ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-30
    Description: The phylogenetic relationship of sulphur-oxidising endosymbiotic bacteria from bivalves of the families Vesicomyidae (Calyptogena sp. C1, Calyptogena sp. C3), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele sp.) from cold-seep habitats were determined by 16S rDNA nucleotide sequence analyses. The endosymbiotic bacteria form distinct groups within the gamma-Proteobacteria and are well separated from each other and from free-living sulphur-oxidising bacteria of the genera Beggiatoa, Halothiobacillus and Thiomicrospira. The endosymbiotic bacteria of Acharax sp. from cold seeps off Oregon, Indonesia and Pakistan have sequences highly similar to each other but quite distinct from other thiotrophic endosymbionts. This includes endosymbionts from Solemya spp., to which they are distantly related. Symbiotic bacteria of Conchocele sp. from a cold seep in the Sea of Okhotsk are similar to those of Bathymodiolus thermophilus and related species, as shown by their overall sequence similarity and by signature sequences. The endosymbiotic bacteria of Calyptogena spp. from cold seeps off Oregon and Pakistan are closely related to those of other vesicomyids. Endosymbiont species found off Oregon corresponded to 2 different clusters of Calyptogena spp. symbionts in the same samples. The results corroborate the hypothesis of a monophyletic origin of the symbionts in vesicomyid clams, and support the existence of deeply branching groups in solemyid symbionts and of divergent lines and distribution for thyasirid symbionts. The results also indicate that certain symbiont species cluster according to the depth distribution of their hosts, and that in consequence host species together with their symbionts may have undergone depth-specific adaptation and evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  Natural Hazards and Earth System Sciences, 16 . pp. 2391-2402.
    Publication Date: 2019-02-01
    Description: This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences from a global medium-range ensemble prediction system (EPS). Predictions of storm damage occurrences are subject to large uncertainty due to meteorological forecast uncertainty (typically addressed by means of ensemble predictions) and uncertainties in modelling weather impacts. The latter uncertainty arises from the fact that local vulnerabilities are not known in sufficient detail to allow for a deterministic prediction of damages, even if the forecasted gust wind speed contains no uncertainty. Thus, to estimate the damage model uncertainty, a statistical model based on logistic regression analysis is employed, relating meteorological analyses to historical damage records. A quantification of the two individual contributions (meteorological and damage model uncertainty) to the total forecast uncertainty is achieved by neglecting individual uncertainty sources and analysing resulting predictions. Results show an increase in forecast skill measured by means of a reduced Brier score if both meteorological and damage model uncertainties are taken into account. It is demonstrated that skilful predictions on district level (dividing the area of Germany into 439 administrative districts) are possible on lead times of several days. Skill is increased through the application of a proper ensemble calibration method, extending the range of lead times for which skilful damage predictions can be made.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 264 . pp. 1-14.
    Publication Date: 2019-07-02
    Description: At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that gain energy from sulfide oxidation. Depending on fluid flow, the surface communities are dominated either by the filamentous sulfur bacteria Beggiatoa (high advective flow), the clam Calyptogena (low advective flow), or the bivalve Acharax (diffusive flow). We analyzed surface sediments (0 to 10 cm) populated by chemosynthetic communities for AOM, sulfate reduction (SR) and the distribution of the microbial consortium mediating AOM. Highest AOM rates were found at the Beggiatoa field with an average rate of 99 mmol m-2 d-1 integrated over 0 to 10 cm. These rates are among the highest AOM rates ever observed in methane-bearing marine sediments. At the Calyptogena field, AOM rates were lower (56 mmol m-2 d-1). At the Acharax field, methane oxidation was extremely low (2.1 mmol m-2 d-1) and was probably due to aerobic methane oxidation. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation and showed low activity. Aggregates of the AOM consortium were abundant at the fluid-impacted sites (between 5.1 × 1012 and 7.9 × 1012 aggregates m-2) but showed low numbers at the Acharax field (0.4 × 1012 aggregates m-2). A transport-reaction model was applied to estimate AOM at Beggiatoa fields. The model agreed with the measured depth integrated AOM rates and the vertical distribution. AOM represents an important methane sink in the surface sediments of HR, consuming between 50 and 100% of the methane transported by advection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-03
    Description: Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Oxygen (O2) deficiency and nutrient concentrations in marine systems are impacting organisms from microbes to higher trophic levels. In coastal and enclosed seas, O2 deficiency is often related to eutrophication and high degradation rates of organic matter. To investigate the impact of O2 concentration on bacterial growth and the turnover of organic matter, we conducted multifactorial batch experiments with natural microbial communities of the central Baltic Sea. Water was collected from suboxic (〈5 µmol L -1) depths in the Gotland Basin during June 2015. Samples were kept for four days under fully oxygenated and low O2 conditions (mean: 34 µmol L-1 O2), with or without nutrient (ammonium, phosphate, nitrate) and labile carbon (glucose) amendments. We measured bacterial abundance, bacterial heterotrophic production, extracellular enzyme rates (leucine-aminopeptidase) and changes in dissolved and particulate organic carbon concentrations. Our results show that the bacterial turnover of organic matter was limited by nutrients under both oxic and low O2 conditions. In nutrient and glucose replete treatments, low O2 concentrations significantly reduced the net uptake of dissolved organic carbon and lead to higher accumulation of more labile dissolved organic matter. Our results therewith suggest that the combined effects of eutrophication and deoxygenation on heterotrophic bacterial activity may potentially favor the accumulation of dissolved organic carbon in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The family Solemyidae represents ancestral protobranch bivalves with the shallow-water genus Solemya and the deep-sea genus Acharax. All known members of this family host symbiotic sulfur-oxidizing bacteria in their gill filaments. Analysis of 18S rRNA gene sequences of Acharax specimens from methane-seeps off Makran (Pakistan), Java (Indonesia), the Aleutian Trench and off the Oregon, Costa Rica, and Peru margins revealed that Solemya spp. and Acharax spp. are well-separated genetically. This supports the current systematic distinction based on morphological criteria. We found 2 clearly distinct clusters within the genus Acharax, with specimens from the Makran, Oregon and Peru (MOP) margins in one (MOP–Acharax) cluster, and those from Java, the Aleutian Trench and Costa Rica (JAC) in the other (JAC–Acharax) cluster. The separation of MOP– and JAC–Acharax clusters from each other and from Solemya (S. reidi and S. velum) is well-supported by phylogenetic calculations employing maximum likelihood and maximum parsimony. Compared to genetic distances among other protobranch groups, distances between the MOP– and JAC–Acharax clusters would justify the affiliation of these clusters to separate species. This implies that species differentiation in Acharax based on shell morphology is likely to underestimate true species diversity within this taxon. Furthermore, our results support the hypothesis that genetic separation of Solemya and Acharax is congruent with the phylogeny of their bacterial endosymbionts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  Natural Hazards and Earth System Sciences, 17 (7). pp. 1253-1265.
    Publication Date: 2018-12-17
    Description: In this study we present a comprehensive method- ology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability ofearthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green’s functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores–Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-18
    Description: The synoptic evolution and some meteorological impacts of the European winter storm Kyrill that swept across Western, Central, and Eastern Europe between 17 and 19 January 2007 are investigated. The intensity and large storm damage associated with Kyrill is explained based on synoptic and mesoscale environmental storm features, as well as on comparisons to previous storms. Kyrill appeared on weather maps over the US state of Arkansas about four days before it hit Europe. It underwent an explosive intensification over the Western North Atlantic Ocean while crossing a very intense zonal polar jet stream. A superposition of several favourable meteorological conditions west of the British Isles caused a further deepening of the storm when it started to affect Western Europe. Evidence is provided that a favourable alignment of three polar jet streaks and a dry air intrusion over the occlusion and cold fronts were causal factors in maintaining Kyrill's low pressure very far into Eastern Europe. Kyrill, like many other strong European winter storms, was embedded in a pre-existing, anomalously wide, north-south mean sea-level pressure (MSLP) gradient field. In addition to the range of gusts that might be expected from the synoptic-scale pressure field, mesoscale features associated with convective overturning at the cold front are suggested as the likely causes for the extremely damaging peak gusts observed at many lowland stations during the passage of Kyrill's cold front. Compared to other storms, Kyrill was by far not the most intense system in terms of core pressure and circulation anomaly. However, the system moved into a pre-existing strong MSLP gradient located over Central Europe which extended into Eastern Europe. This fact is considered determinant for the anomalously large area affected by Kyrill. Additionally, considerations of windiness in climate change simulations using two state-of-the-art regional climate models driven by ECHAM5 indicate that not only Central, but also Eastern Central Europe may be affected by higher surface wind speeds at the end of the 21st century. These changes are partially associated with the increased pressure gradient over Europe which is identified in the ECHAM5 simulations. Thus, with respect to the area affected, as well as to the synoptic and mesoscale storm features, it is proposed that Kyrill may serve as an interesting study case to assess future storm impacts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-23
    Description: Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD), clear-sky and all-sky shortwave (SW) radiative flux is quantified by first integrating each field for four years after the eruption, then calculating for each cumulative field the absolute or percent difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~75 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for Pinatubo-magnitude eruption, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to eruption season of the global mean all-sky SW anomalies is comparable to the sensitivity of global mean AOD and clear-sky SW anomalies. Our estimates of sensitivity to eruption season are larger than previously reported estimates: implications regarding volcanic AOD timeseries reconstructions and their use in climate models are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...