ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-27
    Description: This study explores the seismotectonics of Kachchh in western India, a region with a low-to-moderate strain rate and a history of significant earthquakes, notably the 1819, Mw 7.8 Allah Bund, and the 2001, Mw 7.6 Bhuj. Despite its substantial seismic risk, comprehensive studies on Kachchh’s seismogenic sources are scarce. This is attributed to the concealed nature of active structures, hindering definitive age constraints in paleoseismological research. Our research comprises a detailed paleoseismic analysis of the north-verging, reverse Jhura Fault underlying the Jhura anticline, a segment of the Kachchh Mainland Fault. This fault segment shows evidence of surface-rupturing earthquakes in the area south of the Great Rann of Kachchh. The investigation reveals three paleoseismic events: Event I before 9.72 ka B.P., Event II between 8.63–8.20 ka B.P., and Event III between 6.20–6.09 ka B.P. The elapsed time since the last event on this fault is 〉 8000 years, suggesting that the area is exposed to a significant earthquake hazard. This highlights the need for more precise characterization of individual seismogenic sources for future earthquake preparedness.
    Description: Published
    Description: 11612
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Keywords: Surface faulting ; Kachchh Mainland Fault ; Paleoseismology ; Seismic landscape ; Western India ; 04.07. Tectonophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: Gravaglione represents one of the main swallow holes of the Canale di Pirro, low Murge, Apulia region, Italy. Here, after an intense rainstorm, a huge volume of rainwater accumulates at the surface. The drainage dynamics suggest that the Gravaglione could be part of a large, and potentially unknown, karst system. To verify this hypothesis and to acquire useful information on the possible karst environment features, an integrated aerial and geophysical multiscale and multimethod approach was applied. In particular, aerial photogrammetry, ground penetrating radar measurements and electrical resistivity tomography surveys were hence conducted and integrated to potentially detect the caves, define the subsurface volume possibly affected by karst systems and to verify the existence of links between the surficial morphology and the subsoil structure. The results provided interesting insights regarding the presence of a complex karst system extending up to 200 m b.g.l. and with a marked 3D nature. Overall, the Gravaglione case study demonstrates the geophysical approach validity and poses the basis for the development of an expeditive and low-cost high-resolution strategy for detecting and characterizing karst caves.
    Description: Published
    Description: 3820
    Description: OSA1: Variazioni del campo magnetico terrestre, imaging crostale e sicurezza del territorio
    Description: JCR Journal
    Keywords: karst environment ; cave detection ; ground penetrating radar ; electrical resistivity tomography ; 04.04. Geology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-06
    Description: Since the early 1990s, the European (ESA) and Italian (ASI) space agencies have managed and distributed a huge amount of satellite-recorded SAR data to the research community and private industries. Moreover, the availability of advanced cloud computing services implementing different multi-temporal SAR interferometry techniques allows the generation of deformation time series from massive SAR images. We exploit the information provided by a large PS dataset to determine the temporal trend of ground deformation and the relative deformation rate with millimetric accuracy to analyze the spatial and temporal distribution of land subsidence induced by water pumping from a deep confined aquifer in the Northern Valle Umbra Basin (Central Italy), exploiting 24 years of Permanent Scatterers—interferometric SAR data archives. The SAR images were acquired between 1992 and 2016 by satellites ERS1/2 and ENVISAT, the Sentinel 1 ESA missions and the COSMO-SkyMed ASI mission. We observed ground velocities and deformation geometries between 1992 and 2016, with displacements of more than 70 cm and velocities of up to 55 mm/yr. The results suggest that the shape and position of the surface ground displacement are controlled by the fault activity hidden under the valley deposits.
    Description: Published
    Description: 105
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Ground deformation ; Remote Sensing ; PS-InSAR ; Subsidence ; Hidden Faults ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-27
    Description: One of the main constraints in assessing shallow landslide hazards through physically based models is the need to characterize the geotechnical parameters of the involved materials. Indeed, the quantity and quality of input data are closely related to the reliability of the results of every model used, therefore data acquisition is a critical and time-consuming step in every research activity. In this perspective, we reviewed all official certificates of tests performed through 30 years at the Geotechnics Laboratory of the Earth Science Department (University of Firenze, Firenze, Italy), compiling a dataset in which 380 points are accurately geolocated and provide information about one or more geotechnical parameters used in slope stability modeling. All tests performed in the past (in the framework of previous research programs, agreements of cooperation, or to support didactic activities) were gathered, homogenized, digitalized, and geotagged. The dataset is based on both on-site tests and laboratory tests, it accounts for 40 attributes, among which 13 are descriptive (e.g., lithology or location) and 27 may be of direct interest in slope stability modeling as input parameters. The dataset is made openly available and can be useful for scientists or practitioners committed to landslide modeling.
    Description: Published
    Description: 37
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: Geotechnics ; Hydrology ; Slope stability ; Landslide ; Modeling ; Geotechnical database ; Input data ; Cohesion ; Internal friction angle ; Permeability ; 04.04. Geology ; 03.02. Hydrology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-25
    Description: Most of the methodologies used to validate complex strike-slip structures mainly rely on comparison with other well-known geological features or analogue laboratory models. This study adopts an approach based on the boundary element method at the regional scale to test the structural interpretation of a complex transpressional mountain range. Lebanon restraining bend represents the most prominent topographic transpressional feature along the Dead Sea Transform (DST). It consists of two mountain ranges: the Mount Lebanon and the Anti-Lebanon ranges. We built a 3D geometrical model of the fault surfaces based on previously studied natural examples, structural maps, satellite images, DEM interpretation and experimental analogue models of restraining bend or transpressional structures. Using a boundary element method, we modelled fault deformation response to the regional stress field. The simulation accurately predicts the shape and magnitude of positive and negative topographic changes and fault slip directions throughout the study area. We propose an original approach, which uses implementation of well-known fault geometries, surface and subsurface data, for structural validation in the complex strike-slip domain. Our results, validated by structural evidences, highlight that various structural styles lead to formation of Mt. Lebanon, Anti-Lebanon and Palmyrides structures. Furthermore, this simulation supports the hypothesis that the restraining bend of the DST formed in the widespread crustal weakness zone developed in the Late Jurassic to Early Createceous. We also propose recent Neogene tectonic evolution of the region based on our modelling and integrated with published U/Pb dating of fault zones and tectonostratigraphic evidence.
    Description: Published
    Description: 20071
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-22
    Description: Surface faulting earthquakes are known to cluster in time from historical and palaeoseismic studies, but the mechanism(s) responsible for clustering, such as fault interaction, strain-storage, and evolving dynamic topography, are poorly quantified, and hence not well understood. We present a quantified replication of observed earthquake clustering in central Italy. Six active normal faults are studied using 36Cl cosmogenic dating, revealing out-of-phase periods of high or low surface slip-rate on neighboring structures that we interpret as earthquake clusters and anticlusters. Our calculations link stress transfer caused by slip averaged over clusters and anti-clusters on coupled fault/shear-zone structures to viscous flow laws. We show that (1) differential stress fluctuates during fault/shear-zone interactions, and (2) these fluctuations are of sufficient magnitude to produce changes in strain-rate on viscous shear zones that explain slip-rate changes on their overlying brittle faults. These results suggest that fault/shear-zone interactions are a plausible explanation for clustering, opening the path towards process-led seismic hazard assessments.
    Description: Published
    Description: 7126
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Earthquake clustering ; 36-Chlorine ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-24
    Description: We investigate crustal deformation within the upper plate of the Ionian Subduction Zone (ISZ) at different time scales by (i) refining geodetic rates of crustal extension from continuous Global Navigation Satellite System (GNSS) measurements and (ii) mapping sequence of Late Quaternary raised marine terraces tectonically deformed by the West Crati normal fault, in northern Calabria. This region experienced damaging earthquakes in 1184 (M 6.75) and 1854 (M 6.3), possibly on the E-dipping West Crati fault (WCF) which, however, is not unanimously considered to be a seismogenic source. We report geodetic measurements of extension and strain rates across the strike of the E-dipping WCF and throughout the northern Calabria obtained by using velocities from 18 permanent GNSS stations with a series length longer than 4.5 years. These results suggest that crustal extension may be seismically accommodated in this region by a few normal faults. Furthermore, by applying a synchronous correlation approach, we refine the chronology of understudied tectonically deformed palaeoshorelines mapped on the footwall and along the strike of the WCF, facilitating calculation of the associated fault-controlled uplift rates. Raised Late Quaternary palaeoshorelines are preserved on the footwall of the WCF indicating that “regional” uplift, likely related to the deformation associated either with the subduction or mantle upwelling processes, is affected by local footwall uplift. We show that GIS-based elevations of Late Quaternary palaeoshorelines, as well as temporally constant uplift rates, vary along the strike of the WCF, implying normal faulting activity through time. This suggests that (i) the fault slip rate governing seismic hazard has also been constant over the Late Quaternary, over multiple earthquake cycles, and (ii) our geodetically derived fault throw rate for the WCF is likely a more than reasonable value to be used over longer time scales for an improved seismic hazard assessment. Overall, we emphasize the importance of mapping crustal deformation within the upper plate above subduction zones to avoid unreliable interpretations relating to the mechanism controlling regional uplift.
    Description: Published
    Description: 5303
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Marine terraces ; Earthquakes ; 04.04. Geology ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-21
    Description: Our knowledge of subsurface structures often derives from seismic velocities that are measured during seismic acquisition surveys. These velocities can greatly change due to lithological, fracture frequencies and/or effective pressure/temperature variations. However, the influence of such intrinsic lithological properties and environmental conditions at the large scale is poorly understood due to the lack of comprehensive datasets. Here, we analyze 43 borehole-derived velocity datasets of 3 end-member tight carbonate sequences from Central Italy, including massive pure limestone (Calcare Massiccio, CM), thick-layered (20-50 cm) pure limestone (Maiolica, MA), and thin-layered (2-20 cm) marly limestone (Calcareous Scaglia, CS). Our results show that the main rock parameters and environmental conditions driving large scale velocity variations are bedding and paleostresses, while mineralogical composition and current tectonic stress also play a role. For each of the 3 end-members, measured VP values vary differently with depth, as the thin-layered CS units show a clear increase in Vp, while velocity slightly increases and remains constant for the thick-layered MA and massive CM units, respectively. Such observations show that velocities are affected by specific characteristics of lithological discontinuities, such as the thickness of bedding. Counterintuitively, larger Vp values were recorded in the deformed mountain range than in the undeformed foreland suggesting that higher paleo-stresses increase velocity values by enhancing diagenesis and healing of discontinuities. Our results thus demonstrate that large scale velocity variations are strictly related to variation of lithological properties and to the geological and tectonic history of an area. We suggest that such lithological and environmental controls should be taken into account when developing velocity and mechanical models for tectonically active regions of the Mediterranean Area, where earthquakes mostly nucleate and propagate through carbonate formations, and for resource exploration in fractured carbonate reservoirs.
    Description: Published
    Description: 9472
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-11
    Description: Immersive virtual reality can potentially open up interesting geological sites to students, academics and others who may not have had the opportunity to visit such sites previously. We study how users perceive the usefulness of an immersive virtual reality approach applied to Earth Sciences teaching and communication. During nine immersive virtual reality-based events held in 2018 and 2019 in various locations (Vienna in Austria, Milan and Catania in Italy, Santorini in Greece), a large number of visitors had the opportunity to navigate, in immersive mode, across geological landscapes reconstructed by cutting-edge, unmanned aerial system-based photogrammetry techniques. The reconstructed virtual geological environments are specifically chosen virtual geosites, from Santorini (Greece), the North Volcanic Zone (Iceland), and Mt. Etna (Italy). Following the user experiences, we collected 459 questionnaires, with a large spread in participant age and cultural background. We find that the majority of respondents would be willing to repeat the immersive virtual reality experience, and importantly, most of the students and Earth Science academics who took part in the navigation confirmed the usefulness of this approach for geo-education purposes.
    Description: This research has been provided in the framework of the following projects: (i) the MIUR project ACPR15T4_00098–Argo3D (http://argo3d.unimib.it/ (accessed on 26 November 2021)); (ii) 3DTeLC Erasmus + Project 2017-1-UK01-KA203-036719 (http://www.3dtelc.com (accessed on 26 November 2021)); (iii) EGU 2018 Public Engagement Grant (https://www.egu.eu/outreach/peg/ (accessed on 26 November 2021)). Agisoft Metashape is acknowledged for photogrammetric data processing. This article is also an outcome of Project MIUR–Dipartimenti di Eccellenza 2018–2022. Finally, this paper is an outcome of the Virtual Reality lab for Earth Sciences—GeoVires lab (https://geovires.unimib.it/ (accessed on 26 November 2021)). The work supports UNESCO IGCP 692 ‘Geoheritage for Resilience’.
    Description: Published
    Description: 9
    Description: 1TM. Formazione
    Description: JCR Journal
    Keywords: immersive virtual reality ; geology; ; photogrammetry; ; education; ; Iceland; ; Santorini ; Etna ; 04.04. Geology ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...