palinspastic restoration of several cross sections we depict the original geometry of the sedimentary record that has been dislocated by intense tectonic activity linked to volcanism, and we reconstruct the geologic and paleogeographic evolution of this area. Moreover, we provide a complete review of the chronostratigraphic and magnetostratigraphic data reported in previous work, and we extend paleomagnetic analyses to three new clay sections. These geochronological constraints allow us to compare aggradation of the Paleo-Tiber sedimentary successions with the δ18O record, evidencing a strict link between sedimentation and sea-level changes in the Rome area. By doing so, we provide a direct test on the timing of the sea-level rise forMIS 19 throughMIS 15: a record of data forwhich no equivalent exists in the literature.
    Description: Published
    Description: 1-20
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: sea -level changes ; astronomical forcing ; geology of Rome ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-05-27
    Description: Several mountainous regions are currently affected by syn- or post-orogenic active extension. We investigate how a newly-formed normal fault interacts with structures inherited from a previous contractional phase. To this end, we use analog models that adopt an innovative technique for performing a precut that mimics such inherited structures into a clay layer; this clay layer is laid on top of a master fault simulated by two rigid blocks sliding along an inclined plane. We carry out six experiments with variously oriented precuts and compare the results with those obtained in a reference isotropic experiment. All other conditions are identical for all seven realizations. Fault evolution is monitored by taking closely-spaced snapshots analyzed through the Digital Image Correlation method. We find that the upward propagation of the normal fault can be either accelerated or decelerated depending on the presence of a precut and its orientation. Such precuts can also promote or inhibit the formation of bending-moment faults. These interactions between master fault and precut also affect the shape of the fault-related syncline-anticline pair.
    Description: Published
    Description: 145–158
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Extension ; Normal faults ; Pre-existing fault ; Analogue modeling ; Accommodation space ; Blind fault ; Active tectonics ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-05-25
    Description: We explore the three‐dimensional structure of the 2016–2017 Central Italy sequence using ~34,000 ML ≥ 1.5 earthquakes that occurred between August 2016 and January 2018. We applied cross‐correlation and double‐difference location methods to waveform and parametric data routinely produced at the Italian National Institute of Geophysics and Volcanology. The sequence activated an 80 km long system of normal faults and near‐horizontal detachment faults through the MW 6.0 Amatrice, the MW 5.9 Visso, and the MW 6.5 Norcia mainshocks and aftershocks. The system has an average strike of N155°E and dips 38°–55° southwestward and is segmented into 15–30 km long faults individually activated by the cascade of MW ≥ 5.0 shocks. The two main normal fault segments, Mt. Vettore‐Mt. Bove to the North and Mt. della Laga to the South, are separated by an NNE‐SSW‐trending lateral ramp of the Sibillini thrust, a regional structure inherited from the previous compressional tectonic phase putting into contact diverse lithologies with different seismicity patterns. Space‐time reconstruction of the fault system supports a composite rupture scenario previously proposed for the MW 6.5 Norcia earthquake, where the rupture possibly propagated also along an oblique portion of the Sibillini thrust. This dissected set of normal fault segments is bounded at 8–10 km depth by a continuous 2 km thick seismicity layer of extensional nature slightly dipping eastward and interpreted as a shear zone. All three mainshocks in the sequence nucleated along the high‐angle planes at significant distance from the shear zone, thus complicating the interpretation of the mechanisms driving strain partitioning between these structures.
    Description: Published
    Description: e2019JB018440
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: normal fault ; shear zone ; fault segmentation ; apennines ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: To recognize possible spatial clusters and identify active seismogenic zones and structures in the Aeolian Archipelago, in the south of Italy, we analyzed the spatial pattern of seismicity between 1993 and 2010 in a selected area comprising Vulcano, Lipari, Salina and Filicudi and calculated 22 fault plane solutions (FPSs) for shocks with magnitude greater than 2.7. First, we computed a 1-D velocity model for this area including information from recorded earthquakes by a joint hypocenter-velocity inversion (Kissling et al., 1994). Successively, we applied the double-difference approach of Waldhauser and Ellsworth (2000), finding that a certain part of the scattered epicenter locations collapse in roughly linear features. Relocated seismicity evidenced three main alignments, oriented NNW-SSE and NE-SW at different depths that concur well with the known tectonic lineaments and focal mechanisms. A detailed discussion is focused on a seismogenetic structure, NE-SW oriented, 3-8 km deep, located in the northern area of Vulcano island. This recognized element could represent a link between magma accumulation zones, thus representing a possible preferential pathway along which magma may intrude. Two earthquake clusters, located south-west and east of Vulcano, with their focal mechanisms, highlight the Aeolian-Tindari-Letojanni Fault System seismic activity and the existence of a transitional zone going from the N-S compressive domain that dominates the Aeolian Islands to the NW-SE extensional domain characterizing the south-eastern Thyrrhenian.
    Description: Published
    Description: 108-115
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake relocation ; Fault plane geometry ; Aeolian islands ; Magma dynamics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: In this work we propose a high performance parallelization of the software package COMPSYN, devoted to the production of syntethic seismograms, on a cluster of multicore processors with multiple GPUs. To design and implement the proposed high performance version, we started from a na¨ıve parallel version of COMPSYN. The na¨ıve version consists in a simple parallelization on both device side, obtained by exploiting CUDA, and host side, obtained by exploiting the MPI paradigm and OpenMP API. The proposed high performance version implements several practical techniques of CUDA programming and deeply exploits the GPU architecture, thus achieving a much better performance with respect to the na¨ıve version. We compare the performance of the proposed high performance version and that of the na¨ıve one with the performance of the version running on the cluster of multicore processors without invoking the GPUs. We obtain for the high performance GPU version a speedup of 25x over the version running on the cluster of multicore processors without GPUs against the 10x of the na¨ıve version. Regarding the sequential version, we estimate about 380x the speedup of the high performance GPU version against the about 140x of the na¨ıve version.
    Description: Collaboration Agreement between Dept. of Computer Science, Sapienza University of Rome and Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 2011. Project n. C26G074ABJ, 2007, Cluster of multicore processor for advanced computation, Sapienza University of Rome.
    Description: Published
    Description: 966-975
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: restricted
    Keywords: GPU ; CUDA ; synthetic seismogram ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Volcanic edifices are often unable to support their own load, triggering the instability of their flanks. Many analogue models have been aimed, especially in the last decade, at understanding the processes leading to volcano flank instability; general behaviors were defined and the experimental results were compared to nature. However, available data at well-studied unstable volcanoes may allow a deeper understanding of the specific processes leading to instability, providing insights also at the local scale. Etna (Italy) constitutes a suitable example for such a possibility, because of its well-monitored flank instability, for which different triggering factors have been proposed in the last two decades. Among these factors, recent InSAR data highlight the role played by magmatic intrusions and a weak basement, under a differential unbuttressing at the volcano base. This study considers original and recently published experimental data to test these factors possibly responsible for flank instability, with the final aim to better understand and summarize the conditions leading to flank instability at Etna. In particular, we simulate the following processes: a) the longterm activity of a lithospheric boundary, as the Malta Escarpment, separating the Ionian oceanic lithosphere from the continental Sicilian lithosphere, below the most unstable east flank of the volcano; b) spreading due to a weak basement, with different boundary conditions; c) the pressurization of a magmatic reservoir, as that active during the 1994–2001 inflation period; d) dike emplacement, as observed during the major 2001 and 2002–2003 eruptions. The experimental results suggest that: 1) the long-term activity of a lithospheric tectonic boundary may create a topographic slope which provides a differential buttressing at the volcano base, a preparing factor to drive longer-term (〉105 years) instability on the east flank of the volcano; 2) volcano spreading (b104 years) has limited effect on flank instability at Etna; 3) magmatic intrusions (b101 years), both in the form of Mogi-like sources or dikes, provide the most important conditions to trigger flank instability on the shorter-term.
    Description: Thisworkwas partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 98-111
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano instability ; analogue modeling ; Etna ; unbuttressing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...