ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer Nature | Springer International Publishing
    Publication Date: 2024-04-07
    Description: This open access proceedings volume brings selected, peer-reviewed contributions presented at the Stochastic Transport in Upper Ocean Dynamics (STUOD) 2021 Workshop, held virtually and in person at the Imperial College London, UK, September 20–23, 2021. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA) and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation and oceanography.
    Keywords: mathematics of planet earth ; STUOD ; ocean modelling ; ocean observations ; stochastic partial differential equations ; dynamical systems ; data analysis ; data assimilation ; deep learning ; particle filters ; geometric mechanics ; Navier-Stokes equation ; stochastic transport ; stochastic parameterization ; stochastic variational principles ; nonlinear water waves ; free surface fluid dynamics ; Stochastic Advection by Lie Transport ; Stochastic Forcing by Lie Transport ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBW Applied mathematics ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBT Probability and statistics ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBK Calculus and mathematical analysis ; thema EDItEUR::G Reference, Information and Interdisciplinary subjects::GP Research and information: general::GPF Information theory::GPFC Cybernetics and systems theory
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature | Springer Nature Switzerland
    Publication Date: 2024-04-04
    Description: This open access proceedings volume brings selected, peer-reviewed contributions presented at the Third Stochastic Transport in Upper Ocean Dynamics (STUOD) 2022 Workshop, held virtually and in person at the Imperial College London, UK, September 26–29, 2022. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA) and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation and oceanography.
    Keywords: mathematics of planet earth ; math open access proceedings ; STUOD ; ocean modelling ; ocean observations ; stochastic partial differential equations ; dynamical systems ; data analysis ; data assimilation ; deep learning ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBW Applied mathematics ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBT Probability and statistics ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBK Calculus and mathematical analysis ; thema EDItEUR::G Reference, Information and Interdisciplinary subjects::GP Research and information: general::GPF Information theory::GPFC Cybernetics and systems theory
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-14
    Description: Riverine influences in the Mediterranean Sea are investigated by means of numerical experiments performed with an ocean general circulation model implemented in the basin, along with the model capability to correctly reproduce the thermohaline properties of the basin through an improved representation of the riverine inputs. As a first step, an improved implementation of the Dardanelles Strait inflow into the Mediterranean Sea is performed, moving from a river-like parameterization to a lateral open boundary condition implementation. The river runoff impacts on the Mediterranean Sea are then evaluated by means of sensitivity experiments considering an increased number of river runoff sources, different riverine outflow salinity values, a modified mixing at river mouths and a different vertical mixing scheme adopted in the ocean model. With the purpose of further improving the representation of the estuarine processes affecting the riverine outflow salinity and volume flux, which cannot be resolved by the current resolution of the Mediterranean Sea ocean model, an Estuary Box Model simulating the estuaries dynamics is implemented at each river and 1-way offline coupled with the Mediterranean Sea ocean model. The results of the performed numerical experiments are validated with respect to in situ and satellite observations to evaluate the capability of the model to correctly represent the thermohaline properties of the Mediterranean Sea. In addition, the riverine influences are evaluated assessing the impacts of the tested river runoff forcings on the mixed layer depth, the circulation pattern, the sea surface height and the water volume transport through the major straits of the Mediterranean Sea, comparing the numerical results with available climatological data sets and reference literature.
    Description: Alma Mater Studiorum Università di Bologna
    Description: Published
    Description: 4A. Oceanografia e clima
    Keywords: Mediterranean Sea ; ocean modelling ; river runoff
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-16
    Description: Analyzing ocean variability, understanding its importance for the climate system, and quantifying its socio-economic impacts are among the primary motivations for obtaining ongoing global ocean observations. There are several possible approaches to address these tasks. One with much potential for future ocean information services and for climate predictions is called ocean synthesis, and is concerned with merging all available ocean observations with the dynamics embedded in an ocean circulation model to obtain estimates of the changing ocean that are more accurate than either system alone can provide. The field of ocean synthesis has matured over the last decade. Several global ocean syntheses exist today and can be used to investigate key scientific questions, such as changes in sea level, heat content, or transports. This CWP summarizes climate variability as “seen” by several ocean syntheses, describes similarities and differences in these solutions and uses results to highlight developments necessary over the next decade to improve ocean products and services. It appears that multi-model ensemble approaches can be useful to obtain better estimates of the ocean. To make full use of such a system, though, one needs detailed error information not only about data and models, but also about the estimated states. Results show that estimates tend to cluster around methodologies and therefore are not necessarily independent from each other. Results also reveal the impact of a historically under-sampled ocean on estimates of inter-decadal variability in the ocean. To improve future estimates, we need not only to sustain the existing observing system but to extend it to include full-depth ARGO-type measurements, enhanced information about boundary currents and transports through key regions, and to keep all important satellite sensors flying indefinitely, including altimetry, gravimetry and ice thickness, microwave SST observations, wind stress measurements and ocean color. We also need to maintain ocean state estimation as an integral part of the ocean observing and information system.
    Description: Published
    Description: Venice, Italy
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: ocean modelling ; Global climate models ; reanalysis ; coupled models ; ensemble ocean syntheses ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-16
    Description: Monthly averaged total volume transport of the Indonesian throughflow (ITF) estimated by 14 global ocean data assimilation (ODA) products that are decade to multi-decade long are compared among themselves and with observations from the INSTANT Program (2004-2006). The ensemble averaged, time-mean value of ODA estimates is 13.6 Sv (1 Sv = 106 m3/s) for the common 1993-2001 period and 13.9 Sv for the 2004-2006 INSTANT Program period. These values are close to the 15-Sv estimate derived from INSTANT observations. All but one ODA time-mean estimate fall within the range of uncertainty of the INSTANT estimate. In terms of temporal variability, the average scatter among different ODA estimates is 1.7 Sv, which is substantially smaller than the magnitude of the temporal variability simulated by the ODA systems. Therefore, the overall “signal-to-noise” ratio for the ensemble estimates is larger than one. The best consistency among the products occurs on seasonal-to-interannual time scales, with generally stronger (weaker) ITF during boreal summer (winter) and during La Nina (El Nino) events. The averaged scatter among different products for seasonal-to-interannual time scales is approximately 1 Sv. Despite the good consistency, systematic difference is found between most ODA products and the INSTANT observations. All but the highest-resolution (18-km) ODA product show a dominant annual cycle while the INSTANT estimate and the 18-km product exhibit a strong semi-annual signal. The coarse resolution is an important factor that limits the level of agreement between ODA and INSTANT estimates. Decadal signals with periods of 10-15 years are seen. The most conspicuous and consistent decadal change is a relatively sharp increase in ITF transport during 1993-2000 associated with the strengthening tropical Pacific trade wind. Most products do not show a weakening ITF after the mid-1970s’ associated with the weakened Pacific trade wind. The scatter of ODA estimates is smaller after than before 1980, reflecting the impact of the enhanced observations after the 1980s. To assess the representativeness of using the average over a three-year period (e.g., the span of the INSTANT Program) to describe longer-term mean, we investigate the temporal variations of the three-year low-pass ODA estimates. The median range of variation is about 3.2 Sv, which is largely due to the increase of ITF transport from 1993 to 2000. However, the three-year average during the 2004-2006 INSTANT Program period is within 0.5 Sv of the long-term mean for the past few decades.
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: ocean modelling ; data assimilation ; Indonesian region ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-01
    Description: Five non-eddy-resolving oceanic general circulation models driven by atmospheric fluxes derived from the NCEP reanalysis are used to investigate the link between the Gulf Stream (GS) variability, the atmospheric circulation, and the Atlantic meridional overturning circulation (AMOC). Despite the limited model resolution, the temperature at the 200-m depth along the mean GS axis behaves similarly in most models to that observed, and it is also well correlated with the North Atlantic Oscillation (NAO), indicating that a northward (southward) GS shift lags a positive (negative) NAO phase by 0–2 yr. The northward shift is accompanied by an increase in the GS transport, and conversely the southward shift with a decrease in the GS transport. Two dominant time scales appear in the response of the GS transport to the NAO forcing: a fast time scale (less than 1 month) for the barotropic component, and a slower one (about 2 yr) for the baroclinic component. In addition, the two components are weakly coupled. The GS response seems broadly consistent with a linear adjustment to the changes in the wind stress curl, and evidence for baroclinic Rossby wave propagation is found in the southern part of the subtropical gyre. However, the GS shifts are also affected by basin-scale changes in the oceanic conditions, and they are well correlated in most models with the changes in the AMOC. A larger AMOC is found when the GS is stronger and displaced northward, and a higher correlation is found when the observed changes of the GS position are used in the comparison. The relation between the GS and the AMOC could be explained by the inherent coupling between the thermohaline and the wind-driven circulation, or by the NAO variability driving them on similar time scales in the models.
    Description: This research was supported by the PREDICATE project of the European Community, and for M. Bentsen by the Research Council of Norway through RegClim, NOClim, and the Programme of Supercomputing.
    Description: Published
    Description: 2119–2135
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ocean modelling ; gulf stream variability ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-16
    Description: Spurred by the sustained operation and new development of satellite and in-situ observing systems, global ocean state estimation efforts that gear towards climate applications have flourished in the past decade. A hierarchy of estimation methods is being used to routinely synthesize various observations with global ocean models. Many of the estimation products are available through public data servers. There have been an increasingly large number of applications of these products for a wide range of research topics in physical oceanography as well as other disciplines. These studies often provide important feedback for observing systems design. This white paper describes the approaches used by these estimation systems in synthesizing observations and model dynamics, highlights the applications of their products for climate research, and addresses the challenges ahead in relation to the observing systems. Additional applications to study climate variability using an ensemble of state estimation products are described also by a white paper by Stammer et al.
    Description: Published
    Description: Venice, Italy
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: ocean modelling ; Global climate models ; reanalysis ; coupled models ; observing systems ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.
    Description: This work has been funded by the ENACT Project (Contract EVK2-CT2001-00117) for A. Bellucci and P. Di Pietro, and partially by the ENSEMBLES Project (Contract GOCE-CT-2003-505539) for A. Bellucci.
    Description: Published
    Description: 3785-3807
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ocean modelling ; data assimilation ; reanalysis ; upper ocean variability ; temperature ; Salinity ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-03
    Description: The development of the INGV (Istituto Nazionale di Geofisica e Vulcanologia)-CMCC (Centro Euro-Mediterraneo per i Cambiamenti Climatici) Seasonal Prediction System (SPS) is documented. In this SPS the ocean initial conditions estimation includes a Reduced Order Optimal Interpolation procedure for the assimilation of temperature and salinity profiles at the global scale. Nine member ensemble forecasts have been produced for the period 1991-2003 for two starting dates per year in order to assess the impact of the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations (i.e.: without assimilation of subsurface profiles during ocean initialization), we showed that the improved ocean initialization increases the skill in the prediction of tropical Pacific SSTs in our system for boreal winter forecasts. Considering the forecast of the El Ni˜no 1997-1998, the data assimilation in the ocean initial conditions leads to a considerable improvement in the representation of its onset and development. Our results indicate a better prediction of global scale surface climate anomalies for the forecasts started in November, probably due to the improvement in the tropical Pacific. For boreal winter, in both tropics and extra tropics, we show significant increases in the capability of the system to discriminate above normal and below normal temperature anomalies.
    Description: Published
    Description: 2930-2952
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: ocean modelling ; global climate models ; seasonal forecast ; coupled models ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Global ocean modelling activities at Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) include the development and implementation of data assimilation techniques applied to a global ocean general circulation model to investigate the role of the ocean on climate variability and predictability. The main objective is the production of global ocean re-analyses over multidecadal periods to reconstruct the state of the ocean and the large scale circulation over the recent past for climate applications and for the assessment of the benefits of assimilating ocean observations on seasonal and longer climate predictability. Here we present the main characteristics of the assimilation system and a set of global ocean re-analyses produced with this system. Applications of these data assimilation products to the study of climate variability and to the assessment of subsurface ocean initialization contribution to seasonal climate predictability will also be reported.
    Description: The authors wish to thank the Centro Euro-Mediterraneo per i Cambiamenti Climatici for its financial and scientific support of some of the activities presented in this work. The implementation and the following improvements of the global ocean assimilation system were carried out in the framework of the ENACT (EVK2-CT2001-00117) and ENSEMBLES (GOCE-CT-2003-505539) projects. The MyOcean (FP7-SPACE-2007-1) project is feeding some of the most recent developments.
    Description: In press
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: N/A or not JCR
    Description: open
    Keywords: ocean modelling ; data assimilation ; reanalysis ; upper ocean variability ; sea level height ; temperature ; salinity ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...