ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy  (2)
  • Blackwell Synergy  (1)
  • Molecular Diversity Preservation International
  • Public Library of Science (PLoS)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS) to two SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency) and COSMO-SkyMed (ASI, Italian Space Agency) satellites to investigate spatial and temporal patterns of land subsidence in the Sibari Plain (Southern Italy). Subsidence processes (up to ~20 mm/yr) were investigated comparing geological, hydrogeological, and land use information with interferometric results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary succession suggesting an active role of the isostatic compensation. Furthermore, the active back thrusting in the Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity and earthquakes do not seem play a role in the present subsidence. In this context, the compaction of Holocene deposits contributes to ground deformation. Despite the rapid urbanization of the area in the last 50 years, we do not consider the intensive groundwater pumping and related water table drop as the main triggering cause of subsidence phenomena, in disagreement with some previous publications. Our interpretation for the deformation fields related to natural and anthropogenic factors would be a comprehensive and exhaustive justification to the complexity of subsidence processes in the Sibari Plain.
    Description: PON (Operational National Plan) 2007–2013 from MIUR (Italian Research Ministry of Research) Project AMICUS (Study for the environmental protection and the mitigation of Anthropogenic Pollution In the Coastal Environment of selected areas of Calabria; ID: PON01_ 02818) - COSMO-SkyMed® PRODUCTS, © ASI (Italian Space Agency)—provided under license of ASI in the framework of the S3 Project “Short term earthquake prediction and preparation” (DPC-INGV, 2013). The Envisat images are provided by ESA (European Space Agency) under the CAT.1P 5605
    Description: Published
    Description: 16004–16023
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: SBAS-InSAR ; Sibari Plain ; subsidence ; geology ; anthropic processes ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The interpretation of coseismic surface deformation measurements through inversion techniques is of major importance to understand the mechanical behaviour of a seismic fault. Dense geodetic data sets in the vicinity of the ruptured fault provide unique constraints on detailed fault geometry and slip distribution at depth, making them complementary to seismological data. Bam earthquake (Mw 6.6, 2003 December 26) induced surface deformation has been precisely mapped by Envisat ASAR interferometry and by subpixel correlation techniques applied to Spot-5 and ASAR amplitude images. These oblique and horizontal estimations of deformation have been completed with one levelling profile along the main road crossing the rupture from west to east. We process these data (separately and jointly) in a two-step inversion technique, within the elastic half-space theory framework. Our objective is to determine the dislocation model at depth that satisfies simultaneously all the geodetic constraints. Also, we estimate the relative contribution of each geodetic data set to this inversion process. We first use a stochastic direct approach called neighbourhood algorithm in order to estimate the average characteristics of the rupture, and their relative uncertainty. Constraining in this way the geometry of the ruptured fault, we then linearize the inverse problem and compute the slip distribution on the fault using a standard weighted least-square technique, assuming the solution is smooth to some degree. At each step, we discuss the optimal models, their stability as well as the relative influence of each data set on the derived models parameters. Our preferred model reveals a shallow dislocation on a quasi-vertical fault, slightly dipping towards east. The slip vector has a strike-slip component as high as 2 m, while the dip-slip component seems negligible. However, the estimation of the resolution matrices emphasizes the fact that the details of deep fault slip distribution remain out of the scope of this ill-conditioned inverse problem. Yet, our preferred model suggests a main dislocation limited at depth between 1 and 6 km. By contrast, the aftershocks observed in the months following the earthquake are located just beneath the estimated main shock.
    Description: Published
    Description: 849-865
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: SAR Interferometry ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...