ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (98)
  • Boundary currents  (45)
  • Ocean models  (33)
  • Wind stress
  • thema EDItEUR::N History and Archaeology::NH History
  • American Meteorological Society  (98)
  • Blackwell Publishing Ltd
  • Springer Nature
Collection
Source
Keywords
Years
  • 1
    Publication Date: 2017-04-03
    Description: A global ocean three-dimensional variational data assimilation system was developed with the aim of assimilating along-track sea level anomaly observations, along with in situ observations from bathythermographs and conventional sea stations. All the available altimetric data within the period October 1992–January 2006 were used in this study. The sea level corrections were covariated with vertical profiles of temperature and salinity according to the bivariate definition of the background-error vertical covariances. Sea level anomaly observational error variance was carefully defined as a sum of instrumental, representativeness, observation operator, and mean dynamic topography error variances. The mean dynamic topography was computed from the model long-term mean sea surface height and adjusted through an optimal interpolation scheme to account for observation minus first-guess biases. Results show that the assimilation of sea level anomaly observations improves the model sea surface height skill scores as well as the subsurface temperature and salinity fields. Furthermore, the estimate of the tropical and subtropical surface circulation is clearly improved after assimilating altimetric data. Nonnegligible impacts of the mean dynamic topography used have also been found: compared to a gravimeter-based mean dynamic topography the use of the mean dynamic topography discussed in this paper improves both the consistency with sea level anomaly observations and the verification skill scores of temperature and salinity in the tropical regions. Furthermore, the use of a mean dynamic topography computed from the model long-term sea surface height mean without observation adjustments results in worsened verification skill scores and highlights the benefits of the current approach for deriving the mean dynamic topography.
    Description: European Commission WP4 Fondazione Cassa di Risparmio di Bologna Cnes
    Description: Published
    Description: 738-754
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Data assimilation ; Satellite observations ; Ocean models ; Sea level ; In situ observations ; Variational analysis ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1486–1500, doi:10.1175/2007JPO3767.1.
    Description: Fits of an annual harmonic to depth-average along-shelf current time series longer than 200 days from 27 sites over the Middle Atlantic Bight (MAB) continental shelf have amplitudes of a few centimeters per second. These seasonal variations are forced by seasonal variations in the wind stress and the cross-shelf density gradient. The component of wind stress that drives the along-shelf flow over most of the MAB mid- and outer shelf is oriented northeast–southwest, perpendicular to the major axis of the seasonal variation in the wind stress. Consequently, there is not a significant seasonal variation in the wind-driven along-shelf flow, except over the southern MAB shelf and the inner shelf of New England where the wind stress components forcing the along-shelf flow are north–south and east–west, respectively. The seasonal variation in the residual along-shelf flow, after removing the wind-driven component, has an amplitude of a few centimeters per second with maximum southwestward flow in spring onshore of the 60-m isobath and autumn offshore of the 60-m isobath. The spring maximum onshore of the 60-m isobath is consistent with the maximum river discharges in spring enhancing cross-shelf salinity gradients. The autumn maximum offshore of the 60-m isobath and a steady phase increase with water depth offshore of Cape Cod are both consistent with the seasonal variation in the cross-shelf temperature gradient associated with the development and destruction of a near-bottom pool of cold water over the mid and outer shelf (“cold pool”) due to seasonal variations in surface heat flux and wind stress.
    Description: This research was funded by the Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE- 848961.
    Keywords: Seasonal variability ; Ocean circulation ; Continental shelf ; Wind stress ; Density currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 2416-2433, doi:10.1175/JCLI4103.1.
    Description: North Pacific decadal oceanic and atmospheric variability is examined from a 650-yr control integration of the Community Climate System Model version 2. The dominant pattern of winter sea surface temperature (SST) variability is similar to the observed “Pacific decadal oscillation,” with maximum amplitude along the Kuroshio Extension. SST anomalies in this region exhibit significant spectral peaks at approximately 16 and 40 yr. Lateral geostrophic heat flux divergence, caused by a meridional shift of the Kuroshio Extension forced by basin-scale wind stress curl anomalies 3–5 yr earlier, is responsible for the decadal SST variability; local surface heat flux and Ekman heat flux divergence act as a damping and positive feedback, respectively. A simple linear Rossby wave model is invoked to explicitly demonstrate the link between the wind stress curl forcing and decadal variability in the Kuroshio Extension. The Rossby wave model not only successfully reproduces the two decadal spectral peaks, but also illustrates that only the low-frequency (〉10-yr period) portion of the approximately white noise wind stress curl forcing is relevant. This model also demonstrates that the weak and insignificant decadal spectral peaks in the wind stress curl forcing are necessary for producing the corresponding strong and significant oceanic peaks in the Kuroshio Extension. The wind stress curl response to decadal SST anomalies in the Kuroshio Extension is similar in structure but opposite in sign and somewhat weaker than the wind stress curl forcing pattern. These results suggest that the simulated North Pacific decadal variability owes its existence to two-way ocean–atmosphere coupling.
    Description: The first author gratefully acknowledges financial support from NOAA’s Office of Global Programs (grant to C. Deser) and the CCSM Project Office.
    Keywords: Decadal variability ; Fluxes ; Rossby waves ; Wind stress ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 3785–3801, doi:10.1175/JCLI4234.1
    Description: The influences of strong gradients in sea surface temperature on near-surface cross-front winds are explored in a series of idealized numerical modeling experiments. The atmospheric model is the Naval Research Laboratory Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model, which is fully coupled to the Regional Ocean Modeling System (ROMS) ocean model. A series of idealized, two-dimensional model calculations is carried out in which the wind blows from the warm-to-cold side or the cold-to-warm side of an initially prescribed ocean front. The evolution of the near-surface winds, boundary layer, and thermal structure is described, and the balances in the momentum equation are diagnosed. The changes in surface winds across the front are consistent with previous models and observations, showing a strong positive correlation with the sea surface temperature and boundary layer thickness. The coupling arises mainly as a result of changes in the flux Richardson number across the front, and the strength of the coupling coefficient grows quadratically with the strength of the cross-front geostrophic wind. The acceleration of the winds over warm water results primarily from the rapid change in turbulent mixing and the resulting unbalanced Coriolis force in the vicinity of the front. Much of the loss/gain of momentum perpendicular to the front in the upper and lower boundary layer results from acceleration/deceleration of the flow parallel to the front via the Coriolis term. This mechanism is different from the previously suggested processes of downward mixing of momentum and adjustment to the horizontal pressure gradient, and is active for flows off the equator with sufficiently strong winds. Although the main focus of this work is on the midlatitude, strong wind regime, calculations at low latitudes and with weak winds show that the pressure gradient and turbulent mixing terms dominate the cross-front momentum budget, consistent with previous work.
    Description: This work was supported by the Office of Naval Research Grant N00014-05-1-0300.
    Keywords: Fronts ; Sea surface temperature ; Wind stress ; Coupled models ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 394-407, doi:10.1175/jpo3018.1.
    Description: The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.
    Description: The first author is supported by the NOAA Postdoctoral Program in Climate and Global Change and GG by the National Ocean Partnership Program (ECCO). Author OM acknowledges support from the National Science Foundation.
    Keywords: Tracers ; Transport ; Paleoclimatology ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 5153–5172, doi:10.1175/JCLI-D-11-00463.1.
    Description: Atlantic meridional overturning circulation (AMOC) variability is documented in the Community Climate System Model, version 4 (CCSM4) preindustrial control simulation that uses nominal 1° horizontal resolution in all its components. AMOC shows a broad spectrum of low-frequency variability covering the 50–200-yr range, contrasting sharply with the multidecadal variability seen in the T85 × 1 resolution CCSM3 present-day control simulation. Furthermore, the amplitude of variability is much reduced in CCSM4 compared to that of CCSM3. Similarities as well as differences in AMOC variability mechanisms between CCSM3 and CCSM4 are discussed. As in CCSM3, the CCSM4 AMOC variability is primarily driven by the positive density anomalies at the Labrador Sea (LS) deep-water formation site, peaking 2 yr prior to an AMOC maximum. All processes, including parameterized mesoscale and submesoscale eddies, play a role in the creation of salinity anomalies that dominate these density anomalies. High Nordic Sea densities do not necessarily lead to increased overflow transports because the overflow physics is governed by source and interior region density differences. Increased overflow transports do not lead to a higher AMOC either but instead appear to be a precursor to lower AMOC transports through enhanced stratification in LS. This has important implications for decadal prediction studies. The North Atlantic Oscillation (NAO) is significantly correlated with the positive boundary layer depth and density anomalies prior to an AMOC maximum. This suggests a role for NAO through setting the surface flux anomalies in LS and affecting the subpolar gyre circulation strength.
    Description: The CCSM project is supported by NSF and the Office of Science (BER) of the U.S. Department of Energy. SGY and YOK were supported by the NOAA Climate Program Office under Climate Variability and Predictability Program Grants NA09OAR4310163 and NA10OAR4310202, respectively.
    Description: 2013-02-01
    Keywords: Meridional overturning circulation ; Coupled models ; Ocean models ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 283–300, doi:10.1175/JPO-D-11-0240.1.
    Description: Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
    Description: BKA received support from Office of Naval Research Grant N00014-11-1-0487, National Science Foundation (NSF) Grants OCE-0924481 and OCE- 09607820, and University of Michigan startup funds. KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds. RBS acknowledges support from NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. JFS and JGR were supported by the projects ‘‘Global and remote littoral forcing in global ocean models’’ and ‘‘Agesotrophic vorticity dynamics of the ocean,’’ respectively, both sponsored by the Office of Naval Research under program element 601153N.
    Description: 2013-08-01
    Keywords: Eddies ; Nonlinear dynamics ; Ocean dynamics ; Satellite observations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 744–765, doi:10.1175/JPO-D-12-067.1.
    Description: This study investigates the coherence between ocean bottom pressure signals at the Rapid Climate Change programme (RAPID) West Atlantic Variability Experiment (WAVE) array on the western North Atlantic continental slope, including the Woods Hole Oceanographic Institution Line W. Highly coherent pressure signals propagate southwestward along the slope, at speeds in excess of 128 m s−1, consistent with expectations of barotropic Kelvin-like waves. Coherent signals are also evidenced in the smaller pressure differences relative to 1000-m depth, which are expected to be associated with depth-dependent basinwide meridional transport variations or an overturning circulation. These signals are coherent and almost in phase for all time scales from 3.6 years down to 3 months. Coherence is still seen at shorter time scales for which group delay estimates are consistent with a propagation speed of about 1 m s−1 over 990 km of continental slope but with large error bounds on the speed. This is roughly consistent with expectations for propagation of coastally trapped waves, though somewhat slower than expected. A comparison with both Eulerian currents and Lagrangian float measurements shows that the coherence is inconsistent with a propagation of signals by advection, except possibly on time scales longer than 6 months.
    Description: This work was funded by the U.K. Natural Environment Research Council. Sofia Olhede was supported by EPSRC Grant EP/I005250/1. Initial observations at StationW(2001–04) were made possible by a grant from the G. Unger Vetlesen Foundation and support from the Woods Hole Oceanographic Institution. Since 2004, the Line W program has been supported by the U.S. National Science Foundation with supplemental contribution from WHOIs Ocean and Climate Change Institute.
    Description: 2013-10-01
    Keywords: Atlantic Ocean ; Boundary currents ; Meridional overturning circulation ; Pressure ; Waves, oceanic ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1589–1610, doi:10.1175/JPO-D-12-0173.1.
    Description: This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s−1. Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s−1.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE) and the Office of Naval Research Grant N00014-05-1-0139 as part of the CBLAST-LOW program.
    Description: 2014-02-01
    Keywords: Wind shear ; Wind stress ; Atmosphere-ocean interaction ; Fluxes ; Momentum ; Algorithms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...