ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous  (25)
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
  • INGV  (29)
  • Elsevier Science Limited  (15)
  • Blackwell Publishing Ltd
  • Periodicals Archive Online (PAO)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-03-08
    Description: A combined GPS velocity solution covering a wide area from Egypt to Middle East allowed us to infer the current rates across the main, already well known, tectonic features. We have estimated 126 velocities from time series of 90 permanent and 36 non permanent GPS sites located in Africa (Egypt), Eurasia and Arabia plates in the time span 1996–2015, the largest available for the Egyptian sites. We have combined our velocity solution in a least-squares sense with two other recent velocity solutions of networks located around the eastern Mediterranean, obtaining a final IGb08 velocity field of about 450 sites. Then, we have estimated the IGb08 Euler poles of Africa, Sinai and Arabia, analyzing the kinematics of the Sinai area, particular velocity profiles, and estimating the 2D strain rate field. We show that it is possible to reliably model the rigid motion of Sinai block only including some GPS sites located south of the Carmel Fault. The estimated relative motion with respect to Africa is of the order of 2–3 mm/yr, however there is a clear mismatch between the modeled and the observed velocities in the southern Sinai sites. We have also assessed the NNE left shear motion along the Dead Sea Transform Fault, estimating a relative motion between Arabia and Africa of about 6 mm/yr in the direction of the Red Sea opening.
    Description: Published
    Description: 231-238
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Africa; Arabia; Sinai; Gulf of Aqaba; Gulf of Suez; GPS; Combined velocity field; Euler poles ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: The 11 March 2011 Tohoku earthquake was the strongest event recorded in recent historic seismicity in Japan. Several researchers reported the deformation and possible mechanism as triggered by a mega thrust fault located offshore at the interface between the Pacific and the Okhotsk Plate. The studies to estimate the deformation in detail and the dynamics involved are still in progress. In this paper, coseismic GPS displacements associated with Tohoku earthquake are used to infer the amount of slip on the fault plane. Starting from the fault displacements configuration proposed by Caltech-JPL ARIA group and Geoazur CNRS, an optimization of these displacements is performed by developing a 3D finite element method (FEM) model, including the data of GPS-acoustic stations located offshore. The optimization is performed for different scenarios which include the presence of topography and bathymetry (DEM) as well as medium heterogeneities. By mean of the optimized displacement distribution for the most complete case (heterogeneous with DEM), a broad slip distribution, not narrowly centered east of hypocenter, is inferred. The resulting displacement map suggests that the beginning of the area of subsidence is not at east of MYGW GPS-acoustic station, as some researchers have suggested, and that the area of polar reversal of the vertical displacement is rather located at west of MYGW. The new fault slip distribution fits well for all the stations at ground and offshore and provides new information on the earthquake generation process and on the kinematics of Northern Japan area.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 2011 Tohoku earthquake ; Fault slip distribution ; Numerical FEM optimization ; Upper plate rebound ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: In this paper, the relationship between the dike-forming magmatic intrusions and the faulting process at Mount Etna is investigated in terms of Coulomb stress changes. As case study, a complete time-dependent 3-D finite element model for the 2002-2003 eruption at Mount Etna is presented. In the model, which takes into account the topography, medium heterogeneities and principal fault systems in a viscoelastic/plastic rheology, we sequentially activated three dike-forming processes and looked at the induced temporal evolution of the Coulomb stress changes, during the co-intrusive and post-intrusive periods, on Pernicana and Santa Venerina faults. We investigated where and when fault slips were encouraged or not, and consequently how earthquakes may have been triggered. Results show positive Coulomb stress changes for the Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquake (Md = 3.5). The amount of Coulomb stress changes in the area of Santa Venerina Fault, as induced by dike-forming intrusions only, is instead almost negligible and, probably, not sufficient to trigger the 29th October Santa Venerina earthquake (Md = 4.4), occurred two days after the start of the eruption. The necessary Coulomb stress change value to trigger this earthquake is instead reached if we consider it as induced by the 27th October Pernicana biggest earthquake, combined with the dike-induced stresses.
    Description: MED-SUV FP7 Project (Grant number 308665)
    Description: Published
    Description: 185-196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Coulomb stress changes ; Finite Element Model ; Viscoelasticity ; Earthquakes ; Mount Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-27
    Description: In this paper we show results from the combinantion of GPS and CGPS data to estimate the velocity and strain fields across the Messina Straits. Data from CGPS networks of ASI, RING and ITALPOS together with GPS data collected since 1980 during repeated campaigns and recently in the frame of the "Progetto Messina" funded by DPC, are discussed and interpreted to improve the current kinematics of this seismic area.
    Description: Published
    Description: Reggio Calabria
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: GPS, Stretto di Messina ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: Slip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.
    Description: Project “Abruzzo” (code: RBAP10ZC8K_ 003) funded by the Italian Ministry of Education, University and Research (MIUR).
    Description: Published
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: slip rate ; numerical model ; fault ; rheology ; central Italy ; active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-15
    Description: Active deformation in southern Italy is accommodated by a distributed number of faults with low–moderate slip rates. Outcropping extensional faults and mostly blind transcurrent faults are mapped within a western (or axial) and an eastern domain, respectively. We use a combination of continuous (2001.00–2011.84) and episodic (1995.68–2010.79) GNSS observations to firstly estimate the geodetic deformation rate on 32 faults. Geodetic results were successively compared with geological displacement estimates. In agreement with seismological and geological information, a net spatial segregation emerges between the extensional axial belt, and the eastern domain where strike–slip faults are geodetically active. Although uncertainties are at times large, average displacement rates show broadly consistent patterns within both domains. A longitudinal gradient in extension rate is observed for the axial fault array, with two sectors of higher magnitude (~ 0.8–1.7 mm/yr for individual faults). This result is consistent with geological observations and supports the notion that extension occurs in discrete patches. Faults of the eastern domain have lower (few 0.1 to ~ 1.2 mm/yr) strike–slip rates and an eastward-decreasing extensional component, but significant geodetic displacement is detected in areas lacking clear evidence of activity. Few faults with 1–2 mm/yr extension rate are locally found in the eastern domain, but, based on their limited length and on inconsistency with seismology and geology, they are considered as due to deep-seated gravitational spreading. For crustal faults, although geodetic slip and moment rates are larger than geological rates, the broad trend of long- to short-term rates is similar, indicating the feasibility of geodetic analysis to contribute estimating fault slip rate and testing tectonic models in the region. Whereas the western domain extension is thought to be controlled by potential energy related to the Tyrrhenian Moho uplift beneath the Apennines, strike–slip in the east is related to shear on inherited faults within the Adriatic crust.
    Description: Published
    Description: 101-122
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: GNSS velocity ; Active fault ; Geodetic slip rate ; Southern Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-07
    Description: After the April 6th 2009 MW 6.3 (ML 5.9) L'Aquila earthquake (central Italy), we re-measured more than 100 km of high-precision levelling lines in the epicentral area. The joint inversion of the levelling measurements with InSAR and GPS measurements, allowed us to derive new coseismic and post-seismic slip distributions and to de- scribe, with high resolution details on surface displacements, the activation and the slip distribution of a second- ary fault during the aftershock sequence that struck the Campotosto area (major event MW 5.2). Coseismic slip on the Paganica fault occurred on one main asperity, while the afterslip distribution shows a more complex pattern, occurring on three main patches, including both slips on the shallow portions and on the deeper parts of the rup- ture plane. The comparison between coseismic and post-seismic slip distributions strongly suggests that afterslip was triggered at the edges of the coseismic asperity. The activation of a segment of the Campotosto fault during the aftershock sequence, with a good correlation between the estimated slipping area, moment release and distribution of aftershocks, raises the opportunity to discuss the local seismic hazard following the occurrence of the 2009 L'Aquila mainshock. The Campotosto fault appears capable of generating earthquakes as large as his- torical events in the region (M N 6.5) or as small as the ones associated with the 2009 sequence. In the case that the Campotosto fault is accumulating a significant portion of the current interseismic deformation, the 2009 MW N 5 events will have released only a small amount of the accumulated elastic strain, and then a significant hazard still remains in the area. Continuing geodetic monitoring and a densification of the GPS networks in the region are therefore needed to estimate the tectonic loading across the different recognized active fault systems in this part of the Apennines.
    Description: Published
    Description: 168-185
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: High-precision leveling; InSAR; GPS; Earthquake source; Normal faulting; Seismic hazard ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    INGV
    Publication Date: 2017-04-03
    Description: Emeritus Professor Samuel Warren Carey passed away on 20 March 2002 at age 90. He was born at Campbelltown, New South Wales on 1st November 1911, and attended school at the Canterbury Boys High School. Carey’s father was a printer, who became a public lecturer when he arrived in Australia. His mother’s people were early Australian settlers. The Carey home was a farm near Campbelltown and as a boy, little Samuel walked nearly seven miles to School and back each day, an activity that prepared him for work in harsh climatic and environmental conditions. Sam Carey’s large family included two sisters and four brothers, one of whom died in World War II. At the University of Sydney, in 1929, Carey enrolled in chemistry, physics, and mathematics and only as a fourth subject – geology. However, he was soon reoriented towards geology as his main subject by Sir Edgeworth David, an Antarctic explorer. This preference developed from his liking for fieldwork in geology, combined with lab work. He was strongly inclined towards sports (hockey, sailing, rugby, marksmanship, canoeing) and physical activities (cave exploration, rock climbing, hiking, jungle expeditions, parachuting). He graduated in Geology from the University of Sydney earning a Bachelor of Science with First Class Honours in 1933, Master of Science in 1934, and Doctor of Science in 1939. At university he founded the Student’s Geological Society in 1931 and was its first president. He has been a pioneer in geology all his life. He was fortunate to participate as a protagonist for two and possibly three revolutions in the Earth sciences. He challenged the concept of continents in fixed positions from the outset and from 1946 to 1956 he taught a version of intercontinental movement with subduction in deep ocean trenches. This came to be called ‘plate tectonics’ some twenty years later but at the time when no one believed in any form of intercontinental movement, Carey’s version was also called ‘continental drift’ by default. Carey developed a new way to interpret orogens. He did not ascribe the building of mountain chains to compression – as is commonly accepted by the geological community involved in contraction or pulsation tectonics. Carey ascribed it to isostatic instability where rising mantle beneath deep sediment filled trenches causes diapiric uplift. The observed folding was explained as the consequent downward gravitational sliding of uplifted strata. This mountain building concept is still considered valid today and it constitutes part of a more diversified classification of mountain evolution that has been developed by Cliff Ollier. Carey proposed abandonment of the subduction concept, and put forward step by step the concept of Earth expansion. Carey – using the orocline concept – generalised his views on movement between continents, demonstrating that the continents could fit together better if the Earth was smaller in size.
    Description: Published
    Description: 85-95
    Description: open
    Keywords: History of global tectonic theories ; Expanding Earth ; S.W. Carey ; Hobart ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 1089204 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Il Vesuvio è noto nel mondo soprattutto per la grande eruzione del 79 d.C., che distrusse in soli due giorni Pompei, Ercolano, Oplonti e Stabia. Dopo il 79 d.C., il Vesuvio ha alternato periodi di attività, caratterizzati da frequenti eruzioni di media energia, a periodi di riposo, lunghi anche molti secoli e interrotti da violente eruzioni esplosive come quelle del 472 d.C. e del 1631. L’attività del vulcano negli ultimi tre secoli è stata caratterizzata da eruzioni di moderata energia ma di grande effetto spettacolare, che hanno reso il Vesuvio meta di viaggiatori, scienziati, letterati e artisti da tutto il mondo. Dopo l’eruzione del 1944, il vulcano è entrato in una fase di quiescenza, la cui durata è impossibile da prevedere. Negli ultimi decenni il vulcano è stato caratterizzato da una debole attività fumarolica, prevalentemente nell’area craterica, e da attività sismica con scosse di energia medio-bassa. La storia eruttiva del Vesuvio indica che il vulcano non può essere considerato estinto ed è molto probabile che l’attuale quiescenza venga interrotta da una nuova, violenta eruzione. L’Osservatorio Vesuviano, inaugurato nel 1845 da Ferdinando II re delle Due Sicilie, è il primo osservatorio vulcanologico al mondo. Ha permesso per oltre centocinquanta anni l’osservazione minuziosa delle eruzioni vesuviane e dei loro precursori. Oggi vigila sullo stato di attività dei vulcani campani, pronto a cogliere i primi segni di riattivazione. La mostra Vesuvio: 2000 anni di osservazioni conduce il visitatore attraverso un affascinante percorso nel mondo dei vulcani, e del Vesuvio in particolare: descrive i vari tipi di eruzioni e i pericoli relativi, spiega come si ricostruisce la storia di un vulcano, presenta ricche collezioni di campioni di rocce e minerali vesuviani e di strumenti storici, libri e dipinti. È possibile anche osservare la registrazione in tempo reale di dati sismici della rete dell’INGV - Osservatorio Vesuviano. L’obiettivo principale del Museo è fornire soprattutto agli abitanti dell’area vesuviana, ma anche al vasto pubblico che visita il Vesuvio, informazioni sui principali pericoli vulcanici attesi e sulle metodologie di monitoraggio.
    Description: Published
    Description: 5.8. TTC - Formazione e informazione
    Description: open
    Keywords: museo ; vesuvio ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Giovanni Capellini (1833-1922) was one of the leading representatives of the Italian and international scientific community from the mid-19th century until 1922, the year of his death. Professor of Geology at the University of Bologna from 1860, geologist, palaeontologist and archaeologist, in 1871 he organised, straight after the unification of Italy, the 5th International Congress in Archaeology and Prehistoric Anthropology, first in Italy, and in 1881 brought to Bologna, for the first time ever in Italy, the 2nd International Geological Congress. His studies and publications strongly influenced the geological thinking of his times. At the Archiginnasio Library in Bologna there are as many as 30,000 documents from his scientific letters (The Capellini Archive), the result of an intense correspondence he had with geologists, seismologists, astronomers and meteorologists, but also with people from the world of culture and politics. The letters relating to the earth sciences, from scientific but also political point of view, are the majority. The archive includes letters from more then 4,300 senders, of which at least 25% foreign ones incuding Charles Lyell (geologist), Emmanuel Friedlaender (volcanologist), Philip Eduard De Verneuil (naturalist), Henry James Johnston Lavis (volcanologist).
    Description: Published
    Description: 667-677
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: Giovanni Capellini ; history of earth sciences ; scientific letters ; 2nd International Geological Congress ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...