ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Farm waste
  • Fertilization
  • Springer  (141)
  • Cell Press  (2)
  • Institute of Electrical and Electronics Engineers (IEEE)
  • Periodicals Archive Online (PAO)
  • Springer Science + Business Media
Collection
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 309-316 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Microbial activity ; Long-term field experiment ; Fertilization ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The Dehérain long-term field experiment was initiated in 1875 to study the impact of fertilization on a wheat-sugarbeet rotation. In 1987, the rotation was stopped to be replaced by continuous maize. Crop residues were soil-incorporated and the mineral fertilization was doubled in some plots. The impact of those changes on the microbial biomass and activity are presented. In spring 1987, the soil was still in a steady-state condition corresponding to the rotation. The microbial biomass was correlated with total organic C and decreased in the order farmyard manure〉mineral NPK〉unfertilized control. Microbial specific respiratory activity was higher in the unfertilized treatments. The soil biomass was closely related to soil N plant uptake. In 1989, after 2 years of maize and crop residue incorporation, the steady-state condition corresponding to the previous agricultural practices disappeared. So did the relationship between the biomass and total organic C, and the soil N plant uptake. Biomass specific respiratory activity increased because of low efficiency in the use of maize residues by microbes under N stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Methane emission ; Wetland rice ; Fertilization ; Mitigation of greenhouse gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of fertilizers on methane emission rates was investigated using an automated closed chamber system in Chinese rice fields (Human Province). Each of three experiments compared two fields treated with a first uniform fertilizer dose and a second fertilizer dose which was different for each of the two fields. The uniform fertilizer doses for both fields in each experiment comprised mineral (experiment 1), organic (experiment 2) and combined mineral plus organic components (experiment 3). In all three experiments the second fertilizer dose comprised organic amendments for field 1 and no organic amendments for field 2. The rate of increase in methane emission with a given amount of organic manure was found to depend on the total amount of organic manure applied. A single dose of organic manure increased the emission rates by factors of 2.7 to 4.1 as compared to fields without organic manure (experiment 1). In rice fields that had already been treated with organic manure, the application of a second dose of organic manure only slightly enhanced the emission rates in experiment 2 by factors of 1.1 to 1.5 and showed no detectable increase in experiment 3. The net reduction achieved by separation of organic and mineral fertilizers was maximized by concentrating the organic amendments in the season with low emission rates, i.e. early rice, and using exclusively mineral fertilizers on late rice when emission rates were generally higher. This distribution pattern, which was not associated with significant yield losses, resulted in an annual methane emission corresponding to only 56% of the methane emitted from fields treated with blended fertilizers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Methane emission ; Wetland rice ; Fertilization ; Mitigation of greenhouse gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of fertilizers +on methane emission rates was investigated using an automated closed chamber system in Chinese rice fields (Hunan Province). Each of three experiments compared two fields treated with a first uniform fertilizer dose and a second fertilizer dose which was different for each of the two fields. The uniform fertilizer doses for both fields in each experiment comprised mineral (experiment 1), organic (experiment 2) and combined mineral plus organic components (experiment 3). In all three experiments the second fertilizer dose comprised organic amendments for field 1 and no organic amendments for field 2. The rate of increase in methane emission with a given amount of organic manure was found to depend on the total amount of organic manure applied. A single dose of organic manure increased the emission rates by factors of 2.7 to 4.1 as compared to fields without organic manure (experiment 1). In rice fields that had already been treated with organic manure, the application of a second dose of organic manure only slightly enhanced the emission rates in experiment 2 by factors of 1.1 to 1.5 and showed no detectable increase in experiment 3. The net reduction achieved by separation of organic and mineral fertilizers was maximized by concentrating the organic amendments in the season with low emission rates, i.e. early rice, and using exclusively mineral fertilizers on late rice when emission rates were generally higher. This distribution pattern, which was not associated with significant yield losses, resulted in an annual methane emission corresponding to only 56% of the methane emitted from fields treated with blended fertilizers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 27 (1998), S. 293-298 
    ISSN: 1432-0789
    Keywords: Key words Methane oxidation ; Land use ; Fertilization ; Pesticide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In a first experiment, the effect of land use on the uptake rate of atmospheric CH4 was studied in laboratory incubations of intact soil cores. A soil under deciduous forest showed the highest CH4 oxidation. Its overall CH4 uptake during the measuring period (202 days) was 1.03 kg CH4 ha–1. Natural grassland showed the second highest CH4 oxidizing capacity (0.71 kg CH4 ha–1). The overall amount of CH4 uptake by fertilized pasture was 0.33 kg CH4 ha–1. CH4 oxidation in arable soils with different fertilizer treatments varied between 0.34 and 0.37 kg CH4 ha–1. Undisturbed soils had a higher CH4 uptake capacity than agricultural soils. The moisture content of the soil was found to be an important parameter explaining temporal variations of CH4 oxidation. Different methods of fertilization which had been commenced 10 years previously were not yet reflected in the total CH4 uptake rate of the arable soil. In a second experiment, a number of frequently used pesticides were screened for their possible effect on CH4 oxidation. In a sandy arable soil lenacil, mikado and oxadixyl caused significantly reduced CH4 oxidation compared to the control. Under the same conditions, but in a clayey arable soil, mikado, atrazine and dimethenamid caused a reduction of the CH4 uptake. In a landfill cover soil, with a 100-fold higher CH4 oxidation rate, no inhibition of CH4 oxidation was observed, not even when the application rate of pesticides was tenfold higher than usual.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Ammonium ; Nitrate ; N-mineralization ; Nitrification ; Fertilization ; Irrigation ; Forest ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest-floor and 0–10 cm depth mineral soil horizons in two stands of Douglas fir were sampled for available NH4 +-N and NO3 −-N, N-mineralization potentials, and nitrification potentials for 2 years. The plots in each stand were sampled for 1 year, treated with either ammonium sulfate, carbohydrate (sawdust-sucrose), irrigation, carbohydrate plus irrigation, or no treatment (control), and then sampled for 1 year following treatment. In general, the direction of change following the treatments was the same for both the forest-floor and the mineral soils. Fertilization increased the NH4 +-N and NO3 −-N pools, nitrification potential, and N-mineralization potential, while treatment with carbohydrate decreased all of these characteristics. Irrigation generally increased NH4 +-N pools, nitrification potential, and N-mineralization potential, but decreased these characteristics in the soil at one site. Irrigation plus carbohydrate gave similar results to those of carbohydrate alone. Treatments altered pool sizes and/or potentials, but did not reduce within-year variance in any of these characteristics. Distinct seasonal patterns occurred in all measurements, suggesting that control of short-term variation in N-transformation processes is by factors which are dynamic in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1988), S. 304-307 
    ISSN: 1432-0789
    Keywords: Fertilization ; Soil organic matter ; Soil particle size fractions ; Animal manure ; Total carbon and nitrogen contents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil was sampled in autumn 1984 in the 132 field (sandy loam soil) of the Askov long-term experiments (started in 1894) and fractionated according to particle size using ultrasonic dispersion and sedimentation in water. The unmanured plot and plots given equivalent amounts of N (1923–1984 annual average, 121 kg N/ha) in either animal manure or mineral fertilizer were sampled to a depth of 15 cm, fractionated and analysed for C and N. Mineral fertilizer and animal manure increased the C and N content of whole soil, clay (〈2 μm) and silt (2–20 μm) size fractions relative to unmanured samples, while the C content of the sand size fractions (fine sand 1, 20–63 μm; fine sand 2, 63–200 μm; coarse sand, 200–2000 μm) was less affected. Clay contained 58% and 65°70 of the soil C and N, respectively. Corresponding values for silt were 30% and 26%, while sand accounted for 10% of the soil C. Fertilization did not influence this distribution pattern. The C : N ratio of the silt organic matter (14.3) was higher and that of clay (10.6) lower than whole-soil C:N ratios (12.0). Fertilization did not influence clay and silt C : N ratios. Animal manure caused similar relative increases in the organic matter content of clay and silt size fractions (36%). In contrast, mineral fertilizer only increased the organic matter content of silt by 21% and that of clay by 14%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2285
    Keywords: Alnus ; Fertilization ; Irrigation ; Salix ; Sphagnum peat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Water willow and grey alder were grown on a raised sphagnum bog in central Sweden. The stands were intensively treated by daily irrigation and fertilization during the growing period in order to improve site fertility. After a 2-year establishment period high production rates were achieved in willow stands, 0.8 kg stem dry weight m−2 year−1 on current plus one (C+1) year old shoots. In these stands the canopy was closed with a leaf area index (LAI) that peaked at approximately 7. The canopy in the alder stand did not close during the initial 3 years of growth and the measured production rate was relatively low, at approximately 0.4 kg dry weight m−2 year −1 in the last year. The leaf nitrogen content was 3%–4% of dry weight during the summer and the other studied mineral elements were in almost optimal proportion to nitrogen. This was considered to be an effect of the intensive fertilization regime. Above-ground production close to maximum yield was attained in the prevailing conditions of soil, climate and biomass partitioning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 23 (1990), S. 141-145 
    ISSN: 1573-0867
    Keywords: Fertilization ; forestry ; nitrogen fixation ; rhizosphere ; rock phosphates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The use of rock phosphates in forestry is an important and economic alternative to soluble phosphorus sources for some soils. Interactions of tree rhizosphere processes and rock phosphates may increase availability and uptake efficiency, but interactions of rock phosphates in different forest soils may reduce availability. This study examined phosphorus diffusion rates in three forest soils fertilized with either of three rock phosphates of varying solubility. Diffusion rates were calculated from phosphorus buffer powers determined by desorption in pH adjusted solutions. Diffusion rates and rock phosphate solubilities were compared to quantities of phosphorus in whole-seedlings of black locust (Robinia pseudoacacia L.) grown in the experimental soils fertilized with the experimental rock phosphates. Results indicated that phosphorus uptake varied by rock phosphate solubility, but the pattern was different for each soil. Increasing solubility did not always increase phosphorus uptake. Diffusion rates with and without pH adjustment proved superior in predicting phosphorus availability in each soil and therefore may provide a better index for forestry use than rock phosphate solubility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0931-1890
    Keywords: Key words Drought stress ; Fertilization ; Irrigation ; Nitrogen fixation ; Nodule structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of water stress and nitrogen availability on leaf water potential, nitrogenase activity, and growth was studied in a pot experiment with Leucaena leucocephala seedlings. Water stress was imposed on fertilized and unfertilized plants after inoculation with Rhizobium. Non-inoculated seedlings were used as control plants. Water stress lowered leaf water potential in all seedlings after 14 days of treatment. In inoculated seedlings, fertilized plants were more sensitive to water stress than unfertilized plants, as shown by a higher leaf water potential in plants of the latter treatment. Uninoculated and fertilized seedlings were most affected by water stress. This indicates that Rhizobium might increase stress tolerance in unfertilized seedlings at moderate water stress levels. The combined effects of water stress and applied fertilizers resulted in cessation of nitrogen fixation. Nitrogen fixation came to a complete stop after 22 days of water stress in fertilized seedlings. The different treatments were accompanied by anatomical changes of nodule structure. It is hypothesised that the leaf water potential may be used as an indicator to predict changes in nitrogen fixation in legume tree/shrub species during periods of water stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 42 (1986), S. 74-75 
    ISSN: 1420-9071
    Keywords: Fertilization ; sperm protease ; ascidian ; timing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The timing of action of three sperm proteases, acrosin, spermosin, and a chymotrypsin-like enzyme, in the fertilization of the ascidian,Halocynthia roretzi, was examined by adding specific protease inhibitors at various times after insemination. The results indicate that the last two enzymes both function at the early stage of the process of sperm penetration through the egg investment, while acrosin functions at the late stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...