ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.02. Geochronology  (4)
  • Wiley  (2)
  • Coastal Education and Research Foundation (CERF)  (1)
  • Istituto Lombardo Accademia di Scienze e Lettere  (1)
  • American Physical Society
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the UPb age of detrital zircon and the 40Ar39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence. Copyright © 2010 John Wiley & Sons, Ltd.
    Description: Published
    Description: 288-310
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-10
    Description: The Holocene evolution of the Cabo Raso bay (Atlantic Patagonian coast) was reconstructed by means of geomorphological, stratigraphic, and palaeontological analyses, assisted by radiocarbon dating. Six beach ridges were individuated and mapped in the field, as well as some rocky erosional landforms, e.g., inner margins of marine terraces. Thanks to quarry sections, the internal structure of beach ridges, their relationship with continental deposits, and the fossil contents were determined. Two specimens of Aulacomya atra and Brachidontes purpuratus were radiocarbon dated at 6055 and 4500 ± 20 YBP, respectively. The bedrock outcrops at the base of an analysed section allowed us to associate the age of the samples collected to the elevation of the marine transgression surface upon which the entire deposit rests. Because a beach ridge is a regressive form, the elevation of the base of the dated deposit was assumed to be equivalent to or slightly lower than the maximum sea-level stationing, represented by the inner margin of the coheval marine terrace. The altimetric correlation between the base of the beach ridge dated at 6055 ± 20 YBP and the inner margin of the corresponding marine terraces allowed us to constrain the maximum Holocene marine transgression to about 3 to 2 m above sea level. This elevation for the maximum Holocene transgression is lower than that shown by most of the previous data for Patagonian coast, but it shows a crude agreement with recent estimates coming from geophysical models that report, for this area, a departure from the eustatic value of sea level, mainly caused by glacioisostatic process. This means that the employment of marine erosional landforms, associated with other multisource field data, proved to be determinant for reconstructing the sea-level variation in the Patagonian coast.
    Description: Published
    Description: 973-983
    Description: 1.10. TTC - Telerilevamento
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Beach ridge ; coastal geomorphology ; sea level ; radiocarbon dating ; Holocene ; Patagonia ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the U-Pb age of detrital zircon and the 40Ar-39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Istituto Lombardo Accademia di Scienze e Lettere
    Publication Date: 2020-11-16
    Description: Facies analysis applied to several up to 220-m-deep cores, taken by Regione Lombardia in the central-northern Po Plain, allowed to recognize an overall regressive sequence consisting of cyclotemic shallow marine and fluvial-deltaic deposits overlain by distal to proximal braidplain sediments. Magnetostratigraphy, coupled with calcareous nannoplankton biostratigraphy, was used to date marine and fluvial-deltaic sediments to the early Pleistocene and continental sediments to the middle–late Pleistocene. Sediment accumulation rates were of ~0.3-0.4 mm/yr in the early Pleistocene, whereas an overall reduction in sediment accumulation rates to ~0.06-0.08 mm/yr, associated to relevant unconformities, characterized the middle-late Pleistocene. Stratigraphic evidences from petrographic, sedimentologic and palynologic analyses highlight in the Regione Lombardia cores a drastic reorganization of vegetational, fluvial, and Alpine drainage patterns, associated to a sequence boundary termed the “R surface”. The “R surface”, seismically traceable across the Po Plain subsurface, was constrained magnetostratigraphically to the first prominent Pleistocene glacio-eustatic lowstand of marine isotope stage (MIS) 22 at 0.87 Ma at the end of the Mid-Pleistocene Revolution, when climate worsened globally and locally caused the onset of the first major Pleistocene glaciation in the Alps. Most marine deposits in the cores lie above sea level highstands of corresponding age, suggesting that they have been uplifted. In order to estimate the observed rock uplift, sediments were back-stripped to elevations at times of deposition (expressed in meters above current sea level) by applying a simple Airy compensation model. The correlation of the isostatically corrected sedimentary facies to a glacio-eustatic reference curve obtained from classic oxygen isotope studies highlights a positive elevation mismatch (rock uplift) in the range of 70-120 m, which occurred after the onset of the major Pleistocene glacial-interglacial cycles at rates of at least 0.15-0.09 mm/yr. Although the driving forces of the observed rock uplift cannot be unambiguously identified, but its timing of onset after the beginning of the major Pleistocene glacial-interglacial cycles and the low seismicity observed in the most of the Regione Lombardia area seem to point to an isostatic readjustment of the chain probably due to the long-term erosional removal of sediments during major Pleistocene glacial advances.
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: Pleistocene ; Po Plain ; paleomagnetism ; glaciation ; rock uplift ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...