ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Centrosome  (2)
  • Cell Press  (1)
  • University of Chicago Press  (1)
  • Molecular Diversity Preservation International (MDPI)
Collection
  • Articles  (2)
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    University of Chicago Press
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago Press, 2012. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Quarterly Review of Biology 87 (2012): 315-324, doi:10.1086/668165.
    Description: The problem of eukaryogenesis—the evolutionary mechanism whereby eukaryotic cells evolved from prokaryotes—remains one of the great unsolved mysteries of cell biology, possibly due to the reductionist tendency of most scientists to work only within their subdisciplines. Communication between biologists who conduct research on the nucleus and those working on the cytoskeleton or endomembrane system are sometimes wanting, and yet, all of these quintessentially eukaryotic elements of the cell are interdependent, and are physically associated in many protists as the karyomastigont organellar system: nucleus, one or more basal bodies and flagella, nuclear connector, and Golgi apparatus. Here we suggest a more holistic view of the karyomastigont as not simply an organellar system, but an evolutionary seme, the archaic state of the eukaryotic cell. We also present a scheme whereby the karyomastigont may have dissociated, giving rise in more derived cells to one or more free nuclei and discrete flagellar apparati (akaryomastigonts).
    Description: Mark C. Alliegro is supported by grants from the National Institutes of Health (NIGMS) and National Science Foundation.
    Description: 2013-12-01
    Keywords: Karyomastigont ; Eukaryogenesis ; Flagellum ; Basal body ; Centrosome ; Nucleus
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meaders, J. L., de Matos, S. N., & Burgess, D. R. A pushing mechanism for microtubule aster positioning in a large cell type. Cell Reports, 33(1), (2020): 108213, doi:10.1016/j.celrep.2020.108213.
    Description: After fertilization, microtubule (MT) sperm asters undergo long-range migration to accurately position pronuclei. Due to the large sizes of zygotes, the forces driving aster migration are considered to be from pulling on the astral MTs by dynein, with no significant contribution from pushing forces. Here, we re-investigate the forces responsible for sperm aster centration in sea urchin zygotes. Our quantifications of aster geometry and MT density preclude a pulling mechanism. Manipulation of aster radial lengths and growth rates, combined with quantitative tracking of aster migration dynamics, indicates that aster migration is equal to the length of rear aster radii, supporting a pushing model for centration. We find that dynein inhibition causes an increase in aster migration rates. Finally, ablation of rear astral MTs halts migration, whereas front and side ablations do not. Collectively, our data indicate that a pushing mechanism can drive the migration of asters in a large cell type.
    Description: We would like to thank Dr. Jesse Gatlin for sending us the Tau-mCherry fusion protein for imaging live MTs. We would also like to thank Dr. Timothy Mitchison, Dr. Christine Field, and Dr. James Pelletier for supplying us with CA4, p150-CC1, and EB1-GFP peptides, as well as for fruitful discussions. Finally, we would like to thank Dr. Charles Shuster and Leslie Toledo-Jacobo for constructive feedback when preparing the manuscript. We thank Bret Judson and the Boston College Imaging Core for infrastructure and support. This material is based upon work supported by NSF grant no. 124425 to D.R.B.
    Keywords: Dynein ; Aster ; Microtubule ; Centrosome ; Pronucleus ; Fertilization ; Aster position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...