ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology  (719)
  • Oxford University Press  (693)
  • California Institute of Technology Pasadena  (16)
  • Springer, Berlin  (10)
  • 11
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Milano, California Institute of Technology Pasadena, vol. 1941, no. 6, pp. 98, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1944
    Keywords: Seismology ; Earthquake catalog ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Milano, California Institute of Technology Pasadena, vol. 1943, no. 6, pp. 140, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1944
    Keywords: Seismology ; Earthquake catalog ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Milano, California Institute of Technology Pasadena, vol. 1944, no. 6, pp. 138, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1945
    Keywords: Seismology ; Earthquake catalog ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Milano, California Institute of Technology Pasadena, vol. 1946, no. 6, pp. 120, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1947
    Keywords: Seismology ; Earthquake catalog ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Milano, California Institute of Technology Pasadena, vol. 1949, no. 6, pp. 72, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1950
    Keywords: Earthquake catalog ; Seismology ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Rome, California Institute of Technology Pasadena, vol. 1956, no. 6, pp. 152, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1957
    Keywords: Seismology ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Oxford University Press
    In:  New York, Oxford University Press, vol. 4, no. 1, pp. 1-40, (ISBN: 1-4020-1348-5 hb, ISBN: 1-4020-1349-3 pb)
    Publication Date: 1997
    Keywords: Textbook of geology ; Seismology ; Tectonics ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Earthquake hazard ; Earthquake risk ; Induced seismicity ; Magnitude ; Maximum likelihood
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-08
    Description: The attenuation and velocity dispersion of sonic waves contain valuable information on the mechanical and hydraulic properties of the probed medium. An inherent complication arising in the interpretation of corresponding measurements is, however, that there are multiple physical mechanisms contributing to the energy dissipation and that the relative importance of the various contributions is difficult to unravel. To address this problem for the practically relevant case of terrestrial alluvial sediments, we analyse the attenuation and velocity dispersion characteristics of broad-band multifrequency sonic logs with dominant source frequencies ranging between 1 and 30 kHz. To adequately compensate for the effects of geometrical spreading, which is critical for reliable attenuation estimates, we simulate our experimental setup using a correspondingly targeted numerical solution of the poroelastic equations. After having applied the thus inferred corrections, the broad-band sonic log data set, in conjunction with a comprehensive suite of complementary logging data, allows for assessing the relative importance of a range of pertinent attenuation mechanisms. In doing so, we focus on the effects of wave-induced fluid flow over a wide range of scales. Our results indicate that the levels of attenuation due to the presence of mesoscopic heterogeneities in unconsolidated clastic sediments fully saturated with water are expected to be largely negligible. Conversely, Monte-Carlo-type inversions indicate that Biot's classical model permits to explain most of the considered data. Refinements with regard to the fitting of the observed attenuation and velocity dispersion characteristics are locally provided by accounting for energy dissipation at the microscopic scale, although the nature of the underlying physical mechanism remains speculative.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-07-30
    Description: We investigate spatiotemporal variations of the crustal stress field orientation along the rupture zones of the 1999 August Izmit M w 7.4 and November Düzce M w 7.1 earthquakes at the North Anatolian Fault zone (NAFZ) in NW Turkey. Our primary focus is to elaborate on the relation between the state of the crustal stress field and distinct seismotectonic features as well as variations of coseismic slip within the seismogenic layer of the crust. To achieve this, we compile an extensive data base of hypocentres and first-motion polarities including a newly derived local hypocentre catalogue extending from 2 yr prior (1997) to 2 yr after (2001) the Izmit and Düzce main shocks. This combined data set allows studying spatial and temporal variations of stress field orientation along distinct fault segments for the pre- and post-seimic phase of the two large earthquakes in detail. Furthermore, the occurrence of two M  〉 7 earthquakes in rapid succession gives the unique opportunity to analyse the 87-d-long ‘inter-seismic phase’ between them. We use the MOTSI (first MOTion polarity Stress Inversion) procedure directly inverting first-motion polarities to study the stress field evolution of nine distinct segments. In particular, this allows to determine the stress tensor also for the pre- and post-seismic phases when no stable single-event focal mechanisms can be determined. We observe significantly different stress field orientations along the combined 200-km-long rupture in accordance with lateral variations of coseismic slip and seismotectonic setting. Distinct vertical linear segments of the NAFZ show either pure-strike slip behaviour or transtensional and normal faulting if located near pull-apart basins. Pull-apart structures such as the Akyazi and Düzce basins show a predominant normal faulting behaviour along the NAFZ and reflect clearly different characteristic from neighbouring strike-slip segments. Substantial lateral stress field heterogeneity following the two main shocks is observed that declines with time towards the post-seismic period that rather reflects the regional right-lateral strike-slip stress field.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-08
    Description: The Piton de la Fournaise basaltic volcano, on La Réunion Island in the western Indian Ocean, is one of the most active volcanoes in the world. This volcano is classically considered as the surface expression of an upwelling mantle plume and its activity is continuously monitored, providing detailed information on its superficial dynamics and on the edifice structure. Deeper crustal and upper mantle structure under La Réunion Island is surprisingly poorly constrained, motivating this study. We used receiver function techniques to determine a shear wave velocity profile through the crust and uppermost mantle beneath La Réunion, but also at other seismic stations located on the hotspot track, to investigate the plume and lithosphere interaction and its evolution through time. Receiver functions (RFs) were computed at permanent broad-band seismic stations from the GEOSCOPE network (on La Réunion and Rodrigues), at IRIS stations MRIV and DGAR installed on Mauritius and Diego Garcia islands, and at the GEOFON stations KAAM and HMDM on the Maldives. We performed non-linear inversions of RFs through modelling of P -to- S conversions at various crustal and upper mantle interfaces. Joint inversion of RF and surface wave dispersion data suggests a much deeper Mohorovičić discontinuity (Moho) beneath Mauritius (~21 km) compared to La Réunion (~12 km). A magmatic underplated body may be present under La Réunion as a thin layer (≤3 km thick), as suggested by a previous seismic refraction study, and as a much thicker layer beneath other stations located on the hotspot track, suggesting that underplating is an important process resulting from the plume–lithosphere interaction. We find evidence for a strikingly low velocity layer starting at about 33 km depth beneath La Réunion that we interpret as a zone of partial melt beneath the active volcano. We finally observe low velocities below 70 km beneath La Réunion and below 50 km beneath Mauritius that could represent the base of the oceanic lithosphere.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...