ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in LeClerc, H., Tompsett, G., Paulsen, A., McKenna, A., Niles, S., Reddy, C., Nelson, R., Cheng, F., Teixeira, A., & Timko, M. Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel. IScience, 25(9), (2022): 104916, https://doi.org/10.1016/j.isci.2022.104916.
    Description: Food waste is an abundant and inexpensive resource for the production of renewable fuels. Biocrude yields obtained from hydrothermal liquefaction (HTL) of food waste can be boosted using hydroxyapatite (HAP) as an inexpensive and abundant catalyst. Combining HAP with an inexpensive homogeneous base increased biocrude yield from 14 ± 1 to 37 ± 3%, resulting in the recovery of 49 ± 2% of the energy contained in the food waste feed. Detailed product analysis revealed the importance of fatty-acid oligomerization during biocrude formation, highlighting the role of acid-base catalysts in promoting condensation reactions. Economic and environmental analysis found that the new technology has the potential to reduce US greenhouse gas emissions by 2.6% while producing renewable diesel with a minimum fuel selling price of $1.06/GGE. HAP can play a role in transforming food waste from a liability to a renewable fuel.
    Description: This work was funded by the DOE Bioenergy Technology Office (DE-EE0008513), a DOE DBIR (DE-SC0015784) and the MassCEC. The authors thank WenWen Yao, Department of Environmental Science at WPI, for TOC analysis, Mainstream Engineering for heating value characterization of the oil and solid samples, Wei Fan for assistance in obtaining SEM images and, Julia Martin and Ronald Grimm for their assistance in collecting XPS data, and Jeffrey R. Page for his assistance with oil upgrading and analysis. HOL was partially funded for this work by NSF Graduate Research Fellowship award number 2038257. A portion of this work was performed at the National High Magnetic Field Laboratory Ion Cyclotron Resonance user facility, which is supported by the NSF Division of Materials Research and Division of Chemistry through DMR 16-44779 and the State of Florida.
    Keywords: Chemistry ; Chemical engineering ; Catalysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/Office of National Marine Sanctuaries | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2322 | 403 | 2011-09-29 19:15:23 | 2322 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: In September 2002, side scan sonar was used to image a portion of the sea floor in the northern OCNMS and was mosaiced at 1-meter pixel resolution using 100 kHz datacollected at 300-meter range scale. Video from a remotely-operated vehicle (ROV), bathymetry data, sedimentary samples, and sonar mapping have been integrated todescribe geological and biological aspects of habitat and polygon features have been created and attributed with a hierarchical deep-water marine benthic classificationscheme (Greene et al. 1999). The data can be used with geographic information system (GIS) software for display, query, and analysis. Textural analysis of the sonar imagesprovided a relatively automated method for delineating substrate into three broad classes representing soft, mixed sediment, and hard bottom. Microhabitat and presence ofcertain biologic attributes were also populated into the polygon features, but strictly limited to areas where video groundtruthing occurred. Further groundtruthing work inspecific areas would improve confidence in the classified habitat map. (PDF contains 22 pages.)
    Keywords: Ecology ; Management ; Environment ; Benthic ; Habitat mapping ; Sediment classification ; Side scan sonar ; Textural analysis ; Olympic Coast National Marine Sanctuary ; Essential fish habitat ; Groundtruthing
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/Marine Sanctuaries Division | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2344 | 403 | 2011-09-29 19:11:08 | 2344 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: One goal of Gray’s Reef National Marine Sanctuary (NMS) is to protect the unique community found within the Sanctuary’s boundaries. An understanding of the ecologicalinteractions, including trophic structure, among these organisms is necessary to realize this goal. Therefore, diet information for 184 fish species was summarized from 113 published studies. Among the fish included are 84 fish species currently known to reside in Gray’s Reef NMS. Thelocations of these studies ranged from the Atlantic Ocean off the coast of the northeast United States to northern Brazil, the Gulf of Mexico, and the Caribbean. All of the species described in this bibliography occur in the southeast United States and are, therefore, current or potential residents of Gray’s Reef National Marine Sanctuary. Each entry includes the objectives, briefmethods, and conclusions of the article. The bibliography is also indexed by species. (PDF contains 64 pages.)
    Keywords: Management ; Conservation ; Fisheries ; Environment ; Gray’s Reef National Marine Sanctuary ; Southeast United States ; Fish diet ; Gut contents ; Marine ; Estuarine
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/Marine Sanctuaries Division | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2346 | 403 | 2011-09-29 19:11:12 | 2346 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: This report documents abundance and cover for selected elements of the benthic coral reef assemblage at the site of the 1984 grounding of the M/V Wellwood on Molasses Reef,Florida Keys. The purpose of the effort was to establish a pre-construction baseline before the installation of reef modules at the site. The installation process is intended to stabilize fractured substrates that were recently exposed by storm impacts, and to provide three-dimensional relief in order to enhance reef community recovery. It is hoped that the restoration effort will result in a biological assemblage with the character of the transition community that would exist there had the incident not occurred. To date, the assemblage has developed the character of a comparatively featureless hard ground similar in composition to hard ground areas and transitionzones surrounding the grounding site. These data will allow scientists and resource managers to better track the trajectory of recovery following the installation of modules. Direct counts of scleractinian and gorgonian corals, hydrocorals of the genus Millepora, and zoanthids of the genus Palythoa were made in three areas within and around the grounding site. The site is poorly developed with respect to scleractinian colony size and cover compared to surrounding areas. Key scleractinian species necessary for the development of topographic relief in the area denuded by the grounding are not well represented in the current community. Though gorgonian cover and richness is similar in all study areas, gorgonian community recovery in the damaged area is not complete. Unlike surrounding areas, one species, Pseudopterogorgia americana, accounts for over half of all corals at the grounding site, over 80% of all gorgonians, and nearly all the coral cover. Based on these findings and other observations made in the 18 years since the grounding, recommendations are made that should be considered in the course of human intervention targeted at stabilizing and enhancing the site. (PDF contains 24 pages.)
    Keywords: Conservation ; Management ; Environment ; Grounding ; Restoration ; Coral abundance ; Coral cover ; Recovery
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/National Marine Sanctuary Program | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2281 | 403 | 2011-09-29 19:19:45 | 2281 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorlyknown deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, andbathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene etal. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of themapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
    Keywords: Ecology ; Management ; Environment ; Benthic ; Habitat mapping ; Sediment classification ; Side scan sonar ; Textural analysis ; Deep-sea coral ; Essential fish habitat ; Olympic Coast National Marine Sanctuary
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/National Marine Sanctuary Program | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2285 | 403 | 2011-09-29 19:19:20 | 2285 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: Executive Summary:Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systemswithin the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae.Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp.Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas tothe shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits.The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriventransports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward meanflow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract.Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater”event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)
    Keywords: Ecology ; Management ; Environment
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/National Marine Sanctuary Program | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2287 | 403 | 2011-09-29 19:19:13 | 2287 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: With elevating interest to establish conservation efforts for groundfish stocks and continued scrutiny over the value of marine protected areas along the west coast, theimportance of enhancing our knowledge of seabed characteristics through mapping activities is becoming increasingly more important, especially in a timely manner.Shortly after the inception of the Seabed Mapping Initiative instituted with the US Geological Survey (USGS), the National Marine Sanctuary Program (NMSP) assembleda panel of habitat mapping experts. They determined that the status of existing data sets and future data acquisition needs varied widely among the individual sanctuaries and that more detailed site assessments were needed to better prioritize mapping efforts and outline an overall joint strategy. To assist with that specific effort and provide pertinent information for the Olympic Coast National Marine Sanctuary’s (OCNMS) Management Plan Review, this report summarizes the mapping efforts that have taken place at the site to date; calculates a timeframe for completion of baseline mapping efforts when operating under current data acquisition limitations; describes an optimized survey strategy to dramatically reduce the required time to complete baseline surveying; and provides estimates for the needed vessel sea-days (DAS) to accomplish baseline survey completion within a 2, 5 and 10 year timeframe. (PDF contains 38 pages.)
    Keywords: Ecology ; Management ; Fisheries ; Environment ; Benthic ; Habitat mapping ; Side scan sonar ; Multibeam echosounder ; Multibeam side scan sonar ; Interferometric side scan and bathymetry ; Olympic Coast National Marine Sanctuary ; Essential fish habitat
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/National Marine Sanctuary Program | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2315 | 403 | 2011-09-29 19:17:01 | 2315 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: This document presents the results of the monitoring of a repaired coral reef injured by the M/V Jacquelyn L vessel grounding incident of July 7, 1991. This grounding occurredin Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA)and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time.The monitoring program at the Jacquelyn L site was to have included an assessment of the structural stability of installed restoration modules and biological condition ofreattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2000. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage ofHurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage ofHurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 31 pages.)
    Keywords: Ecology ; Management ; Environment ; Florida Keys National Marine Sanctuary ; Coral ; Grounding ; Restoration ; Monitoring ; Hurricane Charley ; Hurricane Katrina ; Acropora palmata
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/National Marine Sanctuary Program | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2312 | 403 | 2011-09-29 19:16:51 | 2312 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: This document presents the results of the monitoring of a repaired coral reef injured by the M/V Connected vessel grounding incident of March 27, 2001. This groundingoccurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resourceswithin the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. Therestoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental andanthropogenic disturbances of the site over time.The monitoring program at the Connected site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2001. Due to unavoidable delays in the settlement of the case, the“baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 37 pages.)
    Keywords: Ecology ; Management ; Environment ; Florida Keys National Marine Sanctuary ; Coral ; Grounding ; Restoration ; Monitoring ; Hurricane Charley ; Hurricane Katrina ; Acropora palmata
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    NOAA/National Ocean Service/National Marine Sanctuary Program | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/2316 | 403 | 2011-09-29 19:17:03 | 2316 | United States National Ocean Service
    Publication Date: 2021-07-13
    Description: This document presents the results of baseline monitoring of a repaired coral reef injured by the M/V Wave Walker vessel grounding incident of January 19, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration(NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS. This report documents the efficacy of the restoration effort, the condition of the restored reef area two year and four months post-effort, and provides a picture of surrounding reference areas, so as to provide a basis for future comparisons by which to evaluate the long-term success of the restoration. (PDF contains 25 pages.)
    Keywords: Ecology ; Management ; Environment ; Coral ; Florida Keys ; National Marine Sanctuary Program ; Grounding ; Restoration ; Monitoring ; Montastrea annularis
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...