ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Coastal flows
  • Internal waves
  • Mixing
  • North Atlantic Ocean
  • Frontiers Media  (2)
  • Elsevier Science Limited  (1)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-06-22
    Beschreibung: A new set of cross-over marine data has been used to generate a regional model for the secular variation of the total geomagnetic field, showing the potential of the suggested approach for gaining a better knowledge of the field over oceanic regions. The model, which is valid for the Northern Atlantic region during the temporal interval 1960–2000, was obtained using spherical cap harmonic analysis (SCHA) in space and penalized splines in time. The maximum spatial expansion is equivalent to degree 9 in ordinary spherical harmonic analysis. Annual mean intensity data from different geomagnetic observatories have been used to improve the spatial and temporal resolution of the original dataset. Results indicate that the regional model improves, in terms of the root mean square error, the prediction given by the 11th generation of IGRF and CM4 global models, especially for the geomagnetic observatories considered. We also provide the uncertainty of the model coefficients and the secular variation prediction given by a bootstrap algorithm. The model is available in the EarthRef. org Digital Archive at http://earthref.org/ERDA/1728/.
    Beschreibung: Published
    Beschreibung: 21-31
    Beschreibung: 1A. Geomagnetismo e Paleomagnetismo
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Geomagnetism ; Secular variation ; Regional modeling ; North Atlantic Ocean ; Spherical cap harmonic analysis ; Geomagnetic marine data ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, S., Longnecker, K., Kujawinski, E., Vergin, K., Bolaños, L., Giovannoni, S., Parsons, R., Opalk, K., Halewood, E., Hansell, D., Johnson, R., Curry, R., & Carlson, C. Linkages among dissolved organic matter export, dissolved metabolites, and associated microbial community structure response in the northwestern Sargasso Sea on a seasonal scale. Frontiers in Microbiology, 13, (2022): 833252, https://doi.org/10.3389/fmicb.2022.833252.
    Beschreibung: Deep convective mixing of dissolved and suspended organic matter from the surface to depth can represent an important export pathway of the biological carbon pump. The seasonally oligotrophic Sargasso Sea experiences annual winter convective mixing to as deep as 300 m, providing a unique model system to examine dissolved organic matter (DOM) export and its subsequent compositional transformation by microbial oxidation. We analyzed biogeochemical and microbial parameters collected from the northwestern Sargasso Sea, including bulk dissolved organic carbon (DOC), total dissolved amino acids (TDAA), dissolved metabolites, bacterial abundance and production, and bacterial community structure, to assess the fate and compositional transformation of DOM by microbes on a seasonal time-scale in 2016–2017. DOM dynamics at the Bermuda Atlantic Time-series Study site followed a general annual trend of DOC accumulation in the surface during stratified periods followed by downward flux during winter convective mixing. Changes in the amino acid concentrations and compositions provide useful indices of diagenetic alteration of DOM. TDAA concentrations and degradation indices increased in the mesopelagic zone during mixing, indicating the export of a relatively less diagenetically altered (i.e., more labile) DOM. During periods of deep mixing, a unique subset of dissolved metabolites, such as amino acids, vitamins, and benzoic acids, was produced or lost. DOM export and compositional change were accompanied by mesopelagic bacterial growth and response of specific bacterial lineages in the SAR11, SAR202, and SAR86 clades, Acidimicrobiales, and Flavobacteria, during and shortly following deep mixing. Complementary DOM biogeochemistry and microbial measurements revealed seasonal changes in DOM composition and diagenetic state, highlighting microbial alteration of the quantity and quality of DOM in the ocean.
    Beschreibung: This project was funded by the Simons Foundation International’s BIOS-SCOPE program and US National Science Foundation (NSF OCE-1756105 for BATS cruises).
    Schlagwort(e): Dissolved organic matter ; Amino acids ; Metabolites ; Bacterioplankton ; Sargasso Sea ; Seasonal ; Mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creaive Commons Attribution License. The definitive version was published in Eveleth, R., Glover, D. M., Long, M. C., Lima, I. D., Chase, A. P., & Doney, S. C. . Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing. Frontiers in Marine Science, 8, (2021): 612764, https://doi.org/10.3389/fmars.2021.612764.
    Beschreibung: High-resolution ocean biophysical models are now routinely being conducted at basin and global-scale, opening opportunities to deepen our understanding of the mechanistic coupling of physical and biological processes at the mesoscale. Prior to using these models to test scientific questions, we need to assess their skill. While progress has been made in validating the mean field, little work has been done to evaluate skill of the simulated mesoscale variability. Here we use geostatistical 2-D variograms to quantify the magnitude and spatial scale of chlorophyll a patchiness in a 1/10th-degree eddy-resolving coupled Community Earth System Model simulation. We compare results from satellite remote sensing and ship underway observations in the North Atlantic Ocean, where there is a large seasonal phytoplankton bloom. The coefficients of variation, i.e., the arithmetic standard deviation divided by the mean, from the two observational data sets are approximately invariant across a large range of mean chlorophyll a values from oligotrophic and winter to subpolar bloom conditions. This relationship between the chlorophyll a mesoscale variability and the mean field appears to reflect an emergent property of marine biophysics, and the high-resolution simulation does poorly in capturing this skill metric, with the model underestimating observed variability under low chlorophyll a conditions such as in the subtropics.
    Beschreibung: This work was supported in part by the National Aeronautics and Space Administration (NASA) as part of the North Atlantic Aerosol and Marine Ecosystems Study (NAAMES; NASA grant 80NSSC18K0018). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the United States Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources.
    Schlagwort(e): Geostatistical analysis ; North Atlantic Ocean ; Community Earth System Model ; Model validataion ; Chlorophyll
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...