ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (43,758)
  • 2010-2014  (43,557)
  • 1980-1984  (201)
  • 1925-1929
  • 1
    Publication Date: 2018-02-16
    Description: The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60–8000 m3 s−1 of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This has already profoundly altered the discharge rates of the Lena River. But the chemistry of the river waters which are discharged into the coastal Laptev Sea have also been hypothesized to undergo considerable compositional changes, e.g. by increasing concentrations of inorganic nutrients such as dissolved organic carbon (DOC) and methane. These physical and chemical changes will also affect the composition of the phytoplankton communities. However, before potential consequences of climate change for coastal arctic phytoplankton communities can be judged, the inherent status of the diversity and food web interactions within the delta have to be established. In 2010, as part of the AWI Lena Delta programme, the phyto- and microzooplankton community in three river channels of the delta (Trofimov, Bykov and Olenek) as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small, shallow and mixed area running from the outflow of Bykov channel in a northerly direction parallel to the shore. Of the five stations in this area, three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects, on the other hand, salinities varied between 5 and 30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes. In contrast, in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work is a first analysis of the phytoplankton community structure in the region where Lena River discharge enters the Laptev Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-28
    Description: The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-16
    Description: Bio-optical measurements and sampling were carried out in the delta of the Lena River (northern Siberia, Russia) between 26 June and 4 July 2011. The aim of this study was to determine the inherent optical properties of the Lena water, i.e., absorption, attenuation, and scattering coefficients, during the period of maximum runoff. This aimed to contribute to the development of a bio-optical model for use as the basis for optical remote sensing of coastal water of the Arctic. In this context the absorption by CDOM (colored dissolved organic matter) and particles, and the concentrations of total suspended matter, phytoplankton-pigments, and carbon were measured. CDOM was found to be the most dominant parameter affecting the optical properties of the river, with an absorption coefficient of 4.5–5 m−1 at 442 nm, which was almost four times higher than total particle absorption values at visible wavelength range. The wavelenght-dependence of absorption of the different water constituents was chracterized by determining the semi logarithmic spectral slope. Mean CDOM, and detritus slopes were 0.0149 nm−1(standard deviation (stdev) = 0.0003, n = 18), and 0.0057 nm−1 (stdev = 0.0017, n = 19), respectively, values which are typical for water bodies with high concentrations of dissolved and particulate carbon. Mean chlorophyll a and total suspended matter were 1.8 mg m−3 (stdev = 0.734 n = 18) and 31.9 g m−3 (stdev = 19.94, n = 27), respectively. DOC (dissolved organic carbon) was in the range 8–10 g m−3 and the total particulate carbon (PC) in the range 0.25–1.5 g m−3. The light penetration depth (Secchi disc depth) was in the range 30–90 cm and was highly correlated with the suspended matter concentration. The period of maximum river runoff in June was chosen to obtain bio-optical data when maximum water constituents are transported into the Laptev Sea. However, we are aware that more data from other seasons and other years need to be collected to establish a general bio-optical model of the Lena water and conclusively characterize the light climate with respect to primary production.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-19
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-02
    Description: Following the launch of ESA's Soil Moisture and Ocean Salinity (SMOS) mission, it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) are sensitive to sea ice properties. In the first demonstration study, sea ice thickness up to 50 cm has been derived using a semi-empirical algorithm with constant tie-points. Here, we introduce a novel iterative retrieval algorithm that is based on a thermodynamic sea ice model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within the SMOS spatial resolution are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS-based sea ice thickness data set from 2010 on. The data set is compared to and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study (Kaleschke et al., 2012).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-11-14
    Description: Earthquake history shows that the Sunda subduction zone of the Indonesian margin produces great earthquakes offshore Sumatra, whereas earthquakes of comparable magnitude are lacking offshore Java and the Lesser Sunda islands. Morphological structures from multibeam bathymetric data across the forearc relate with the extent of the seismogenic zone (SZ). Off Java and the Lesser Sunda islands the Indo-Australian plate subducts almost normal underneath the oceanic plate of the Indonesian archipelago. Landward of the trench, the outer wedge of the slope break is ~50 km uniformly wide with uniform bathymetric gradients. The slope of the outer wedge is locally cut by one/two steeper ridges of ~5 km extent. The sharp slope break corresponds to the updip limit of the SZ, which is also associated with the seawardmost part of the outer arc high. Landward of the slope break we find narrow, uniform outer arc ridges. The landward termination of these ridges coincides with the downdip limit of the SZ. The intersection of the shallow upper plate mantle with the subduction thrust fault marks the downdip limit of the SZ beneath the forearc. Off Sumatra the Indo-Australian plate subducts obliquely underneath the continental part of the Indonesian Sunda margin. Landward of the trench, the outer wedge varies, being mostly ~70 km wide, in some areas narrowing to 50 km width. The lower slope bathymetric gradients are steep. The outer wedge slope is made up of several steeper ridges of ~5 km extent. The slope break is only locally sharp, and corresponds to the updip limit of the SZ. The outer arc ridges off Sumatra are, in comparison with the forearc structures off Java and the Lesser Sunda islands, wider and partly elevated above sea level forming the Mentawai forearc islands. The downdip limit of the SZ coincides with the intersection of a deeper upper plate mantle with the subduction thrust fault beneath the forearc. Sunda Strait marks a transition zone between the Sumatra and Java margins. Seafloor morphology enables the identification of the seismogenic zone (SZ) across the entire Sunda margin. The SZ is uniformly wide for the Sumatra margin and narrows off Sunda Strait. Sunda Strait is the transition between the Sumatra margin and the uniformly narrow extent of the SZ of the Java/Lesser Sunda margin. Comparing the Java and Lesser Sunda islands with the Sumatra margin we find the differences along the Sunda margin, especially the wider extent of the SZ off Sumatra, producing larger earthquakes, to result from the combination of various causes: The sediment income on the oceanic incoming plate and the subduction direction; we attribute a major role to the continental/oceanic upper plate nature of Sumatra/Java influencing the composition and deformation style along the forearc and subduction fault. Off Sumatra the SZ is up to more than twice as wide as off Java/Lesser Sunda islands, enlarging the unstable regime off Sumatra and thus the risk of sudden stress release in a great earthquake.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-10518 Seafloor compliance is the transfer function between pressure and vertical displacement at the seafloor Infragravity waves in the oceanic layer have long periods in the range of 30 – 500 s and obey a simple frequencywavenumber relation. Seafloor compliance from infragravity waves can be analyzed with single station recordings to determinate sub-seafloor shear wave velocities. Previous studies in the Pacific Ocean have demonstrated that reliable near-surface shear wave profiles can be derived from infragravity wave compliance. However, these studies indicate that, beside the water depth the compliance measurements are limited by instrument sensitivity, calibration uncertainties and possibly other effects. In this work seafloor compliance and infragravity waves are observed at two different locations in the Atlantic Ocean: the Logatchev hydrothermal field at the Mid Atlantic Ridge and the Azores (Sao Miguel Island). The data was acquired with the broadband ocean compliance station developed at the University of Hamburg as well as ocean station from the German instrument pool for amphibian seismology (DEPAS) equipped with broadband seismometers and pressure sensors. Vertical velocity and pressure data were used to calculate power spectral densities and normalized compliance along two profiles (one in each location). Power spectral densities show a dominant peak at low frequencies (0.01-0.035Hz) limited by the expected cut-off frequency, which is dependent on the water depth at each station. The peak has been interpreted as a strong infragravity wave with values between 10-14 and 10-11 (m/s2)2/Hz and 104 and 106 (Pa2)2/Hz for acceleration and pressure respectively. The results show compliance values between 10-10 and 10-8 1/Pa and its estimations take into account the coherence between seismic and pressure signals in order to confirm that the seismic signals in the infragravity waves are caused by pressure sources. Shear wave velocity models, with depth resolution from 200 to 2500 m for the deep water stations, were derived from compliance. Preliminary results indicate shear wave velocity increasing from 200 to 3500 m/s.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-9841 Active mud volcanoes, where changing salinities of pore fluids, large temperature gradients and occurrences of free gas are frequently observed, should potentially exhibit significant variability in their internal resistivity structure. This is due to the fact that the bulk resistivity is mainly determined by the porosity of sediments and the electrical resistivity of the pore filling contained therein. The resistivity variations may be derived from controlled source electromagnetic (CSEM) measurements. CSEM systems consist of an electric dipole transmitter producing a time varying source field and electric dipole receivers, which measure the earth´s response to this signal. For a RWE Dea funded investigation of fluid and gas leakages at the North Alex Mud Volcano (NAMV) - a comparatively small target with an area of about 1km2 - we have developed a new high resolution CSEM system. The system consists of several autonomous electric dipole receivers and a lightweight electric dipole transmitter, which can be mounted on a small remotely operated underwater vehicle (ROV). The use of a ROV allows for a precise placement of the transmitter, which is a necessary prerequisite for the investigation of such a small target. Furthermore, electromagnetic signals may be transmitted from different directions with respect to the stationary receivers, allowing for a 3D-style tomographic experiment. In this experiment, ten receivers were deployed over the surface of NAMV at a total of 16 receiver locations. During three successful dives with a Cherokee ROV (Ghent University, Belgium), the transmitter was deployed at a total of 80 locations. Here we present first quantitative results consisting of apparent resistivity estimations from the CSEM time domain data for each transmitter-receiver pair. The apparent resistivity map shows that the NAMV indeed has a heterogeneous resistivity structure with apparent resistivities varying by at least a factor of two: low apparent resistivities (~ 0.8Ωm) are found towards the center of the MV, whereas higher apparent resistivities (~ 1.6Ωm) prevail away from the center. In a second step, we interpret the time-domain data based on 1D inversions. Good data fits can be achieved by models containing 2-3 layers. Generally, the models indicate low resistivities at the surface, which can be associated with penetrating salt water and/or high temperatures. Toward greater depths, increasing resistivities presumably are due to a combination of compaction of sediments (i.e. reduced pore space), an increased presence of fresh water and possible occurrences of free gas. For some 1D models, the increase in resistivity exceeds a factor of 10 or more and layer interfaces are indicated down to depths of up to 70m. The derived resistivity variations observed at the NAMV will be interpreted in conjunction with temperature (Feseker, this session), fluid flow (Brückmann et al., this session) and seismic data (Bialas et al., this session) acquired. Temperature variations measured in the upper few meters are related to fluid flow, where high temperatures are indicative of upwelling fluids of low salinity and low temperature of either a downward flow of saline fluids or no flow activity. This type of surface measurement constitutes an integrative fluid flow gauge, which we can resolve vertically with our resistivity models. Seismic data yield a background structure to our resistivity model. New analysis of seismic data shows that seismic activity may also be linked to fluid flow activity, which we aim to match with resistivity variations and oscillations, which were observed in the electric and magnetic fields (Lefeldt et al., this session).
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts ; EGU2010-5184 .
    Publication Date: 2012-07-06
    Description: Recently Hathorne et al. (2009) documented large intratest trace element (TE) variations in planktonic foraminifera from a single sediment trap sample that could not be explained by variations in water column properties. The laser ablation ICP-MS depth profiles of trace elements through the test walls revealed strong positive correlations between Li, Mg, Mn and Ba resulting from the mixing of a lower TE outer calcite with a higher TE inner calcite. In contrast Sr/Ca ratios remained relatively constant throughout the test wall. These intratest TE variations likely result from biomineralization processes and therefore should be explained by any valid biomineralization model. However, changes in calcite precipitation rate, crystal structure, or the chemical composition of the internal calcification reservoir could not, by themselves, fully account for the pattern of cation intratest variability. Here I expand on this work and investigate if a model of coral biomineralization by Sinclair and Risk (2006) can be adapted to explain the pattern of intratest TE variability in foraminifera. It is clear that the low Mg calcite secreting foraminifera must reduce the Mg/Ca ratio of the calcifying solution by at least a factor of 10 (e.g. Hathorne et al., 2009) and it has been suggested this is achieved by active removal of Mg from the calcification reservoir, although the actual mechanisms remain debatable (e.g. Bentov and Erez, 2006). However, a recent study of the calcification of a low Mg calcite species in the laboratory found a large shortcoming in the amount of Ca potentially provided by seawater transported to the site of calcification in vacuoles compared to a conservative estimate of the amount required to form the new calcite wall (de Nooijer et al., 2009a). This suggests active Ca transport to the site of calcification is required to provide sufficient Ca. If Ca specific, this Ca addition would effectively dilute the TE content (including Mg) of the calcification reservoir to varying degrees and potentially cause the positive TE correlations seen across the test wall. Sinclair and Risk (2006) used this dilution model to successfully explain some TE correlations in coral skeletons. This model can be effectively adapted to foraminifera as it accounts for recent observations of foraminiferal calcification including the transport of seawater by liquid endocytosis to the calcification site and an elevated pH at the site of calcification (Bentov et al., 2009; de Nooijer et al., 2009a, 2009b). This model therefore provides a powerful tool with which to integrate constraints from experimental observation with those from micro-analytical measurements to improve the accuracy, precision and scale of the palaepalaeoceanographic application of foraminiferal geochemistry. Bentov and Erez (2006) Geochem. Geophys. Gepsyst. 7, Q01P08. Bentov et al. (2009) PNAS 106, 21500. de Nooijer et al. (2009a) Biogeosciences 6, 2669. de Nooijer et al. (2009b) PNAS 106, 15374. Hathorne et al. (2009) Paleoceanography 24, PA4204. Sinclair and Risk (2006) Geochim. Cosmochim. Acta 70, 3855.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts ; /EGU2010-12153 .
    Publication Date: 2012-07-06
    Description: We present Mg/Ca analyses performed via a Flow Through sequential dissolution device connected to an ICP-OES on the planktonic foraminifer Globorotalia inflata. The aim of the study is to explore the possibility to reconstruct the thermal gradient in the water column by separating non-crusted and crusted calcite phases in the tests of G. inflata using the difference between their Mg/Ca ratios as a measure of the thermal gradient. An important assumption is that the non-crusted part of the tests is calcified in shallow, warmer water than the crusted part. For analyses a range of different preparation steps were used to determine the ideal way of separating the phases. Foraminifer tests were (not) cleaned, (not) crushed, and (not) pulverized before online analysis with the FT device. To analyze samples with a FT device the foraminifer tests are placed on a filter with a mesh of 0.45 μm preventing clay minerals to wash through. A sequential dissolution protocol first rinses the samples with buffered Seralpur water before QD HNO3 is added in small steps to create a ramp of increasing acid strength. As acid is kept constant at each concentration for several minutes, dissolution of a specific calcite phase can take place. Initial results show that it is most effective to slightly crush the tests without applying standard cleaning procedures, but rather analyze them without cleaning. Samples were selected from the South Atlantic (core tops and specific downcore samples) and the Mediteterranean (plankton tows). All samples were chosen based on previous work on them to provide comparison with routinely analysed Mg/Ca ratios. The South Atlantic samples have been analyzed extensively as bulk samples separated in difference size fractions and crusted vs. non-crusted (Groeneveld and Chiessi). The Mediterranean samples were not only analyzed as bulk samples but also by Laser Ablation ICP-MS (von Raden et al.). Results show that bulk analyses are reliably reproduced by the FT method, especially for samples which are dominated by crusted calcite. Samples which were uncrusted often gave much higher Mg/Ca ratios than the bulk analyses. These higher Mg/Ca ratios mainly occur in the plankton tow samples and were also identified with Laser Ablation ICP-MS. A possible reason for this could be the presence of a high Mg amorphous calcite layer on the outside of foraminifer tests which have not completed their calcification yet as was recently also pointed out in several other studies. Identification of the crusted and uncrusted phases, and therewith a thermal gradient, seems to give the expected differences but a more rigorous statistical treatment is needed to pinpoint singular dissolution phases.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2012-07-06
    Description: EGU2010-2934 The exploration of the arctic seas require an integrated approach applying different infrastructures. In Fall 2009 German and Russian scientists performed a geo marine cruise off Kamchatka and in the western Bering Sea within the frame of the KALMAR-Project. Two main research subjects formed the scientific backbone of the cruise: The first objective focuses on the geodynamic and volcanological magmatic development of the Kuril-Kamchatka island arc system and the Kamchatka Aleutean Islands Triple-Junction. Very little is known about the composition of the mantle and the oceanic crust as well as of the seamounts including their ages. The best studied site is the Volcanologist’s Massif located between the Bering- and the Alpha Fracture Zone (Tsvetkov 1990, Volynets et al. 1992, Yogodzinsky et al. 1994), which structurally belongs to the Komandorsky Basin. The oldest rocks of the Volcanologist´s Massif show very similar trace element and isotope signatures like those rocks cropping out in the volcanoes on Kamchatka in the prolongation of the Alpha Fracture Zone (Portnyagin et al. 2005a), indicating similar conditions of magma formation. The top of the Volcanologist´s Massif is characterized by the young (〈 0.5 Ma) and hydrothermally active Piip volcano, which consists of special magnesium rich andesites ("Piip type"). Another hot site was the Meiji-Seamount which is the northernmost Seamount of the hotspot spur of the Hawaii-Emperor-Seamount chain, having an age of probably 〉 85 Ma. The only existing basement rocks from this seamount were gained during DSDP Leg 19. These are basalts with MORB like trace element and isotope signatures (Keller et al. 2000, Regelous et al. 2003). These data indicate that the Hawaii-Hotspot was at a MOR in Cretaceous time and that large volumes of depleted mantle material played a´role during the magma formation. The second objective focuses on paleo-oceanographic investigations concentrating on the sediments along the eastern continental slope of Kamchatka, in the Komandorsky Basin, and on the Shirshov Ridge in order to explore paleoclimate archives to better understand the subpolar water mass transfer and the oceanographic and climatic development in the subarctic NW-Pacific. Comparisons of Late Pleistocene and Holocene temperature changes within the near surface water masses between the NW-Pacific and the N-Atlantic resulted in a new hypothesis, the "Atlantic-Pacific seesaw" (Kiefer et al. 2001, Kim et al. 2004, Kiefer and Kienast, 2005). This Atlantic-Pacific pattern of opposite temperature variations dominates the last 60ka on millennial timescales. Modelling results of Saenko et al. (2004) support the hypothesis of the "Atlantic-Pacific seesaw" and they postulate a mechanistic connection between the two regions driven by salinity variations, which couples both regions through the thermohaline circulation. A different model relates the Holocene Atlantic-Pacific dipole to the atmospheric tele-connection between the Arctic Oscillation/N-Atlantic Oscillation and the Pacific N-American Oscillation (Kim et al. 2004). http://kalmar.ifm-geomar.de
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria .
    Publication Date: 2012-07-06
    Description: EGU2011-13199 Images of crustal construction provide a key to understand the interplay of magmatism and tectonism while oceanic crust is build up. Bathymetric data show that the crustal construction is highly variable. Areas that are dominated by magmatic processes are adjacent to areas that are highly tectonised and where mantle rocks were found. The Mid-Atlantic Ridge at 22°N shows this high variability along the ridge axis, within the TAMMAR segment, and from segment to segment. However, this strong variability occurs also off-axis, spreading parallel, representing different times in the same area of the ridge. A fracture zone, with limited magma supply, has been replaced by a segment centre with a high magmatic budget. Roughly 4.5 million years ago, the growing magmatic active TAMMAR segment, propagated into the fracture zone, started the migration of the ridge offset to the south, and stopped the formation of core complexes. We present data from seismic refraction and wide-angle reflection profiles that surveyed the crustal structure across the ridge crest of the TAMMAR segment. These yield the crustal structure at the segment centre as a function of melt supply. The results suggest that crust is ~8 km thick near the ridge and decreases in thickness with offset to the ridge axis. Seismic layer 3 shows profound changes in thickness and becomes rapidly one kilometre thicker approx. 5 million years ago. This correlates with gravimetric data and the observed “Bull’s eye” anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation to thin lithosphere with focussed mantle upwelling and segment growing. The formation of ‘thick-crust’ volcanic centre seems to have coincided with the onset of propagation 4.5 million years ago.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-02-28
    Description: EGU2011-12780 A temporary passive seismic network of 31 broad-band stations was deployed in the region around Talca and Constitución between 35°S to 36°S latitude and 71°W to 72.5°W longitude. The network was operated between March and October 2008. Thus, we recorded data prior the magnitude Mw=8.8 earthquake of 27 February 2010 at a latitude of the major slip and surface uplift. The experiment was conducted to address fundamental questions on deformation processes, crustal and mantle structures, and fluid flow. We present results of a teleseismic P receiver function study that covers the coastal region and reaches to the Andes. The aim is to determine the structure and thickness of the continental crust and constrain the state of hydration of the mantle wedge. The P-wave receiver function technique requires large teleseismic earthquakes from different distances and backazimuths. A few percent of the incident P-wave energy from a teleseismic event will be converted into S-wave (Ps) at significant and relatively sharp discontinuities beneath the station. A small converted S phase is produced that arrives at the station within the P wave coda directly after the direct P-wave. The converted Ps phase and their crustal multiples contain information about crustal properties, such as Moho depth and the crustal vp/vs ratio. We use teleseismic events with magnitudes mb 〉 5.5 at epicentral distances between 30° and 95° to examine P-to-S converted seismic phases. Our preliminary results provide new information about the thickness of the continental crust beneath the coastal region in Central Chile. At most of the stations we observed significant energy from P to S converted waves between 4 and 5 s after the direct P-wave within a positive phase interpreted as the Moho, occurring at 35 to 40 km. The great Maule earthquake of 27 February 2010 nucleated up-dip of the continental Moho. The rupture of this earthquake seems to have propagated down-dip of the Moho. The Moho reflection show a positive polarity, indicating that the mantle is either dry or only moderately hydrated. We observed converted energy from an intracrustal boundary at around 2 s that disappears near the coast. Further, positive polarity peaks occur that are possibly caused by the down going plate.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria .
    Publication Date: 2012-07-06
    Description: EGU2011-1847-3 Lake Van is a lake by volume of 607 km3 and a maximum depth of 450 meters in a tectonically active zone in eastern Anatolia, Turkey. In summer 2010, Lake Van was the target of a deep drilling campaign (PaleoVan) in the frame of ICDP (International Continental Scientific Drilling Program). Two sites were drilled based on reflection seismic data collected during a seismic campaign in 2004. Here we present a first joint interpretation of the seismic and drilling data. Interpretation of seismic reflection data from lake reveals three physiographic provinces: a lacustrine shelf, a lacustrine slope, and a deep, relatively flat lake basin. The most prominent features of the lacustrine shelf and slope are prograding deltaic sequences, numerous unconformities, submerged channels, as well as closely spaced U- and/or V-shaped depressions, reflecting the variable lake level history of Lake Van. The seismic units of the shelf are dominantly composed of low-to-good continuity, variable amplitude reflections interpreted as fluvial deposits. The lake consists of three prominent basins (Tatvan, Deveboynu, and Northern Basins), separated by basement highs or ridges (Ahlat Ridge). The seismic units corresponding to these basins mainly consist of low to very high amplitude, well-stratified reflection patterns. Chaotic reflections are seen in parts of these basins. The Deveboynu Basin consists mainly of chaotic reflections. The Tatvan and Northern Basins are characterized by an alternating succession of well-stratified and chaotic reflecting layers. The chaotic seismic facies are interpreted as slump and slide deposits, which are probably the result of quick lake level fluctuations and/or earthquakes. The moderateto high amplitude, well-stratified facies seen in the deep parts of the basins away from the terrigenous sediment sources are interpreted as lacustrine deposits and tephra layers. The total sediment thickness in the deep parts of the lake is over 400 m. Prominent clinoforms indicate the initial flooding of Lake Van about 500 ka ago. The acoustic basement and the sediments lying on top of the basement in the southern part of the lake are disrupted by various intrusions and extrusions suggesting active volcanism. Synthetic seismograms calculated based on core logging, wire-line logging and check shot data will allow the correlation between seismic and drill data. This approach will allow extrapolating the stratigraphy from the wells to 3D-space by using the seismic data.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 6081 .
    Publication Date: 2012-07-06
    Description: EGU2011-6081 Natural stable isotopes are a powerful tool in marine sciences to investigate biological processes, such as present and past nutrient utilization. In this study we present the first dissolved silicon isotope data in the upwelling area off Peru, where one of the world’s largest Oxygen Minimum Zones (OMZ) is located. Silicon is the most important component required for phytoplankton (diatom) growth, which dominates primary productivity in this region. Stable Si isotopes are fractionated during diatom growth in that the lighter Si isotopes are preferentially incorporated into diatoms with a fractionation factor of -1.1 promille. The Si isotope composition of dissolved silicic acid of the corresponding surface waters is therefore left isotopically heavier. The Si isotope composition, 30Si/28Si, is expressed as δ30Si values, which stand forh deviations from a given standard (NBS28). Investigation of the dissolved seawater Si isotope composition thus provides a measure for the utilization and, combined with information on the Si isotope composition of the water masses upwelling off Peru, it is a measure for the supply pathways of Si to the coastal upwelling centres. Surface waters on the shelf off Peru are mainly fed by the Equatorial Undercurrent, which mainly consists of waters originating from the western and Central Pacific and which has a characteristic δ30Si of +1.5 promille. In areas and during phases of intense upwelling the fractionation of Si isotopes was observed to be weaker due to upwelling-driven supply of less fractionated Si (δ30Si = 1.7 promille, from water depths of around 100-150 m, whereas under weak upwelling conditions fractionation is higher (δ30Si ~3 promille due to a more complete utilization of the available dissolved silicate. The distribution of dissolved δ30Si correlates strongly with particulate biogenic silicate (opal) concentrations in that highest opal concentrations in the surface waters show the lowest δ30Si values thus strongest upwelling intensity. The most extreme δ30Si values in surface waters (δ30Si = 4.5 promille are observed offshore where silicic acid concentrations are nearly zero. Furthermore we compare the δ30Si data with the dissolved nitrogen isotope distribution, which in addition to nitrate utilization is mainly influenced by denitrification and annamox processes in the OMZ. Combined silicon and nitrogen isotope compositions can thus help to disentangle different fractionation processes within the nitrogen cycle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-23
    Description: EGU2011-4235 The Arctic is undergoing rapid environmental and economic transformations. Recent climate warming, which is simplifying access to oil and gas resources, enabling trans Arctic shipping, and shifting the distribution of harvestable resources, has brought the Arctic Ocean to the top of national and international political agendas. Scientific knowledge of the present status of the Arctic Ocean and the process-based understanding of the mechanics of change are urgently needed to make useful predictions of future conditions throughout the Arctic region. These are required to plan for the consequences of climate change. A step towards improving our capacity to predict future Arctic change was undertaken with the Second International Conference on Arctic Research Planning (ICARP II) meetings in 2005 and 2006, which brought together scientists, policymakers, research managers, Arctic residents, and other stakeholders interested in the future of the Arctic region. The Arctic in Rapid Transition (ART) Initiative developed out of the synthesis of the several resulting ICARP II science plans specific to the marine environment. This process started in October 2008 and has been driven by early career scientists. The ART Initiative is an integrative, international, multi-disciplinary, long-term pan-Arctic network to study changes and feedbacks with respect to physical characteristics and biogeochemical cycles in the Arctic Ocean in a state of rapid transition and its impact on the biological production. The first ART workshop was held in Fairbanks, Alaska, in November 2009 with 58 participants from 9 countries. Workshop discussions and reports were used to develop a science plan that integrates, updates, and develops priorities for Arctic Marine Science over the next decade. The science plan was accepted and approved by the International Arctic Science Committee (IASC) Marine Group, the former Arctic Ocean Science Board. The second ART workshop was held in Winnipeg, Canada, in October 2010 with 20 participants from 7 countries to develop the implementation plan. Our focus within the ART Initiative will be to bridge gaps in knowledge not only across disciplinary boundaries (e.g., biology, geochemistry, geology, meteorology, physical oceanography), but also across geographic (e.g., international boundaries, shelves, margins, and the central Arctic Ocean) and temporal boundaries (e.g., alaeo/geologic records, current process observations, and future modeling studies). This approach of the ART Initiative will provide a means to better understand and predict change, particularly the consequences for biological productivity, and ultimate responses in the Arctic Ocean system. More information about the ART Initiative can be found at http://aosb.arcticportal.org/art.html.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 2455 .
    Publication Date: 2012-07-06
    Description: EGU2011-2455 The current interglacial has gone through a variety of warmer and colder periods. Consistent with the decreasing solar insolation during the Holocene, warmest conditions have occurred particularly within its earliest phase. We studied high-resolution sediment sequences from the Western Svalbard margin covering the last ca 10,000 years in order to reconstruct the variations of Atlantic Water advection to the Arctic, the sea ice extent, and the structure of the water column on the Westspitsbergen continental margin. The Fram Strait, often referred to as the Arctic Gateway, is the only deep-water passage for Atlantic-derived water masses to enter the Arctic Ocean. Northward advection of relatively warm and saline Atlantic Water masses keeps the eastern part of the Fram Strait ice-free all year. It therefore plays a crucial role for the heat budget of the Arctic. A multiproxy data set including geochemical, micropaleontological, and sedimentological parameters was established with centennial to multidecadal time resolution. Records of foraminiferal oxygen and carbon isotopes, planktic foraminifer assemblages, and the amount of ice rafted debris clearly reveal distinct variations between climatically warmer and colder intervals throughout this period. Planktic foraminifer assemblages reveal warmest conditions for the early Holocene period (ca 10-8 ka). A second warming pulse is detected between 5 and 6 ka. In the second half of the Holocene, increased IRD contents are indicative of a significant cooling trend. Despite of the decreasing solar insolation planktic foraminiferal assemblages suggest a return of slightly strengthened Atlantic Water advection around 3 to 2 ka and a strong warming event in the present, anthropogenically influenced period.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 407 .
    Publication Date: 2012-07-06
    Description: EGU2011-407 The spatial and temporal distribution of sea ice in the subpolar North Atlantic is mainly controlled by the advection of warm Atlantic Water via the Norwegian and West Spitsbergen Current in eastern Fram Strait. Simultaneously, polar water and sea ice from the Arctic Ocean is transported southward by the East Greenland Current. Hence, variations in the strength of this oceanic circulation regime may either stimulate or reduce the sea ice extent. Based on organic geochemical studies of a high-resolution sediment core from eastern Fram Strait we provide new evidence for the highly variable character of the sea ice conditions in this area. The combination of the sea ice proxy IP25 (Belt et al., 2007) with phytoplankton derived biomarkers (e.g. brassicasterol, dinosterol; Volkman 2006) enables a reliable reconstruction of sea surface and sea ice conditions, respectively (Müller et al., 2009; 2010). By means of these biomarkers, we trace gradually increasing sea ice occurrences from the Mid to the Late Holocene – consistent with the neoglacial cooling trend. Throughout the past ca. 3,000 years (BP) we observe a significant short-term variability in the biomarker records, which points to rapid advances and retreats of the sea ice cover at the continental margin of West Spitsbergen. The co-occurrence of IP25 and phytoplankton markers, however, suggests that the primary productivity benefits from these sea ice surges. As such, higher amounts of open-water phytoplankton biomarkers together with peak abundances of IP25 indicate recurring periods of enhanced ice-edge phytoplankton blooms at the core site. To what extent a seesawing of temperate Atlantic Water may account for these sea ice fluctuations requires further investigation. Concurrent variations in Siberian river discharge (Stein et al., 2004) or Norwegian glacier extents (Nesje et al., 2001), however, strengthen that these fluctuations may be assigned to variations in the North Atlantic/Arctic Oscillation (NAO/AO) and (hence) a weakened/accelerated Atlantic Water input and Arctic sea ice export.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-07-06
    Description: The upwelling area in the eastern equatorial Pacific off Peru is one of the most pronounced oxygen minimum zones (OMZs) of the modern ocean. Modeling scenarios predict an expansion of the OMZs in the course of global change in the coming decades. As a consequence, the Peruvian continental margin represents a key locality for studies on biogeochemical dynamics in the future ocean. We present pore water and sediment data for redox-sensitive metals (Fe, Mn, V, Mo, and U) that have been collected along a transect across the Peruvian margin at 11°S. The results are used to evaluate the behavior of trace metals in a wide range of biogeochemical and hydrodynamic settings. In the core of the OMZ, where permanently anoxic conditions prevail, redox sensitive metals exhibit diagenetic behaviors largely consistent with previous studies. Vanadium and Mo are released from Fe oxihydroxides and subsequently recycled through diffusion across the benthic boundary or trapped through formation of authigenic V phases and sequestration of Mo by authigenic pyrite. Some U is delivered through diffusion across the benthic boundary, reduction and precipitation of UO2 and incorporation into phosphorites. The utmost part of the buried U, however, is delivered in particulate form, most likely as bioauthigenic U which cannot be recycled in the suboxic waters overlying the anoxic sediments. In contrast to sediments in the core of the OMZ, sediments on the shelf experience frequent oxygenation episodes related to the passage of internal waves and the regular recurrence of El Niño events. These oxygenation episodes lead to the re-oxidation and remobilization of authigenic U and V. In contrast to that, the authigenic accumulation of Mo is favored by the occasional occurrence of slightly oxidizing conditions. This is most likely due to enhanced formation of sulfur intermediates necessary for pyrite formation and the increased stability of pyrite, the major Mo sink, under oxidizing conditions, compared to authigenic V and U phases. Redox oscillations in the Peruvian OMZ thus lead to a discrimination of U against Mo, a mechanism that should be considered in the interpretation of U/Mo systematics in paleo redox studies. Overall our results provide valuable constraints on how trace metal inventories of marginal sediments may respond to expanding shelf anoxia and to short term perturbations of sediment redox conditions.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 3514 .
    Publication Date: 2012-07-06
    Description: We determined the isotopic composition of neodymium (Nd) and lead (Pb) of past seawater to reconstruct water mass exchange and erosional input between the Arctic Ocean and the Norwegian-Greenland Seas over the past 5 Ma. For this purpose, sediments of ODP site 911 (leg 151) located at 900 m water depth on the Yermak Plateau in the Fram Strait were used. The paleo-seawater variability of Nd and Pb isotopes was extracted from the sea water-derived metal oxide coatings on the sediment particles following the leaching method of Gutjahr et al. (2007). All radiogenic isotope data were acquired by Multi-Collector (MC) ICP-MS. The site 911 stratigraphy of Knies et al. (2009) was applied. Surface sediment Sr and Nd isotope data, as well as downcore Sr isotope data obtained on the same leaches are close to seawater and confirm the seawater origin of the Nd and Pb isotope signatures. The deep water Nd isotope time series extracted from site 911 was in general more radiogenic ("Nd = -7.5 to -10) than present day deep water ("Nd = -9.8 to -11.8) in the area of the Fram Strait (Andersson et al., 2008) and does not show a systematic trend with time. In contrast, the radiogenic isotope composition of Pb evolved from 206Pb/204Pb ratios around 18.7 to more radiogenic values around 19.2 between 2 Ma and today. The data indicate that mixing of water masses from the Arctic Ocean and the Norwegian-Greenland Seas has controlled the Nd isotope signatures of deep waters on the Yermak Plateau over the past 5 Ma. Prior to 1.7 Ma the Nd isotope signatures on the Yermak Plateau were less radiogenic than waters from the same depth in the central Arctic Ocean (Haley et al., 2008) pointing to a greater influence from the Norwegian-Greenland Seas. After 1.7 Ma the central Arctic and Yermak Plateau data have varied around similar values indicating water mass mixing overall similar to today. In contrast, the Pb isotope composition of deep waters in the Fram Strait appears to have been dominated by weathering inputs from glacially weathering old continental landmasses, such as Greenland or parts of Svalbard since 2 Ma. A similar control over the Pb isotope evolution of seawater since the onset of Northern Hemisphere Glaciation was recorded by ferromanganese crusts that grew from North Atlantic DeepWater in the western North Atlantic. References: Gutjahr, M., Frank, M., Stirling, C.H., Klemm, V., van de Flierdt, T. and Halliday, A.N. (2007): Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments.- Chemical Geology 242, 351-370 Haley B. A., M. Frank, R.F. Spielhagen and A. Eisenhauer (2008): Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geoscience 1, 68–72 Andersson, P.S., Porcelli, D., Frank, M., Björk, G., Dahlqvist, R. and Gustafsson, Ö. (2008): Neodymium isotopes in seawater from the Barents Sea and Fram Strait Arctic- Atlantic gateways.- Geochim. Cosmochim. Acta 72, 2854-2867 Knies, J., J. Matthiessen, C. Vogt, J.S. Laberg, B.O. Hjelstuen, M.Smelror, E. Larsen, K. Andreassen, T. Eidvin and T.O. Vorren (2009): The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy - Quaternary Science Reviews 28, 9-10, 812-829
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-10-14
    Description: The composition and abundance of algal pigments provide information on characteristics of a phytoplankton community in respect to its photoacclimation, overall biomass, and taxonomic composition. Particularly, these pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by High Performance Liquid Chromatography (HPLC) techniques to filtered water samples. This method, like others when water samples have to be analysed in the laboratory, is time consuming and therefore only a limited number of data points can be obtained. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an Empirical Orthogonal Function (EOF) analysis to remote sensing reflectance data derived from ship-based hyper-spectral underwater radiometric and from multispectral satellite data (using the MERIS Polymer product developed by Steinmetz et al., 2011) measured in the Eastern Tropical Atlantic. Subsequently we developed statistically linear models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results, show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multi-spectral resolution is chosen (i.e. eight bands similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. The fitted statistical model constructed on the satellite reflectance data as input was applied to one month of MERIS Polymer data to predict the concentration of those pigment groups for the whole Eastern Tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., 〈 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photo-physiology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-07-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-07-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-12-09
    Description: We present first results from a coupled model setup, consisting of the state-of-the-art ice sheet model RIMBAY (Revised Ice Model Based on frAnk pattYn), and the community earth system model COSMOS. We show that special care has to be provided in order to ensure physical distributions of the forcings as well as numeric stability of the involved models. We demonstrate that a suitable statistical downscaling is crucial for ice sheet stability, especially for southern Greenland where surface temperatures are close to the melting point. The downscaling of net snow accumulation is based on an empirical relationship between surface slope and rainfall. The simulated ice sheet does not show dramatic loss of ice volume for pre-industrial conditions and is comparable with present-day ice orography. A sensitivity study with high CO2 level is used to demonstrate the effects of dynamic ice sheets onto climate compared to the standard setup with prescribed ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-17
    Description: In this study temporal variations of coccolithophore blooms are investigated using satellite data. Eight years, from 2003 to 2010, of data of SCIAMACHY, a hyper-spectral satellite sensor on-board ENVISAT, were processed by the PhytoDOAS method to 5 monitor the biomass of coccolithophores in three selected regions. These regions are characterized by frequent occurrence of large coccolithophore blooms. The retrieval results, shown as monthly mean time-series, were compared to related satellite products, including the total surface phytoplankton, i.e., total chlorophyll-a (from GlobColour merged data) and the particulate inorganic carbon (from MODIS-Aqua). The 10 inter-annual variations of the phytoplankton bloom cycles and their maximum monthly mean values have been compared in the three selected regions to the variations of the geophysical parameters: sea-surface temperature (SST), mixed-layer depth (MLD) and surface wind speed, which are known to affect phytoplankton dynamics. For each region the anomalies and linear trends of the monitored parameters over the period of this 15 study have been computed. The patterns of total phytoplankton biomass and specific dynamics of coccolithophores chlorophyll-a in the selected regions are discussed in relation to other studies. The PhytoDOAS results are consistent with the two other ocean color products and support the reported dependencies of coccolithophore biomass’ dynamics to the compared geophysical variables. This suggests, that PhytoDOAS 20 is a valid method for retrieving coccolithophore biomass and for monitoring its bloom developments in the global oceans. Future applications of time-series studies using the PhytoDOAS data set are proposed, also using the new upcoming generations of hyper-spectral satellite sensors with improved spatial resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-17
    Description: In a feasibility study, the potential of proxy data for the temperature and salinity during the Last Glacial Maximum (LGM, about 19 000 to 23 000 years before present) in constraining the strength of the Atlantic meridional overturning circulation (AMOC) with a general ocean circulation model was explored. The proxy data were simulated by drawing data from four different model simulations at the ocean sediment core locations of the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO) project, and perturbing these data with realistic noise estimates. The results suggest that our method has the potential to provide estimates of the past strength of the AMOC even from sparse data, but in general, paleo-sea-surface temperature data without additional prior knowledge about the ocean state during the LGM is not adequate to constrain the model. On the one hand, additional data in the deep-ocean and salinity data are shown to be highly important in estimating the LGM circulation. On the other hand, increasing the amount of surface data alone does not appear to be enough for better estimates. Finally, better initial guesses to start the state estimation procedure would greatly improve the performance of the method. Indeed, with a sufficiently good first guess, just the sea-surface temperature data from the MARGO project promise to be sufficient for reliable estimates of the strength of the AMOC.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-17
    Description: The gradual cooling of the climate during the Cenozoic has generally been attributed to a decrease in CO2 concentration in the atmosphere. The lack of transient climate models and in particular the lack of high-resolution proxy records of CO2, beyond the ice-core record prohibit however a full understanding of for example the inception of the Northern Hemisphere glaciation and mid-Pleistocene transition. Here we elaborate on an inverse modelling technique to reconstruct a continuous CO2 series over the past 20 million year (Myr), by decomposing the global deep-sea benthic d18O record into a mutually consistent temperature and sea level record, using a set of 1-D models of the major Northern and Southern Hemisphere ice sheets. We subsequently compared the modelled temperature record with ice core and proxy-derived CO2 data to create a continuous CO2 reconstruction over the past 20 Myr. Results show a gradual decline from 450 ppmv around 15 Myr ago to 225 ppmv for mean conditions of the glacial-interglacial cycles of the last 1 Myr, coinciding with a gradual cooling of the global surface temperature of 10 K. Between 13 to 3 Myr ago there is no long-term sea level variation caused by ice-volume changes. We find no evidence for a change in the long-term relation between temperature change and CO2, other than the effect following from the saturation of the absorption bands for CO2. The reconstructed CO2 record shows that the Northern Hemisphere glaciation starts once the long-term average CO2 concentration drops below 265 ppmv after a period of strong decrease in CO2. Finally, only a small long-term decline of 23 ppmv is found during the mid-Pleistocene transition, constraining theories on this major transition in the climate system. The approach is not accurate enough to revise current ideas about climate sensitivity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-16
    Description: Permafrost is one of the essential climate variables addressed by the Global Terrestrial Observing System (GCOS). Remote sensing data provide area-wide monitoring of e.g. surface temperatures or soil surface status (frozen or thawed state) in the Arctic and Subarctic, where ground data collection is difficult and restricted to local measurements at few monitoring sites. The task of the ESA Data User Element (DUE) Permafrost project is to build-up an Earth observation service for northern high-latitudinal permafrost applications with extensive involvement of the international permafrost research community (www.ipf.tuwien.ac.at/permafrost). The satellite-derived DUE Permafrost products are Land Surface Temperature, Surface Soil Moisture, Surface Frozen and Thawed State, Digital Elevation Model (locally as remote sensing product and circumpolar as non-remote sensing product) and Subsidence, and Land Cover. Land Surface Temperature, Surface Soil Moisture, and Surface Frozen and Thawed State will be provided for the circumpolar permafrost area north of 55° N with 25 km spatial resolution. In addition, regional products with higher spatial resolution were developed for five case study regions in different permafrost zones of the tundra and taiga (Laptev Sea [RU], Central Yakutia [RU], Western Siberia [RU], Alaska N-S transect, [US] Mackenzie River and Valley [CA]). This study shows the evaluation of two DUE Permafrost regional products, Land Surface Temperature and Surface Frozen and Thawed State, using freely available ground truth data from the Global Terrestrial Network of Permafrost (GTN-P) and monitoring data from the Russian-German Samoylov research station in the Lena River Delta (Central Siberia, RU). The GTN-P permafrost monitoring sites with their position in different permafrost zones are highly qualified for the validation of DUE Permafrost remote sensing products. Air and surface temperatures with high-temporal resolution from eleven GTN-P sites in Alaska and four sites in Siberia were used to match up LST products. Daily average GTN-P borehole- and air temperature data for three Alaskan and six Western Siberian sites were used to evaluate surface frozen and thawed. First results are promising and demonstrate the great benefit of freely available ground truth databases for remote sensing products.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-16
    Description: Dynamical processes during the formation phase of the Arctic stratospheric vortex in autumn (from September to December) can introduce considerable interannual variability in the amount of ozone that is incorporated into the vortex. Chemistry in autumn tends to remove part of this variability because ozone relaxes towards equilibrium. As a quantitative measure of how important dynamical variability during vortex formation is for the winter ozone abundances above the Arctic we analyze which fraction of an ozone anomaly induced during vortex formation persists until early winter (3 January). The work is based on the Lagrangian Chemistry Transport Model ATLAS. In a case study, model runs for the winter 1999–2000 are used to assess the fate of an ozone anomaly artificially introduced during the vortex formation phase on 16 September. The runs provide information about the persistence of the induced ozone anomaly as a function of time, potential temperature and latitude. The induced ozone anomaly survives longer inside the polar vortex compared to outside the vortex. Half of the initial perturbation survives until 3 January at 540 K inside the polar vortex, with a rapid fall off towards higher levels, mainly due to NOx induced chemistry. Above 750 K the signal falls to values below 0.5%. Hence, dynamically induced ozone variability from the early vortex formation phase cannot significantly contribute to early winter variability above 750 K. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90% at 450 K. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in early winter.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-16
    Description: The ice shelf caverns around Antarctica are sources of cold and fresh water which contributes to the formation of Antarctic bottom water and thus to the ventilation of the deep basins of the World Ocean. While a realistic simulation of the cavern circulation requires high resolution, because of the complicated bottom topography and ice shelf morphology, the physics of melting and freezing at the ice shelf base is relatively simple. We have developed an analytically solvable box model of the cavern thermohaline state, using the formulation of melting and freezing as in Olbers and Hellmer (2010). There is high resolution along the cavern's path of the overturning circulation whereas the cross-path resolution is fairly coarse. The circulation in the cavern is prescribed and used as a tuning parameter to constrain the solution by attempting to match observed ranges for outflow temperature and salinity at the ice shelf front as well as of the mean basal melt rate. The method, tested for six Antarctic ice shelves, can be used for a quick estimate of melt/freeze rates and the overturning rate in particular caverns, given the temperature and salinity of the inflow and the above mentioned constrains for outflow and melting. In turn, the model can also be used for testing the compatibility of remotely sensed basal mass loss with observed cavern inflow characteristics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-17
    Description: Here we present results of the first comprehensive study of sulphur compounds and methane in the oligotrophic tropical West Pacific Ocean. The concentrations of dimethylsuphide (DMS), dimethylsulphoniopropionate (DMSP), dimethylsulphoxide (DMSO), and methane (CH4), as well as various phytoplankton marker pigments in the surface ocean were measured along a north-south transit from Japan to Australia in October 2009. DMS (0.9 nmol l−1), dissolved DMSP (DMSPd, 1.6 nmol l−1) and particulate DMSP (DMSPp, 2 nmol l−1) concentrations were generally low, while dissolved DMSO (DMSOd, 4.4 nmol l−1) and particulate DMSO (DMSOp, 11.5 nmol l−1) concentrations were comparably enhanced. Positive correlations were found between DMSO and DMSP as well as DMSP and DMSO with chlorophyll a, which suggests a similar source for both compounds. Similar phytoplankton groups were identified as being important for the DMSO and DMSP pool, thus, the same algae taxa might produce both DMSP and DMSO. In contrast, phytoplankton seemed to play only a minor role for the DMS distribution in the western Pacific Ocean. The observed DMSPp : DMSOp ratios were very low and seem to be characteristic of oligotrophic tropical waters representing the extreme endpoint of the global DMSPp : DMSOp ratio vs. SST relationship. It is most likely that nutrient limitation and oxidative stress in the tropical West Pacific Ocean triggered enhanced DMSO production leading to an accumulation of DMSO in the sea surface. Positive correlations between DMSPd and CH4, as well as between DMSO (particulate and total) and CH4, were found along the transit. We conclude that both DMSP and DMSO serve as substrates for methanogenic bacteria in the western Pacific Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-17
    Description: The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-17
    Description: The ongoing disintegration of large ice shelf parts in Antarctica raise the need for a better understanding of the physical processes that trigger critical crack growth in ice shelves. Finite elements in combination with configurational forces facilitate the analysis of single surface fractures in ice under various boundary conditions and material parameters. The principles of linear elastic fracture mechanics are applied to show the strong influence of different depth dependent functions for the density and the Young’s modulus on the stress intensity factor KI at the crack tip. Ice, for this purpose, is treated as an elastically compressible solid and the conse- quences of this choice in comparison to the predominant in- compressible approaches are discussed. The computed stress intensity factors KI for dry and water filled cracks are com- pared to critical values KIc from measurements that can be found in literature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-17
    Description: Sea urchins as broadcasting spawners, release their gametes into open water for fertilization, thus being particularly vulnerable to ocean acidification. In this study, we assessed the effects of different pH scenarios on fertilization success of Strongylocen- 5 trotus droebachiensis, collected at Spitsbergen, Arctic. We achieved acidification by bubbling CO2 into filtered seawater using partial pressures (pCO2) of 180, 380, 980, 1400 and 3000 μatm. Untreated filtered seawater was used as control. We recorded fertilization rates and diagnosed morphological aberrations after post-fertilization periods of 1 h and 3 h under different exposure conditions in experiments with and without 10 pre-incubation of the eggs prior to fertilization. In parallel, we conducted measurements of intracellular pH changes using BCECF/AM in unfertilized eggs exposed to a range of acidified seawater. We observed increasing rates of polyspermy in relation to higher seawater pCO2, which might be due to failures in the formation of the fertilization envelope. In addition, our experiments showed anomalies in fertilized eggs: incomplete 15 lifting-off of the fertilization envelope and blebs of the hyaline layer. Other drastic malformations consisted of constriction, extrusion, vacuolization or degeneration (observed as a gradient from the cortex to the central region of the cell) of the egg cytoplasm, and irregular cell divisions until 2- to 4-cell stages. The intracellular pH (pHi) decreased significantly from 1400 μatm on. All results indicate a decreasing fertilization success 20 at CO2 concentrations from 1400 μatm upwards. Exposure time to low pH might be a threatening factor for the cellular buffer capacity, viability, and development after fertilization.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-17
    Description: Stable carbon isotope analysis of methane (δ13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr) can severely interfere during the mass spectrometric measurement, leading to significant biases in δ13C of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in δ13C. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-17
    Description: There are a number of clear examples in the instrumental period where positive El Niño events were coincident with a severely weakened summer monsoon over India (ISM). ENSO's influence on the Indian Monsoon has therefore remained the centerpiece of various predictive schemes of ISM rainfall for over a century. The teleconnection between the monsoon and ENSO has undergone a protracted weakening since the late 1980's suggesting the strength of ENSO's influence on the monsoon may vary considerably on multidecadal timescales. The recent weakening has specifically prompted questions as to whether this shift represents a natural mode of climate variability or a fundamental change in ENSO and/or ISM dynamics due to anthropogenic warming. The brevity of empirical observations and large systematic errors in the representation of these two systems in state-of-the-art general circulation models hamper efforts to reliably assess the low frequency nature of this dynamical coupling under varying climate forcings. Here we place the 20th century ENSO-Monsoon relationship in a millennial context by assessing the phase angle between the two systems across the time spectrum using a continuous tree-ring ENSO reconstruction from North America and a speleothem oxygen isotope (δ18O) based reconstruction of the ISM. The results suggest that in the high-frequency domain (≤ 15 yr), El Niño (La Niña) events persistently lead to a weakened (strengthened) monsoon consistent with the observed relationship between the two systems during the instrumental period. However, in the low frequency domain (≥ 60 yr), periods of strong monsoon are, in general, coincident with periods of enhanced ENSO variance. This relationship is opposite to which would be predicted dynamically and leads us to conclude that ENSO is not pacing the prominent multidecadal variability that has characterized the ISM over the last millennium.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-17
    Description: Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anticorrelation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50° are found and used to develop an empirical retrieval algorithm sensitive to thin sea ice up to 50 cm thickness. The algorithm shows high correlation with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze-up period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2019-09-23
    Description: EGU2010-13373 The frequency of volcanic activity varies on a wide rangeof spatial and temporal scales, from 〈1 yr. periodicities in single volcanic systems to periodicities of 106 yrs. in global volcanism. The causes of these periodicities are poorly understood although the long-term global variations are likely linked to plate-tectonic processes. Here we present evidence for temporal changes in eruption frequencies at an intermediate time scale (104 yrs.) using the Pleistocene to recent records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite origin, along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive and the well-preserved tephra records from the ocean floor can be assumed to be representative of how eruption frequencies varied with time. Volcanic activity along the Pacific Ring of Fire evolved through alternating phases of high and low frequency; although there is modulation by local and regional geologic conditions, these variations have a statistically significant periodicity of 43 ka that overlaps with the temporal variation in the obliquity of the Earth’s rotation axis, an orbital parameter that also exerts a strong control on global climate changes. This may suggest that the frequency of volcanic activity is controlled by effects of global climate changes. However, the strongest physical effects of climate change occur at 100 ka periods which are not seen in the volcanic record. We therefore propose that the frequency of volcanic activity is directly influenced by minute changes in the tidal forces induced by the varying obliquity resulting in long-period gravitational disturbances acting on the upper mantle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 12864 .
    Publication Date: 2019-09-23
    Description: EGU2011-12864 The Woodlark Basin east of Papua New Guinea represents one of the few places on Earth where a spreading axis propagates into continental crust. This special tectonic setting allows insights into the evolution of magma composition as continental extension and break-up changes to the formation of ocean crust. We report here geochemical results on samples collected in 2009 from the four segments closest to the continental breakup, from segment 1 which abuts the detachment fault responsible for continental extension on Moresby Seamount in the West, to segment 4, representing mature oceanic crust in the East. A total of 208 glass samples have been analyzed for their major (EMPA) and trace element (LA-ICPMS) compositions. The data show strong E-W variations. Samples ranging from tholeiitic basalt and basaltic andesite to andesite and rhyolite are found on Segment 1. They have generally high alkali values and a wide range of trace element contents and ratios. Segments 2 to 4 magmas in contrast only comprise tholeiitic basalt with lower alkali contents and a more restricted range of trace element chemistry. The geochemical differences between the segments cannot be attributed to differentiation processes alone, and different sources are required. High Ba/La, (La/Sm)N, Rb/Sr, and Th/La on Segment 1 suggest a derivation from an enriched mantle source, while low Nd/Pb and Nb/U suggest that some of the enrichment may also reflect the influence of continental crust during magma genesis. Whether this continental signature is present in the form of recycled material in the mantle or as rafted continental blocks in the axial region is at present unclear. In contrast to rocks from segment 1, trace element compositions of volcanic glasses from segments 2 to 4 show a stronger MORB signature, presumably reflecting more mature spreading in this part of the basin. The influence of continental material appears to be minimal, suggesting that uncontaminated asthenosphere quickly flows into the rift and/or that continental blocks are not retained in the axial region for long time periods following the rifting-spreading transition.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-09-23
    Description: EGU2011-8738 At present, the Arctic is responding faster to global warming than most other areas on earth, as indicated by rising air temperatures, melting glaciers and ice sheets and a decline of the sea ice cover. As part of the meridional overturning circulation which connects all ocean basins and influences global climate, northward flowing Atlantic Water is the major means of heat and salt advection towards the Arctic where it strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ca. 150 years. To reconstruct the history of temperature variations in the Fram Strait Branch of the Atlantic Current we analyzed a marine sediment core from the western Svalbard margin. In multidecadal resolution the Atlantic Water temperature record derived from planktic foraminifer associations and Mg/Ca measurements shows variations corresponding to the well-known climatic periods of the last millennium (Medieval Climate Anomaly, Little Ice Age, Modern/Industrial Period). We find that prior to the beginning of atmospheric CO2 rise at ca. 1850 A.D. average summer temperatures in the uppermost Atlantic Water entering the Arctic Ocean were in the range of 3-4.5°C. Within the 20th century, however, temperatures rose by ca. 2°C and eventually reached the modern level of ca. 6°C. Such values are unprecedented in the 1000 years before and are presumably linked to the Arctic Amplification of global warming. Taking into account the ongoing rise of global temperatures, further warming of inflowing Atlantic Water is expected to have a profound influence on sea ice and air temperatures in the Arctic.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-02-22
    Description: Volatile and intermediate-volatility organic compounds in sub-urban Paris: variability, origin and importance for SOA formation Atmospheric Chemistry and Physics Discussions, 14, 4841-4904, 2014 Author(s): W. Ait-Helal, A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel, M. Crippa, C. Afif, U. Baltensperger, M. Beekmann, J.-F. Doussin, R. Durand-Jolibois, I. Fronval, N. Grand, T. Leonardis, M. Lopez, V. Michoud, K. Miet, S. Perrier, A. S. H. Prévôt, J. Schneider, G. Siour, P. Zapf, and N. Locoge Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January–February 2010, at the SIRTA observatory in sub-urban Paris. Measurements of primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including for the first time C 12 -C 16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scales and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and sub-urban Paris were surprisingly low (2–963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and sub-urban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter ( 〈 5 ppt) compared to summer (13–27 ppt) in agreement with a gas-particle partitioning in favor of their transfer to the particle phase in winter. Higher concentrations of most oxygenated VOCs in winter (18–5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an approach based on emissions inferred from the I / VOC concentrations times the SOA formation yields', the so-called integrated approach conducted in this study, 46% of the SOA measured at SIRTA is explained by our measured concentrations of I / VOC, with 10% explained by only C 12 -C 16 IVOCs. From results of an alternative time-resolved approach, the explained variability of the SOA concentrations is improved when the IVOCs are taken into account. Both approaches, which are based on ambient measurements of particular I / VOCs, emphasize the importance of the intermediate volatility compounds in the SOA formation, and support previous results from chamber experiments and modeling studies. The approaches results support the need to make systematic the IVOCs speciated measurement during field campaigns.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-03-01
    Description: Application of a computationally efficient method to approximate gap model results with a probabilistic approach Geoscientific Model Development Discussions, 7, 1535-1600, 2014 Author(s): M. Scherstjanoi, J. O. Kaplan, and H. Lischke To be able to simulate climate change effects on forest dynamics over the whole of Switzerland, we adapted the second generation DGVM LPJ-GUESS to the Alpine environment. We modified model functions, tuned model parameters, and implemented new tree species to represent the potential natural vegetation of Alpine landscapes. Furthermore, we increased the computational efficiency of the model to enable area-covering simulations in a fine resolution (1 km) sufficient for the complex topography of the Alps, which resulted in more than 32 000 simulation grid cells. To this aim, we applied the recently developed method GAPPARD (Scherstjanoi et al., 2013) to LPJ-GUESS. GAPPARD derives mean output values from a combination of simulation runs without disturbances and a patch age distribution defined by the disturbance frequency. With this computationally efficient method, that increased the model's speed by approximately the factor 8, we were able to faster detect shortcomings of LPJ-GUESS functions and parameters. We used the adapted LPJ-GUESS together with GAPPARD to assess the influence of one climate change scenario on dynamics of tree species composition and biomass throughout the 21st century in Switzerland. To allow for comparison with the original model, we additionally simulated forest dynamics along a north-south-transect through Switzerland. The results from this transect confirmed the high value of the GAPPARD method despite some limitations towards extreme climatic events. It allowed for the first time to obtain area-wide, detailed high resolution LPJ-GUESS simulation results for a large part of the Alpine region.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-03-01
    Description: A new technique using the aero-infiltrometer to characterise the natural soils based on the measurements of infiltration rate and soil moisture content Hydrology and Earth System Sciences Discussions, 11, 2515-2553, 2014 Author(s): M. A. Fulazzaky, Z. Yusop, I. Ibrahim, and A. H. M. Kassim Infiltration rate ( f ) and soil moisture content (θ) are the important factors for water resources management. Accurate measurements of these factors are not so readily available in most farmlands since present measuring equipments are not really suitable. This paper proposes the measuring device that uses a simple method to measure the rate of water infiltration into the ground and to determine the percentage of water contained in the soil. The two empirical equations which formulated on the basis of power regression models of plotting f vs. air pressure dropping rate ( P ) and θ vs. P are proposed to evaluate the dynamic properties of soil–water and soil–air interface from a three-phase system. All the parameters in equations have physical meanings, and experimental data validation shows that the equations are sufficiently accurate. Aero-infiltrometer was used to measure both the variations of f and θ at three natural soil sites to contribute to operational water management issues and soil texture identification. In the future, new research opportunities on basic knowledge of air diffusion into the ground will contribute to more versatile techniques in measurement of water infiltration.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-03-01
    Description: Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual timescales Geoscientific Model Development, 7, 453-461, 2014 Author(s): J. Baehr and R. Piontek We evaluate the ensemble spread at seasonal-to-interannual timescales for two perturbation techniques implemented in the ocean component of a coupled model: (1) lagged initial conditions as commonly used for decadal predictions; (2) bred vectors as commonly used for weather and seasonal forecasting. We show that relative to an uninitialized reference simulation the implementation for bred vectors can improve the ensemble spread compared to lagged initialization at timescales from one month up to three years. As bred vectors have so far mostly been used at short timescales, we initially focus on the implementation of the bred vectors in the ocean component. We introduce a depth-dependent vertical rescaling norm, accounting for the vertical dependence of the variability, and extending the commonly used upper-ocean rescaling norm to the full water column. We further show that it is sufficient for the (sub-surface) ocean to breed temperature and salinity (i.e., scalar quantities), and rely on the governing physics to carry the temperature and salinity perturbations to the flow field. Using these bred vectors with a rescaling interval of 12 months, we initialize hindcast simulations and compare them to hindcast simulations initialized with lagged initial conditions. We quantify the ensemble spread by analyzing Talagrand diagrams and spread–error ratios. For both temperature and salinity, the lagged initialized ensemble is particularly under-dispersive for the first few months of predictable lead time. The ensemble initialized with bred vectors improves the spread for temperature and salinity for the 0–700 m and 1000–3500 m means, compared to the lagged ensemble at lead times of several months to one year. As the lead time increases to years, the differences between the two ensemble initialization techniques become more difficult to discern. While the results need to be confirmed in an initialized framework, the present analysis represents a first step towards improved ensemble generation at the transition from seasonal to interannual timescales, in particular at lead times up to one year.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-03-04
    Description: Daily ozone cycle in the stratosphere: global, regional and seasonal behaviour modelled with the Whole Atmosphere Community Climate Model Atmospheric Chemistry and Physics Discussions, 14, 5561-5609, 2014 Author(s): A. Schanz, K. Hocke, and N. Kämpfer The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3–5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k 2 and k 3 of the Chapman cycle reactions. Further, the NO x catalytic cycle counteracts to the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NO x and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-03-04
    Description: Reactive bromine chemistry in Mt. Etna's volcanic plume: the influence of total Br, high temperature processing, aerosol loading and plume-air mixing Atmospheric Chemistry and Physics Discussions, 14, 5445-5494, 2014 Author(s): T. J. Roberts, R. S. Martin, and L. Jourdain Volcanic emissions present a source of reactive halogens to the troposphere, through rapid plume chemistry that converts the emitted HBr to more reactive forms such as BrO. The nature of this process is poorly quantified, yet is of interest to understand volcanic impacts on the troposphere, and infer volcanic activity from volcanic gas measurements (i.e. BrO / SO 2 ratios). Recent observations from Etna report an initial increase and subsequent plateau or decline in BrO / SO 2 ratios with distance downwind. We present daytime PlumeChem model simulations that reproduce and explain the reported trend in BrO / SO 2 at Etna including the initial rise and subsequent plateau. Through suites of model simulations we also investigate the influences of volcanic aerosol loading, bromine emission, and plume-air mixing rate on the downwind plume chemistry. Emitted volcanic HBr is converted into reactive bromine by autocatalytic bromine chemistry cycles whose onset is accelerated by the model high-temperature initialisation. These rapid chemistry cycles also impact the reactive bromine speciation through inter-conversion of Br, Br 2 , BrO, BrONO 2 , BrCl, HOBr. Formation of BrNO 2 is also discussed. We predict a new evolution of Br-speciation in the plume, with BrO, Br 2 , Br and HBr as the main plume species in the near downwind plume whilst BrO, and HOBr are present in significant quantities further downwind (where BrONO 2 and BrCl also make up a minor fraction). The initial rise in BrO / SO 2 occurs as ozone is entrained into the plume whose reaction with Br promotes net formation of BrO. Aerosol has a modest impact on BrO / SO 2 near-downwind ( 〈 6 km) at the relatively high loadings considered. The subsequent decline in BrO / SO 2 occurs as entrainment of oxidants HO 2 and NO 2 promotes net formation of HOBr and BrONO 2 , whilst the plume dispersion dilutes volcanic aerosol so slows the heterogeneous loss rates of these species. A higher volcanic aerosol loading enhances BrO / SO 2 in the (〉 6 km) downwind plume. Simulations assuming low/medium and high Etna bromine emissions scenarios show the bromine emission has a greater influence on BrO / SO 2 further downwind and a modest impact near downwind, and show either complete or partial conversion of HBr into reactive bromine, respectively, yielding BrO contents that reach up to ∼50% or ∼20% of total bromine (over a timescale of a few 10's of minutes). Plume-air mixing (which in our model with fixed plume dimensions is inversely related to the volcanic emission flux) non-linearly impacts the downwind BrO / SO 2 . A slower rate of plume-air mixing (or greater volcanic emission flux) leads to lower BrO / SO 2 ratios near downwind, but also delays the subsequent decline in BrO / SO 2 , thus yields higher BrO / SO 2 ratios further downwind. We highlight the important role of plume chemistry models for the interpretation of observed changes in BrO / SO 2 during/prior to volcanic eruptions, as well as for quantifying volcanic plume impacts on atmospheric chemistry. Simulated plume impacts include ozone, HO x and NO x depletion, the latter converted into HNO 3 . Partial recovery of ozone concentrations occurs with distance downwind (as BrO concentrations decline), although cumulative ozone loss is ongoing over the 3 h simulations. We suggest plume BrNO 2 may be less prevalent than previous model predictions. We highlight additional reactions for BrNO 2 (and alternative pathways via BrONO) which likely reduce in-plume BrNO 2 prevalence. We also highlight uncertainty in volcanic NO x emissions that might be lower than previously assumed (i.e., equilibrium NO x ), due to the slow rate of N 2 oxidation. The atmospheric : magmatic gas ratio, V A : V M , in equilibrium model representations of the near vent plume is presently poorly defined. Using a revised equilibrium model methodology, lower V A : V M become suitable (e.g. V A : V M = 98 : 2, 95 : 5), which also yield a lower estimate for volcanic NO x , although uncertainties to such equilibrium model representations of near-vent plume chemistry and especially NO x formation are emphasized.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-03-04
    Description: Carbon cycling and phytoplankton responses within highly-replicated shipboard carbonate chemistry manipulation experiments conducted around Northwest European Shelf Seas Biogeosciences Discussions, 11, 3489-3534, 2014 Author(s): S. Richier, E. P. Achterberg, C. Dumousseaud, A. J. Poulton, D. J. Suggett, T. Tyrrell, M. V. Zubkov, and C. M. Moore The ongoing oceanic uptake of anthropogenic carbon dioxide (CO 2 ) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, are highly variable, which in part likely reflects inconsistencies in experimental approach. To investigate the potential for identification of more generic responses and greater experimentally reproducibility, we devised and implemented a series of highly replicated ( n = 8), short term (2–4 days) multi-level (≥ 4 conditions) carbonate chemistry/nutrient manipulation experiments on a range of natural microbial communities sampled in Northwest European shelf seas. Carbonate chemistry manipulations and resulting biological responses were found to be highly reproducible within individual experiments and to a lesser extent between geographically different experiments. Statistically robust reproducible physiological responses of phytoplankton to increasing p CO 2 , characterized by a suppression of net growth for small sized cells ( 〈 10 μm), were observed in the majority of the experiments, irrespective of nutrient status. Remaining between-experiment variability was potentially linked to initial community structure and/or other site-specific environmental factors. Analysis of carbon cycling within the experiments revealed the expected increased sensitivity of carbonate chemistry to biological processes at higher p CO 2 and hence lower buffer capacity. The results thus emphasize how biological-chemical feedbacks may be altered in the future ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-03-04
    Description: Variation in photosynthetic and nonphotosynthetic vegetation along edaphic and compositional gradients in northwestern Amazonia Biogeosciences Discussions, 11, 3535-3557, 2014 Author(s): M. A. Higgins, G. P. Asner, E. Perez, N. Elespuru, and A. Alonso Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforest. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forest, possibly through changes in plant species composition.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-03-04
    Description: A range correction for ICESat and its potential impact on ice-sheet mass balance studies The Cryosphere, 8, 345-357, 2014 Author(s): A. A. Borsa, G. Moholdt, H. A. Fricker, and K. M. Brunt We report on a previously undocumented range error in NASA's Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or "G-C" offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods ≤ 1 day, it evolves over the life of each of ICESat's three lasers in a series of ramps and jumps that give rise to spurious elevation trends of −0.92 to −1.90 cm yr −1 , depending on the time period considered. Using ICESat data over the Ross and Filchner–Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat. We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-03-04
    Description: Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru The Cryosphere, 8, 359-376, 2014 Author(s): M. N. Hanshaw and B. Bookhagen Glaciers in the tropical Andes of southern Peru have received limited attention compared to glaciers in other regions (both near and far), yet remain of vital importance to agriculture, fresh water, and hydropower supplies of downstream communities. Little is known about recent glacial-area changes and how the glaciers in this region respond to climate changes, and, ultimately, how these changes will affect lake and water supplies. To remedy this, we have used 158 multi-spectral satellite images spanning almost 4 decades, from 1975 to 2012, to obtain glacial- and lake-area outlines for the understudied Cordillera Vilcanota region, including the Quelccaya Ice Cap. Additionally, we have estimated the snow-line altitude of the Quelccaya Ice Cap using spectral unmixing methods. We have made the following four key observations: first, since 1988 glacial areas throughout the Cordillera Vilcanota (1988 glacial area: 361 km 2 ) have been declining at a rate of 3.99 ± 1.15 km 2 yr −1 (22 year average, 1988–2010, with 95% confidence interval (CI), n = 8 images). Since 1980, the Quelccaya Ice Cap (1980 glacial area: 63.1 km 2 ) has been declining at a rate of 0.57 ± 0.10 km 2 yr −1 (30 year average, 1980–2010, with 95% CI, n = 14). Second, decline rates for individual glacierized regions have been accelerating during the past decade (2000–2010) as compared to the preceding decade (1988–1999) with an average increase from 37.5 to 42.3 × 10 −3 km 2 yr −1 km −2 (13%). Third, glaciers with lower median elevations are declining at higher rates than those with higher median elevations. Specifically, glaciers with median elevations around 5200 m a.s.l. are retreating to higher elevations at a rate of ~1 m yr −1 faster than glaciers with median elevations around 5400 m a.s.l. Fourth, as glacial regions have decreased, 77% of lakes connected to glacial watersheds have either remained stable or shown a roughly synchronous increase in lake area, while 42% of lakes not connected to glacial watersheds have declined in area (58% have remained stable). Our new and detailed data on glacial and lake areas over 37 years provide an important spatiotemporal assessment of climate variability in this area. These data can be integrated into further studies to analyze inter-annual glacial and lake-area changes and assess hydrologic dependence and consequences for downstream populations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-03-04
    Description: What drives basin scale spatial variability of snowpack properties in northern Colorado? The Cryosphere, 8, 329-344, 2014 Author(s): G. A. Sexstone and S. R. Fassnacht This study uses a combination of field measurements and Natural Resource Conservation Service (NRCS) operational snow data to understand the drivers of snow density and snow water equivalent (SWE) variability at the basin scale (100s to 1000s km 2 ). Historic snow course snowpack density observations were analyzed within a multiple linear regression snow density model to estimate SWE directly from snow depth measurements. Snow surveys were completed on or about 1 April 2011 and 2012 and combined with NRCS operational measurements to investigate the spatial variability of SWE near peak snow accumulation. Bivariate relations and multiple linear regression models were developed to understand the relation of snow density and SWE with terrain variables (derived using a geographic information system (GIS)). Snow density variability was best explained by day of year, snow depth, UTM Easting, and elevation. Calculation of SWE directly from snow depth measurement using the snow density model has strong statistical performance, and model validation suggests the model is transferable to independent data within the bounds of the original data set. This pathway of estimating SWE directly from snow depth measurement is useful when evaluating snowpack properties at the basin scale, where many time-consuming measurements of SWE are often not feasible. A comparison with a previously developed snow density model shows that calibrating a snow density model to a specific basin can provide improvement of SWE estimation at this scale, and should be considered for future basin scale analyses. During both water year (WY) 2011 and 2012, elevation and location (UTM Easting and/or UTM Northing) were the most important SWE model variables, suggesting that orographic precipitation and storm track patterns are likely driving basin scale SWE variability. Terrain curvature was also shown to be an important variable, but to a lesser extent at the scale of interest.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-03-05
    Description: A parameterisation for the activation of cloud drops including the effects of semi-volatile organics Atmospheric Chemistry and Physics, 14, 2289-2302, 2014 Author(s): P. J. Connolly, D. O. Topping, F. Malavelle, and G. McFiggans We present a parameterisation of aerosol activation, including co-condensation of semi-volatile organics, for warm clouds that has applications in large-scale numerical models. The scheme is based on previously developed parameterisations that are in the literature, but has two main modifications. The first is that the total aerosol mass is modified by the condensation of organic vapours entering cloud base, whereas the second is that this addition of mass acts to modify the median diameter and the geometric standard deviation of the aerosol size distribution. It is found that the scheme is consistent with parcel model calculations of co-condensation under different regimes. Such a parameterisation may find use in evaluating important feedbacks in climate models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-03-05
    Description: Transport of aerosol to the Arctic: analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign Atmospheric Chemistry and Physics Discussions, 14, 5721-5769, 2014 Author(s): G. Ancellet, J. Pelon, Y. Blanchard, B. Quennehen, A. Bazureau, K. S. Law, and A. Schwarzenboeck Lidar and in situ observations performed during POLARCAT campaign are reported here in terms of statistics to characterize aerosol properties over northern Europe using daily airborne measurements conducted between Svalbard Island and Scandinavia from 30 March to 11 April 2008. It is shown that during this period, a rather large number of aerosol layers was observed in the troposphere, with a backscatter ratio at 532 nm of 1.2 (1.5 below 2 km, 1.2 between 5 and 7 km and a minimum in-between). Their sources were identified using multispectral backscatter and depolarization airborne lidar measurements after careful calibration analysis. Transport analysis and comparisons between in situ and airborne lidar observations are also provided to assess the quality of this identification. Comparison with level 1 backscatter observations of the spaceborne CALIOP lidar were done to adjust CALIOP multispectral observations to airborne observations on a statistical basis. Re-calibration for CALIOP daytime 1064 nm signals led to an increase of their values by about 30% in agreement with previous analyses. No re-calibration is made at 532 nm, but scattering ratios appear to be biased low. Regional analyses in the European Arctic then performed as a test, emphasize the potential of the CALIOP spaceborne lidar to further monitor more in depth properties of the aerosol layers over Arctic using infrared and depolarization observations. The CALIOP April 2008 global distribution of the aerosol backscatter reveal two regions with large backscatter below 2 km: the Northern Atlantic between Greenland and Norway, and Northern Siberia. The aerosol color ratio increase between the sources regions and the observations at latitudes above 70° N is consistent with a growth of the aerosol size once transported to the Arctic. The distribution of the aerosol optical properties in the mid troposphere supports the known main transport pathways between mid-latitudes and the Arctic.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-03-05
    Description: Reconciling aerosol light extinction measurements from spaceborne lidar observations and in-situ measurements in the Arctic Atmospheric Chemistry and Physics Discussions, 14, 5687-5720, 2014 Author(s): M. Tesche, N. Rastak, R. J. Charlson, P. Glantz, P. Zieger, and H.-C. Hansson In this study we investigate to what degree it is possible to reconcile continuously recorded particle light extinction coefficients derived from dry in-situ measurements at Zeppelin station (78.92° N, 11.85° E, 475 m a.s.l.) at Ny-Ålesund, Svalbard, that are recalculated to ambient relative humidity, and simultaneous ambient observations with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. To our knowledge, this represents the first study that compares spaceborne lidar measurements to optical aerosol properties from short-term in-situ observations (averaged over 5 h) on a case-by-case basis. Finding suitable comparison cases requires an elaborate screening and matching of the CALIOP data with respect to the location of the Zeppelin station as well as in the selection of temporal and spatial averaging intervals for both the ground-based and spaceborne observations. Trustworthy reconciliation of these data cannot be achieved with the closest approach method that is often used in matching CALIOP observations to those taken at ground sites due to the transport pathways of the air parcels that were sampled. The use of trajectories allowed us to establish a connection between spaceborne and ground-based observations for 57 individual overpasses out of a total of 2018 that occurred in our region of interest around Svalbard (0 to 25° E; 75 to 82° N) in the considered year of 2008. Matches could only be established during winter and spring, since the low aerosol load during summer in connection with the strong solar background and the high occurrence rate of clouds strongly influences the performance and reliability of CALIOP observations. Extinction coefficients in the range from 1 to 100 Mm −1 were found for successful matches with an agreement of a factor of 1.85 (median value for a range from 0.38 to 17.9) between the findings of in-situ and spaceborne observations (the latter being generally larger than the former). The remaining difference is likely to be due to the natural variability in aerosol concentration and ambient relative humidity, an insufficient representation of aerosol particle growth in the used hygroscopicity model, or a misclassification of aerosol type (i.e., choice of lidar ratio) in the CALIPSO retrieval.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-03-05
    Description: Sub-3 nm particle size and composition dependent response of a nano-CPC battery Atmospheric Measurement Techniques, 7, 689-700, 2014 Author(s): J. Kangasluoma, C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petäjä In this study we built a nano-CPC (condensation particle counter) battery, consisting of four ultrafine CPCs optimized for the detection of sub-3 nm particles. Two of the CPCs use diethylene glycol as a working fluid: a laminar type diethlylene glycol CPC and a mixing type Airmodus A09 particle size magnifier. The other two CPCs are a laminar type TSI 3025A and a TSI 3786 with butanol and water as the working fluids, respectively. The nano-CPC battery was calibrated with seven different test aerosols: tetraheptyl ammonium bromide, ammonium sulfate, sodium chloride, tungsten oxide, sucrose, candle flame products and limonene ozonolysis products. The results show that ammonium sulfate and sodium chloride have a higher activation efficiency with the water-based 3786 than with the butanol-based 3025A, whereas the other aerosols were activated better with butanol than with water as the working fluid. It is worthwhile to mention that sub-2 nm limonene ozonolysis products were detected very poorly with all of the CPCs, butanol being the best fluid to activate the oxidation products. To explore how the detection efficiency is affected if the aerosol is an internal mixture of two different chemical substances, we made the first attempt to control the mixing state of sub-3 nm laboratory generated aerosol. We show that we generated an internally mixed aerosol of ammonium sulfate nucleated onto tungsten oxide seed particles, and observed that the activation efficiency of the internally mixed clusters was a function of the internal mixture composition.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-03-05
    Description: On the analytic approximation of bulk collision rates of non-spherical hydrometeors Geoscientific Model Development, 7, 463-478, 2014 Author(s): A. Seifert, U. Blahak, and R. Buhr Analytic approximations of the binary collision rates of hydrometeors are derived for use in bulk microphysical parameterizations. Special attention is given to non-spherical hydrometeors like raindrops and snowflakes. The terminal fall velocity of these particles cannot be sufficiently well approximated by power-law relations which are used in most microphysical parameterizations, and therefore an improved formulation is needed. The analytic approximations of the bulk collision rates given in this paper are an alternative to look-up tables and can replace the Wisner approximation, which is used in many atmospheric models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-03-05
    Description: Characterization of hydrochars produced by hydrothermal carbonization of rice husk Solid Earth Discussions, 6, 657-677, 2014 Author(s): D. Kalderis, M. S. Kotti, A. Méndez, and G. Gascó Biochar is the carbon-rich product obtained when biomass, such as wood, manure or leaves, is heated in a closed container with little or no available air. In more technical terms, biochar is produced by so-called thermal decomposition of organic material under limited supply of oxygen (O 2 ), and at relatively low temperatures (
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-03-06
    Description: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles Atmospheric Chemistry and Physics, 14, 2315-2324, 2014 Author(s): N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Möhler In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface-area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary offline characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at −35.2 °C 〈 T 〈 −33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet freezing.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-03-06
    Description: The Sofia University Atmospheric Data Archive (SUADA) Atmospheric Measurement Techniques Discussions, 7, 2153-2185, 2014 Author(s): G. Guerova, Tzv. Simeonov, and N. Yordanova Atmospheric sounding using the Global Navigation Satellite Systems (GNSS) is a well established research field in Europe. At present, GNSS data from 1800 stations are available for model validation and assimilation in state-of-the-art models used for operational numerical weather prediction Centers in Europe. Advances in GNSS data processing is making possible to also use the GNSS data for climatic trend analysis, an emerging new application. In Bulgaria and Southeast Europe the use of GNSS for atmospheric sounding is currently under development. As a first step the Sofia University Atmospheric Data Archive (SUADA) is developed. SUADA is user friendly database and includes GNSS tropospheric products like Zenith Total Delay (ZTD) and derivatives like vertically Integrated Water Vapour (IWV) as well as observations from Radiosonde and surface atmospheric data. Archived in SUADA are: (1) GNSS tropospheric products (over 12 000 000 individual observations) and derivatives (over 55 000) from five GNSS processing strategies and 37 stations for the period 1997–2013 with temporal resolution from 5 min to 6 h and (2) Radiosonde IWV data (over 6000 observations) for station Sofia (1999–2012). Presented are two applications of the SUADA data for study of long and short term variation of IWV over Bulgaria during the 2007 heat wave and intense precipitation events in 2012.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-03-06
    Description: Towards the identification of molecular constituents associated with the surfaces of isoprene-derived secondary organic aerosol (SOA) particles Atmospheric Chemistry and Physics, 14, 2303-2314, 2014 Author(s): C. J. Ebben, B. F. Strick, M. A. Upshur, H. M. Chase, J. L. Achtyl, R. J. Thomson, and F. M. Geiger Secondary organic aerosol (SOA) particle formation ranks among the least understood chemical processes in the atmosphere, rooted in part in the lack of knowledge about chemical composition and structure at the particle surface, and little availability of reference compounds needed for benchmarking and chemical identification in pure and homogenous form. Here, we synthesize and characterize SOA particle constituents consisting of the isoprene oxidation products α-, δ-, and cis - and trans -β-IEPOX (isoprene epoxide), as well as syn- and anti-2-methyltetraol. Paying particular attention to their phase state (condensed vs. vapor), we carry out a surface-specific and orientationally selective chemical analysis by vibrational sum frequency generation (SFG) spectroscopy of these compounds in contact with a fused silica window. Comparison to the vibrational SFG spectra of synthetic isoprene-derived SOA particle material prepared at the Harvard Environmental Chamber yields a plausible match with trans -β-IEPOX, suggesting it is an abundant species on their surfaces, while the other species studied here, if present, appear to be SFG inactive and thus likely to be localized in a centrosymmetric environment, e.g., the particle bulk. No match is found for authentic SOA particle material collected at the site of the Amazonian Aerosol Characterization Experiment (AMAZE-08) with the surface SFG spectra of the compounds surveyed here, yet we cannot rule out this mismatch being attributable to differences in molecular orientation. The implications of our findings for SOA formation are discussed in the context of condensational particle growth and reactivity.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-03-06
    Description: Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen Ice Shelves Atmospheric Chemistry and Physics Discussions, 14, 5771-5835, 2014 Author(s): D. P. Grosvenor, J. C. King, T. W. Choularton, and T. Lachlan-Cope Mesoscale model simulations are presented of a westerly föhn event over the Antarctic Peninsula mountain ridge and onto the Larsen C Ice Shelf, just south of the recently collapsed Larsen B Ice Shelf. Aircraft observations showed the presence of föhn jets descending near to the ice shelf surface with maximum wind speeds at 250–350 m in height. Surface flux measurements suggested that melting was occurring. Simulated profiles of wind speed, temperature and wind direction were very similar to the observations. However, the good match only occurred at a model time corresponding to ∼9 h before the aircraft observations were made since the model föhn jets died down after this. Through comparison to an Automatic Weather Station (AWS) on the ice shelf surface (east side of the ridge) this was attributed to problems with the time evolution of the large scale meteorology of the analysis used to nudge the upper levels of the model. Timing issues aside, the otherwise good comparison between the model and observations gave confidence that the model flow structure was similar to that in reality. Details of the model jet structure are explored and discussed and are found to have ramifications for the placement of AWS stations on the ice shelf in order to detect föhn flow. Cross sections of the flow are also examined and were found to compare well to the aircraft measurements. Gravity wave breaking above the mountain crest likely created a situation similar to hydraulic flow and allowed föhn flow and ice shelf surface warming to occur despite strong upwind blocking, which in previous studies of this region has generally not been considered. The surface energy budget of the model during the melting periods showed that the net downwelling shortwave surface flux was the largest contributor to the melting energy, indicating that the cloud clearing effect of föhn events is likely to be the most important factor for increased melting relative to non-föhn days. The results also indicate that the warmth of the föhn jets through sensible heat flux may not be critical in causing melting beyond boundary layer stabilization effects (which may help to prevent cloud cover and suppress loss of heat by convection) and are actually cancelled by latent heat flux effects (snow ablation). It was found that ground heat flux was likely to be an important factor when considering the changing surface energy budget for the southern regions of the ice shelf as the climate warms.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-03-06
    Description: Determination of alkyl amines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches Atmospheric Measurement Techniques Discussions, 7, 2127-2152, 2014 Author(s): R.-J. Huang, W.-B. Li, Y.-R. Wang, Q. Y. Wang, K.-F. Ho, J. J. Cao, G. H. Wang, X. Chen, I. EI Haddad, Z. X. Zhuang, X. R. Wang, A. S. H. Prévôt, C. D. O'Dowd, and T. Hoffmann In recent years low molecular weight alkyl amines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkyl amines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkyl amines in aerosol particles. Alkyl amines were converted to carbamates through derivatization with isobutyl chloroformate for GC-MS determination. A set of parameters affecting the analytical performances of the GC-MS approach, including reagent amount, reaction time and pH value, was evaluated and optimized. The accuracy is 84.3–99.1%, and the limits of detection obtained are 1.8–3.9 pg. For the IC approach, a solid phase extraction (SPE) column was used to separate alkyl amines from interfering cations before IC analysis. 1–2% (v/v) of acetone (or 2–4% (v/v) of acetonitrile) was added to the eluent to improve the separation of alkyl amines on the IC column. The limits of detection obtained are 2.1–15.9 ng and the accuracy is 55.1–103.4%. The lower accuracy can be attributed to evaporation losses of amines during the sample concentration procedure. Measurements of ambient aerosol particle samples collected in Hong Kong show that the GC-MS approach is superior to the IC approach for the quantification of primary and secondary alkyl amines due to its lower detection limits and higher accuracy.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-03-06
    Description: HESS Opinions: A perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes Hydrology and Earth System Sciences Discussions, 11, 2583-2612, 2014 Author(s): S. J. Sutanto, B. van den Hurk, G. Hoffmann, J. Wenninger, P. A. Dirmeyer, S. I. Seneviratne, T. Röckmann, K. E. Trenberth, and E. M. Blyth Current techniques to disentangle the total evaporative flux from the continental surface into a contribution evaporated from soils and canopy, or transpired by plants are under debate. Many isotope-based studies show that transpiration contributes generally more than 70% to the total moisture fluxes, while other isotope-independent techniques lead to considerably smaller transpiration fractions. This paper provides a perspective on isotope-based vs. non isotope-based partitioning studies. Some partitioning results from isotope-based methods, hydrometric measurements, and modeling are presented for comparison. Moreover, the methodological aspects of the analysis of partitioning are discussed including their limitations, and explanations of possible discrepancies between the methods are briefly discussed. We conclude that every method has its own uncertainties and these may lead to a high bias in the results, e.g. instruments inaccuracy and error, some assumptions used in analyses, parameters calibration. A number of comparison studies using isotope-based methods and hydrometric measurements in the same plants and climatic conditions are consistent within the errors, however, models tend to produce lower transpiration fractions. The relatively low transpiration fractions in current state of the art land surface models calls for a reassessment of the skill of the underlying model parameterizations. The scarcity of global evaporation data makes calibration and validation of global isotope-independent and isotope-based results difficult. However, isotope enabled land-surface and global climate modeling studies allow the evaluation of the parameterization of land surface models by comparing the computed water isotopologue signals in the atmosphere with the available remote sensing and flux-based data sets. Future studies that allow this evaluation could provide a better understanding of the hydrological cycle in vegetated regions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-03-06
    Description: Dynamics of turbulent western boundary currents at low latitude in a shallow water model Ocean Science Discussions, 11, 753-788, 2014 Author(s): C. Q. C. Akuetevi and A. Wirth The dynamics of low latitude turbulent western boundary currents, subject to two different types of idealized wind forcing, Monsoon Wind and Trade Wind, is considered using numerical results from integrations of a reduced gravity shallow-water model. For viscosity values of 1000 m 2 s −1 and above, the boundary layer dynamics compares well to the analytical solutions of the Munk-layer and the inertial-layer, derived from quasigeostrophic theory. Modifications due to variations in the layer thickness (vortex stretching) are only important close to the boundary. When the viscosity is reduced the boundary layer becomes turbulent and coherent structures in form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer) and dipoles appear. Three distinct boundary layers emerge, the viscous sub-layer, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity. The second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. A pragmatic approach to determine the eddy viscosity diagnostically for coarse resolution numerical models is proposed.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-03-06
    Description: Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica Solid Earth Discussions, 6, 679-729, 2014 Author(s): M. A. de Pablo, M. Ramos, and A. Molina The Limnopolar Lake CALM-S site (A25) is the unique location on Byers peninsula where the active layer thickness is systematically monitorized (by mechanical probing during the thaw season and by temperature devices continuously since 2009). An air, surface, snow and ground temperature monitoring devices have been installed to monitor ground thermal behavior. We analyzed these data to present there the active layer thermal characterization. We use the air and ground mean daily temperature data to define the following parameters: maximum, minimum and mean temperatures at the air and at different depths, the zero annual thermal amplitude depths and position of the top of the permafrost table. The freezing and thawing seasons (defining their starting dates as well as their length), and the existence of zero curtain periods has been also established. We also derive apparent thermal diffusivity and plot thermograms to study the thermal behavior of the ground at different depths. After this complete thermal characterization of the active layer, we propose the potential existence of a~permafrost table at about 130 cm in depth as well as the transitional zone above it, and discuss the role of water in connection with the thermal behavior of the ground during the study period.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-03-07
    Description: Molecular corridors represent the multiphase chemical evolution of secondary organic aerosol Atmospheric Chemistry and Physics Discussions, 14, 5929-5961, 2014 Author(s): M. Shiraiwa, T. Berkemeier, K. A. Schilling-Fahnestock, J. H. Seinfeld, and U. Pöschl The dominant component of atmospheric organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes nor do they identify the dominant rate-limiting steps in SOA formation. The recent advent of soft ionization mass spectrometry methods now facilitates a more complete molecular identification of SOA than heretofore possible. Based on such novel measurements, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. Sequential and parallel reaction oxidation and dimerization pathways progress along these corridors through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. These molecular corridors constrain the properties of unidentified products and reaction pathways and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-03-07
    Description: Contributions of local and regional sources to fine PM in the megacity of Paris Atmospheric Chemistry and Physics, 14, 2343-2352, 2014 Author(s): K. Skyllakou, B. N. Murphy, A. G. Megaritis, C. Fountoukis, and S. N. Pandis The particulate matter source apportionment technology (PSAT) is used together with PMCAMx, a regional chemical transport model, to estimate how local emissions and pollutant transport affect primary and secondary particulate matter mass concentration levels in Paris. During the summer and the winter periods examined, only 13% of the PM 2.5 is predicted to be due to local Paris emissions, with 36% coming from mid-range (50–500 km from the center of the Paris) sources and 51% from long range transport (more than 500 km from Paris). The local emissions contribution to simulated elemental carbon (EC) is significant, with almost 60% of the EC originating from local sources during both summer and winter. Approximately 50% of the simulated fresh primary organic aerosol (POA) originated from local sources and another 45% from areas 100–500 km from the receptor region during summer. Regional sources dominated the secondary PM components. During summer more than 70% of the simulated sulfate originated from SO 2 emitted more than 500 km away from the center of the Paris. Also more than 45% of secondary organic aerosol (SOA) was due to the oxidation of VOC precursors that were emitted 100–500 km from the center of the Paris. The model simulates more contribution from long range secondary PM sources during winter because the timescale for its production is longer due to the slower photochemical activity. PSAT results for contributions of local and regional sources were compared with observation-based estimates from field campaigns that took place during the MEGAPOLI project. PSAT simulations are in general consistent (within 20%) with these estimates for OA and sulfate. The only exception is that PSAT simulates higher local EC contribution during the summer compared to that estimated from observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-03-07
    Description: Measuring the Antarctic ozone hole with the new Ozone Mapping and Profiler Suite (OMPS) Atmospheric Chemistry and Physics, 14, 2353-2361, 2014 Author(s): N. A. Kramarova, E. R. Nash, P. A. Newman, P. K. Bhartia, R. D. McPeters, D. F. Rault, C. J. Seftor, P. Q. Xu, and G. J. Labow The new Ozone Mapping and Profiler Suite (OMPS), which launched on the Suomi National Polar-orbiting Partnership satellite in October 2011, gives a detailed view of the development of the Antarctic ozone hole and extends the long series of satellite ozone measurements that go back to the early 1970s. OMPS includes two modules – nadir and limb – to measure profile and total ozone concentrations. The new limb module is designed to measure the vertical profile of ozone between the lowermost stratosphere and the mesosphere. The OMPS observations over Antarctica show excellent agreement with the measurements obtained from independent satellite and ground-based instruments. This validation demonstrates that OMPS data can ably extend the ozone time series over Antarctica in the future. The OMPS observations are used to monitor and characterize the evolution of the 2012 Antarctic ozone hole. While large ozone losses were observed in September 2012, a strong ozone rebound occurred in October and November 2012. This ozone rebound is characterized by rapid increases of ozone at mid-stratospheric levels and a splitting of the ozone hole in early November. The 2012 Antarctic ozone hole was the second smallest on record since 1988.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-03-07
    Description: Polycyclic aromatic hydrocarbons in atmospheric aerosols and air–sea exchange in the Mediterranean Atmospheric Chemistry and Physics Discussions, 14, 5963-5990, 2014 Author(s): M. D. Mulder, A. Heil, P. Kukučka, J. Klánová, J. Kuta, R. Prokeš, F. Sprovieri, and G. Lammel Polycyclic aromatic hydrocarbons (PAH) concentration in air of the central and eastern Mediterranean in summer 2010 was 1.45 (0.30–3.25) ng m −3 , with ≈8% in the particulate phase, associated with particles 〈 0.25 μm. The diffusive air–sea exchange fluxes of fluoranthene and pyrene were mostly found net-depositional or close to phase equilibrium, while retene was net-volatilisational in a large sea region. Regional fire activity records in combination with box model simulations suggest that seasonal depositional input of retene from biomass burning into the surface waters during summer is followed by an annual reversal of air–sea exchange, while inter-annual variability is dominated by the variability of the fire season. It is concluded that future negative emission trends or interannual variability of regional sources may trigger the sea to become a secondary PAH source through reversal of diffusive air–sea exchange.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-03-07
    Description: Near-infrared remote sensing of Los Angeles trace gas distributions from a mountaintop site Atmospheric Measurement Techniques, 7, 713-729, 2014 Author(s): D. Fu, T. J. Pongetti, J.-F. L. Blavier, T. J. Crawford, K. S. Manatt, G. C. Toon, K. W. Wong, and S. P. Sander The Los Angeles basin is a significant anthropogenic source of major greenhouse gases (CO 2 and CH 4 ) and the pollutant CO, contributing significantly to regional and global climate change. We present a novel approach for monitoring the spatial and temporal distributions of greenhouse gases in the Los Angeles basin using a high-resolution spectroscopic remote sensing technique. A new Fourier transform spectrometer called CLARS-FTS has been deployed since May, 2010, at Jet Propulsion Laboratory (JPL)'s California Laboratory for Atmospheric Remote Sensing (CLARS) on Mt. Wilson, California, for automated long-term measurements of greenhouse gases. The instrument design and performance of CLARS-FTS are presented. From its mountaintop location at an altitude of 1673 m, the instrument points at a programmed sequence of ground target locations in the Los Angeles basin, recording spectra of reflected near-IR solar radiation. Column-averaged dry-air mole fractions of greenhouse gases (XGHG) including XCO 2 , XCH 4 , and XCO are retrieved several times per day for each target. Spectra from a local Spectralon® scattering plate are also recorded to determine background (free tropospheric) column abundances above the site. Comparisons between measurements from LA basin targets and the Spectralon® plate provide estimates of the boundary layer partial column abundances of the measured species. Algorithms are described for transforming the measured interferograms into spectra, and for deriving column abundances from the spectra along with estimates of the measurement precision and accuracy. The CLARS GHG measurements provide a means to infer relative, and possibly absolute, GHG emissions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-03-07
    Description: Tree-ring reconstruction of seasonal mean minimum temperature at Mt. Yaoshan, China, since 1873 and its relevance to 20th-century warming Climate of the Past Discussions, 10, 859-894, 2014 Author(s): Y. Liu, Y. Zhang, H. Song, Y. Ma, Q. Cai, and Y. Wang It is very important to comprehend the climate variations in the vast regions of Central Plains of China. Current knowledge about climate changes of the past few hundred years in this region is primarily based on historical documents, and lack of evidences from the natural archives. However, these documents had somewhat artificially effects caused by the recorders, and not sufficient to fully understand natural climatic changes. In this paper, based on a significant correlation between the tree-ring width of Chinese Pine and observed instrumental data in the Mt. Yaoshan, China, we formulated a transfer function to reconstruct the mean minimum temperature (MMinT) from the previous December to the current June ( T min_DJ ) for the period 1873–2011. The reconstruction explained 39.8% of the instrumental variance during the calibration period of 1958–2011. High T min_DJ intervals with values greater than the 139 year average occurred in 1932–1965 and 1976–2006. The intervals 1878–1894 and 1906–1931 experienced a T min_DJ lower than the 139 year average. The ten highest T min_DJ years occurred after the 1950s, especially after 1996. A distinct upward trend in the T min_DJ series beginning in the 1910s was apparent, and the highest value occurred around 2000. The 20th-century warming signal was captured well by the Yaoshan T min_DJ temperature reconstruction, indicating that the temperature rise in the sensitive Central Plains of China region reflected the global temperature change. The T min_DJ reconstruction also matched several other temperature series in China with similar warm-cold patterns. The distinct spatial correlation between both observed and reconstructed series and CRU TS3.10 grid data indicates that our results may represent T min_DJ changes on a larger scale. The spatial correlation with sea surface temperature (SST) indicated that observed and reconstructed T min_DJ temperatures in the Mt. Yaoshan are closely linked to the West Pacific, Indian and North Atlantic Oceans as well as El Niño-Southern Oscillation (ENSO).
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73