ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aster
  • protein crystalscrystal lattices
  • International Union of Crystallography (IUCr)  (2)
  • Cell Press  (1)
  • Wiley-Blackwell  (1)
Collection
Publisher
  • International Union of Crystallography (IUCr)  (2)
  • Cell Press  (1)
  • Wiley-Blackwell  (1)
  • Springer  (7)
  • Elsevier  (1)
Years
  • 1
    Publication Date: 2018-05-12
    Keywords: protein crystalscrystal lattices
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-12
    Keywords: protein crystalscrystal lattices
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meaders, J. L., de Matos, S. N., & Burgess, D. R. A pushing mechanism for microtubule aster positioning in a large cell type. Cell Reports, 33(1), (2020): 108213, doi:10.1016/j.celrep.2020.108213.
    Description: After fertilization, microtubule (MT) sperm asters undergo long-range migration to accurately position pronuclei. Due to the large sizes of zygotes, the forces driving aster migration are considered to be from pulling on the astral MTs by dynein, with no significant contribution from pushing forces. Here, we re-investigate the forces responsible for sperm aster centration in sea urchin zygotes. Our quantifications of aster geometry and MT density preclude a pulling mechanism. Manipulation of aster radial lengths and growth rates, combined with quantitative tracking of aster migration dynamics, indicates that aster migration is equal to the length of rear aster radii, supporting a pushing model for centration. We find that dynein inhibition causes an increase in aster migration rates. Finally, ablation of rear astral MTs halts migration, whereas front and side ablations do not. Collectively, our data indicate that a pushing mechanism can drive the migration of asters in a large cell type.
    Description: We would like to thank Dr. Jesse Gatlin for sending us the Tau-mCherry fusion protein for imaging live MTs. We would also like to thank Dr. Timothy Mitchison, Dr. Christine Field, and Dr. James Pelletier for supplying us with CA4, p150-CC1, and EB1-GFP peptides, as well as for fruitful discussions. Finally, we would like to thank Dr. Charles Shuster and Leslie Toledo-Jacobo for constructive feedback when preparing the manuscript. We thank Bret Judson and the Boston College Imaging Core for infrastructure and support. This material is based upon work supported by NSF grant no. 124425 to D.R.B.
    Keywords: Dynein ; Aster ; Microtubule ; Centrosome ; Pronucleus ; Fertilization ; Aster position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 36 (1993), S. 23-32 
    ISSN: 1040-452X
    Keywords: Sperm ; Aster ; Bovine ; Centrosome ; Polyspermy ; Adrogenote ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Chromatin and microtubule configurations during the first cell cycle of bovine zygotes were analyzed by DNA staining and microtubule immunolocalization using an IVM/IVF system and oocytes matured and fertilized in vivo, in order to investigate the origin of the active centrosome and to characterize the nuclear and the cytoplasmic changes following bovine fertilization. Our results suggest that the paternal centrosome is active during early zygotic development, forming a conspicuous sperm aster soon after fertilization. We also report that polyspermy in bovine eggs, leads to the formation of numerous sperm asters with different degrees of association with the chromatin. The maternal structures in both monospermic and polyspermic zygotes can be lost or degenerate. Consequently, these cells may resume the first cell cycle as androgenotes, very often with several types of mitotic activity taking place in different regions of the cell cytoplasm at the same time. As indicated by a comparison of monospermic and polyspermic fertilization rates to rates of development, it is possible that some androgenetic embryos cleave and develop to the blastocyst stage. © 1993 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...