ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (60,925)
  • Wiley-Blackwell  (39,542)
  • American Institute of Physics (AIP)  (21,383)
  • Process Engineering, Biotechnology, Nutrition Technology  (38,741)
  • Electrical Engineering, Measurement and Control Technology  (22,184)
Collection
Years
Topic
  • 1
    Publication Date: 2016-12-09
    Description: We have investigated the development of a handheld 4 × 1 piezoelectric finger (PEF) array breast tumor detector system towards in vivo patient testing, particularly, on how the duration of the DC applied voltage, the depression depth of the handheld unit, and breast density affect the PEF detection sensitivity on 40 patients. The tests were blinded and carried out in four phases: with DC voltage durations 5, 3, 2, to 0.8 s corresponding to scanning a quadrant, a half, a whole breast, and both breasts within 30 min, respectively. The results showed that PEF detection sensitivity was unaffected by shortening the applied voltage duration from 5 to 0.8 s nor was it affected by increasing the depression depth from 2 to 6 mm. Over the 40 patients, PEF detected 46 of the 48 lesions (46/48)—with the smallest lesion detected being 5 mm in size. Of 28 patients (some have more than one lesion) with mammography records, PEF detected 31/33 of all lesions (94%) and 14/15 of malignant lesions (93%), while mammography detected 30/33 of all lesions (91%) and 12/15 of malignant lesions (80%), indicating that PEF could detect malignant lesions not detectable by mammography without significantly increasing false positives. PEF’s detection sensitivity is also shown to be independent of breast density, suggesting that PEF could be a potential tool for detecting breast cancer in young women and women with dense breasts.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-09
    Description: The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ∼310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence ( p ) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm 2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm 2 .
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-09
    Description: Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-09
    Description: Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μ Pa ⋅ s.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-09
    Description: We present an ultra-low noise, high-voltage driver suited for use with piezoelectric actuators and other low-current applications. The architecture uses a flyback switching regulator to generate up to 250 V in our current design, with an output of 1 kV or more possible with small modifications. A high slew-rate op-amp suppresses the residual switching noise, yielding a total root-mean-square noise of ≈100 μ V (1 Hz–100 kHz). A low-voltage (±10 V), high bandwidth signal can be summed with unity gain directly onto the output, making the driver well-suited for closed-loop feedback applications. Digital control enables both repeatable setpoints and sophisticated control logic, and the circuit consumes less than 150 mA at ±15 V.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-09
    Description: A new solid-state electrotransport (SSE) apparatus for refining ultra-pure single crystals of metallic compounds under ultra-high vacuum is described. The setup employs a novel thermal expansion compensation mechanism to minimize mechanical stress on the sample during refinement with cold clamps for contamination-less purification at elevated temperatures. The apparatus is designed to tune the composition of initially slightly off-stoichiometric samples. The expansion compensation and stress-free operation were tested by recording the thermal expansion of elemental cerium in a treatment up to 655 °C. SSE refinement was then performed on a high-quality single crystal of U 6 Fe resulting in a 50% increase of its residual resistivity ratio to the highest value obtained for a single crystal to date.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-09
    Description: A 45° dual-drive symmetric photoelastic modulator is demonstrated. Two piezoelectric actuators are connected to a symmetric photoelastic crystal at an angle of 45°. When the amplitudes of the stress standing waves induced by the two piezoelectric actuators are equal and the phase difference between the two stress standing waves is π 2 , the modulation axis performs circular motion with a frequency of half of the photoelastic modulator’s resonant frequency, while the retardation remains a constant that is determined at the driving voltage amplitudes. This reveals a new polarization modulation method. We have theoretically analyzed and experimentally observed the new polarization modulation, and the retardation calibration is also reported.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-09
    Description: Linearity is an important and frequently sought property in electronics and instrumentation. Here, we report a method capable of, given a transfer function (theoretical or derived from some real system), identifying the respective most linear region of operation with a fixed width. This methodology, which is based on least squares regression and systematic consideration of all possible regions, has been illustrated with respect to both an analytical (sigmoid transfer function) and a simple situation involving experimental data of a low-power, one-stage class A transistor current amplifier. Such an approach, which has been addressed in terms of transfer functions derived from experimentally obtained characteristic surface, also yielded contributions such as the estimation of local constants of the device, as opposed to typically considered average values. The reported method and results pave the way to several further applications in other types of devices and systems, intelligent control operation, and other areas such as identifying regions of power law behavior.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-09
    Description: A novel bi-directional Retarding Field Analyzer (RFA) probe has been installed on a fast reciprocating drive system on the Experimental Advanced Superconducting Tokamak (EAST) to measure the ion temperature and fast electron fluxes. A Langmuir probe assembly was added on the top of the RFA head to control the RFA position relative to the last closed flux surface and to have a possibility to measure the electron density and temperature as well. Except the ion temperature, the fast electron fluxes from both ion and electron drift sides have been measured during lower hybrid current drive. The RFA probe has been also used to measure the fast electrons associated with edge localized modes (ELMs), indicating their substantial presence in the scrape-off-layer plasma of EAST.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-09
    Description: A heterodyne detection scheme is combined with a 10.59 μm CO 2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO 2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 10 17 m −2 . Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...