ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5,590)
  • Sage Publications  (4,281)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
  • Energy, Environment Protection, Nuclear Power Engineering  (5,590)
Collection
Years
Journal
  • 1
    Publication Date: 2021-02-25
    Description: Carbonate reservoirs are highly heterogeneous. During waterflooding stage, the channeling phenomenon of displacing fluid in high-permeability layers easily leads to early water breakthrough and high water-cut with low recovery rate. To quantitatively characterize the inter-well connectivity parameters (including conductivity and connected volume), we developed an inter-well connectivity model based on the principle of inter-well connectivity and the geological data and development performance of carbonate reservoirs. Thus, the planar water injection allocation factors and water injection utilization rate of different layers can be obtained. In addition, when the proposed model is integrated with automatic history matching method and production optimization algorithm, the real-time oil and water production can be optimized and predicted. Field application demonstrates that adjusting injection parameters based on the model outputs results in a 1.5% increase in annual oil production, which offers significant guidance for the efficient development of similar oil reservoirs. In this study, the connectivity method was applied to multi-layer real reservoirs for the first time, and the injection and production volume of injection-production wells were repeatedly updated based on multiple iterations of water injection efficiency. The correctness of the method was verified by conceptual calculations and then applied to real reservoirs. So that the oil field can increase production in a short time, and has good application value.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-31
    Description: This paper analyzes the small cosmopolitan and stability of the industrial coupling symbiotic network of eco-industrial parks of oil and gas resource-based cities. Taking Daqing A Ecological Industrial Park as an example, we constructed the characteristic index system and calculated the topological parameters such as the agglomeration coefficient and the average shortest path length of the industrial coupling symbiotic network. Based on the complex network theory we analyzed the characteristics of the scaled world, constructed the adjacency matrix of material and information transfers between enterprises, drew the network topology diagram. We simulated the system analysis and analyzed the stability of the industrial coupling symbiotic network of the eco-industrial park using the network efficiency and node load and maximum connected subgraph. The analysis results are as follows: the small world degree δ of Daqing A Eco-industrial Park is 0.891, which indicates that the industrial coupled symbiotic network has strong small world characteristics; the average path is 1.268, and the agglomeration coefficient is 0.631. The probability of edge connection between two nodes in a symbiotic network is 63.1%, which has a relatively high degree of aggregation, indicating that energy and material exchanges are frequent among all enterprises in the network, the degree of network aggregation is high, and the dependence between nodes is high; when the tolerance parameter is 0 to 0.3, the network efficiency and the maximum connected subgraphs show a sharp change trend, indicating that the topology of the industrial coupling symbiotic network of the eco-industrial park changes drastically when the network is subjected to deliberate attacks. It is easy to cause the breakage of material flow and energy flow in the industrial park, which leads to the decline of the stability of the industrial coupling symbiotic network of the eco-industrial park.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-01
    Description: The study was conducted in 2 urbanized areas of the Baikal region of Russia. These are the cities of Shelekhov and Tayshet with their suburbs. Aluminum production has been carried out in Shelekhov for over 60 years and in Tayshet for 5 years. The purpose of the study was to determine the pollution of urban soils with toxic elements—Al, F, Be, Li, as well as Cr, Ni, Pb, and so on under the influence of industrial enterprises (aluminum and cable plants, thermal power plants). Also, the purpose of the research was to determine the effect of increased fluorite (F) in the environment on children’s health. Pure aluminum is used much less frequently than in alloys. The addition of various elements (Be, B, Li, Fe, Si, Mg, Mn, Zr, Ag, Pb, Cu, Ni, and others) increases the hardness, density, thermal conductivity, and other properties of the alloys. The area of high F content in urban soil is 15 times higher than the regional context. The maximum content of Na, Be, and Al is 2 to 4 times higher than the regional background. An increased Li content is marked only near aluminum smelters. The F content in urine samples from children living in areas with long-term pollution exposure (Shelekhov) is 1.5 to 2 times higher than in the group of children with a short exposure period (Tayshet).
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-22
    Description: As an important type of unconventional hydrocarbon, tight sandstone oil has great present and future resource potential. Reservoir quality evaluation is the basis of tight sandstone oil development. A comprehensive evaluation approach based on the gray correlation algorithm is established to effectively assess tight sandstone reservoir quality. Seven tight sandstone samples from the Chang 6 reservoir in the W area of the AS oilfield in the Ordos Basin are employed. First, the petrological and physical characteristics of the study area reservoir are briefly discussed through thin section observations, electron microscopy analysis, core physical property tests, and whole-rock and clay mineral content experiments. Second, the pore type, throat type and pore and throat combination characteristics are described from casting thin sections and scanning electron microscopy. Third, high-pressure mercury injection and nitrogen adsorption experiments are optimized to evaluate the characteristic parameters of pore throat distribution, micro- and nanopore throat frequency, permeability contribution and volume continuous distribution characteristics to quantitatively characterize the reservoir micro- and nanopores and throats. Then, the effective pore throat frequency specific gravity parameter of movable oil and the irreducible oil pore throat volume specific gravity parameter are introduced and combined with the reservoir physical properties, multipoint Brunauer-Emmett-Teller (BET) specific surface area, displacement pressure, maximum mercury saturation and mercury withdrawal efficiency parameters as the basic parameters for evaluation of tight sandstone reservoir quality. Finally, the weight coefficient of each parameter is calculated by the gray correlation method, and a reservoir comprehensive evaluation indicator (RCEI) is designed. The results show that the study area is dominated by types II and III tight sandstone reservoirs. In addition, the research method in this paper can be further extended to the evaluation of shale gas and other unconventional reservoirs after appropriate modification.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-28
    Description: Coalbed gas (CBG) has been widely used as an important energy source. However, its utilization and allocation system is imperfect in mining areas. During the utilization process, a large amount of CBG is discharged into the air, causing environmental pollution. In this study, we proposed a “full spectrum-domain-time” CBG utilization model. In this model, by combining high methane concentration gas power generation, low methane concentration gas purification, and ultra-low methane concentration gas thermal storage and oxidation utilization, we were able to utilize CBG with full-spectrum of methane concentrations. In addition, by establishing CBG transportation and storage system in mining area, we were able to realize CBG supply in the entire network domain. Furthermore, based on the time series prediction algorithm, the CBG demand of different mining areas is predicted and regulatorily met by real time allocation. Through these three steps, an efficient “full spectrum-domain-time” CBG utilization system was formed and practically applied in Yangquan mining area. The application results showed that under the comprehensive control of “full spectrum-domain-time” CBG utilization model, CBG with methane concentration ≥0.2% could be used in the mining area and its utilization rate increased year by year, reaching the highest of 77.15%. Overall, our study provided a reference for the efficient CBG utilization in the mining area.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-28
    Description: Low-pressure N2 adsorption (LPNA) could provide quantitative data for characterizing the pores in gas shale. However, the inconsistencies of outgas temperature have caused significant deviations in LPNA experiments. To explore the effects of outgas temperature on pore characteristics, two shale samples of Lower Cambrian Niutitang formation from Northern Guizhou, China, were collected for LPNA experiments and thermogravimetry-fourier transform infrared (TG-FTIR) spectroscopy. The samples were outgassed at six temperatures: 80°C, 100°C, 150°C, 200°C, 250°C, 300°C. Larger adsorbed volumes were presented in the isotherms at higher outgas temperatures. Similar regularity is obtained from the relationship between specific surface area, micropore volume and outgas temperature. Comprehensive analysis of TG-FTIR and LPNA at different outgas temperature indicated that at lower outgas temperatures (from 80°C to 100°C), the free water was unlikely to be removed completely, and resulted in large amounts of micropores couldn’t be accessed. An excessive outgas temperature might expulse liquid hydrocarbons or decompose organic matter (from 200°C to 300°C), and could lead to the generation of micropores. When the sample were outgassed at 150°C, TG-FTIR analysis indicated that the sample composition unchanged and a better removal of free water happened. Therefore, 150°C should be a suitable outgas temperature for shale in LPNA experiments. The findings in this research not only provide reliable evidence for the selection of outgas procedure in LPNA for shale, but clarify the important effects of free water and volatile materials on pore accessibility in shale.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-26
    Description: This study investigates the causal relationship between renewable energy sources and clean environmental economic growth among South Asian economies. This study comprises the panel data sets for eight (8) South Asian countries, and data start from 2003 to 2017. This study implies a Hausman test to identify which particular tests are more suitable and selected a fixed effect test and granger causality test for effective analysis perspective. Moreover, this study further relies on the panel vector error correction model (PVECM) test to suggest for long-run relationship existence among variables. Furthermore, the evaluation of the panel and the dynamic ordinary least squares regression shows that the production of renewable energy has compelled an effect on economic growth. While other sources of energy for instance, hydropower, geothermal, wind, and solar, have valuable and considerable influence on the economic growth of South Asian economies. The results reveal with these remarks the existence of positive associations among productions of renewable energies, energy dependence, and gross domestic product per capita. The obtained results reveal that renewable energy sources show a momentous effect on the economic growth of South Asian economies.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-26
    Description: In view of the uncertainty and volatility of wind power generation and the inability to provide stable and continuous power, this paper proposes a hydrogen storage wind-gas complementary power generation system, using Matlab/Simulink to simulate and model wind generators and gas turbines. Considering the economy and power supply reliability of the wind-gas complementary power generation system, and taking the economic and environmental cost of the system as the objective function, the capacity optimization model of the wind-gas complementary power generation system is established. The brain storming algorithm (BSO) is used to solve the optimization problem, and the BSO algorithm is used to optimize the BP neural network, which improves the accuracy of the BP neural network for load forecasting. Finally, a simulation is carried out with load data in a certain area, and the simulation verification verifies that BSO-BP can improve the accuracy of load forecasting and reduce the error of load forecasting. Multi-objective optimization of system economic cost and environmental cost through BSO algorithm can make the system cost reach the most reasonable level. Through the analysis of the calculation examples, it is verified that gas-fired power generation can effectively alleviate the volatility of wind power generation, showing the role and advantages of energy complementary power generation. Therefore, the wind-gas complementary system can effectively increase energy utilization and reduce wind curtailment.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-01
    Description: This article identifies the potential environmental effects large-scale indoor farming may have on air, water, and soil. We begin with an overview of what indoor farming is with a focus on greenhouses and indoor vertical farms (eg, plant factories). Next, the differences between these 2 primary methods of indoor farming are presented based on their structural requirements, methods of growing, media, nutrient sources, lighting requirements, facility capacity, and methods of climate control. We also highlight the benefits and challenges facing indoor farming. In the next section, an overview of research and the knowledge domain of indoor and vertical farming is provided. Various authors and topics for research are highlighted. In the next section, the transformative environmental effects that indoor farming may have on air, soil, and water are discussed. This article closes with suggestions for additional research on indoor farming and its influence on the environment.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-01
    Description: The role of pyrogenic carbon (PyC) in the global carbon cycle is still incompletely characterized. Much work has been done to characterize PyC on landforms and in soils where it originates or in “terminal” reservoirs such as marine sediments. Less is known about intermediate reservoirs such as streams and rivers, and few studies have characterized hillslope and in-stream erosion control structures (ECS) designed to capture soils and sediments destabilized by wildfire. In this preliminary study, organic carbon (OC), total nitrogen (N), and stable isotope parameters, δ13C and δ15N, were compared to assess opportunities for carbon and nitrogen sequestration in postwildfire sediments (fluvents) deposited upgradient of ECS in ephemeral- and intermittent-stream channels. The variability of OC, N, δ13C, and δ15N were analyzed in conjunction with fire history, age of captured sediments, topographic position, and land cover. Comparison of samples in 2 watersheds indicates higher OC and N in ECS with more recently captured sediments located downstream of areas with higher burn severity. This is likely a consequence of (1) higher burn severity causing greater runoff, erosion, and transport of OC (organic matter) to ECS and (2) greater cumulative loss of OC and N in older sediments stored behind older ECS. In addition, C/N, δ13C, and δ15N results suggest that organic matter in sediments stored at older ECS are enriched in microbially processed biomass relative to those at newer ECS. We conservatively estimated the potential mean annual capture of OC by ECS, using values from the watershed with lower levels of OC, to be 3 to 4 metric tons, with a total potential storage of 293 to 368 metric tons in a watershed of 7.7 km2 and total area of 2000 ECS estimated at 2.6 ha (203-255 metric tons/ha). We extrapolated the OC results to the regional level (southwest USA) to estimate the potential for carbon sequestration using these practices. We estimated a potential of 0.01 Pg, which is significant in terms of ecosystem services and regional efforts to promote carbon storage.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-02-14
    Description: In order to reduce the restroom envelope energy consumption, one optimization method on basis of analyzing the influence of heat transfer coefficient on the performance of a prefabricated restroom envelope in a hot summer and cold winter zone was proposed. An energy-consuming model of prefabricated restroom in Nanjing is initially built based on Designer's Simulation Toolkit software. Subsequently, the effect of external walls, rooftops, external windows with various thermal characteristics on the building envelope is analyzed respectively. Simultaneously, a method that only changes the heat transfer coefficient of the prefabricated restroom envelope while keeping other parameters unchanged is adopted. Results show that, for a prefabricated restroom, the optimal range of heat transfer coefficient of the external wall, rooftop, and external window in hot summer and cold winter zone is 0.199∼0.22, 0.16∼0.19, and 3.0∼3.1 W/(m2·K), respectively. When the window-to-wall ratio is less than 0.2, the priority of the wall heat transfer coefficient on building energy consumption is higher than that of the rooftop heat transfer coefficient, simultaneously, the rooftop heat transfer coefficient has priority higher than window heat transfer coefficient. Thus, it is of great significance to optimize the design of the prefabricated restroom envelope in a hot summer and cold winter zone, which provides relative reference for thermal performance improvement of prefabricated restrooms.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-01-01
    Description: The objective of this study was to evaluate the treatment efficiency of a coupled stillage anaerobic digestion, which was performed in scoria-packed continuous reactors and following aerobic degradation. The optimum organic loading rate was determined for the continuous anaerobic digestion of a molasses ethanol distillery stillage with and without wet air feed pretreatment. The pretreatment of the molasses ethanol distillery stillage brought a significantly higher chemical oxygen demand removal in anaerobic digestion with an increased loading rate of 2000 mg/L d when compared with the raw stillage. The results also showed a complete removal of the biological oxygen demand following the coupling of anaerobic digestion with aerobic degradation. During the later stillage aerobic treatment, 68% of the chemical oxygen demand was removed within 8 hours of retention time. Despite the color, the removal of organics in stillage due to integrating wet air pretreatment, continuous anaerobic digestion, and aerobic degradation was successful. The pretreatment and hybrid technique also appears as a promising technique toward the sustainable management of stillage, thereby meeting discharge limit set for the ethanol industry by regulators.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-01-01
    Description: Soil erosion is 1 of the most important environmental problems that pose serious challenges to food security and the future development prospects of Ethiopia. Climate change influences soil erosion and is critical for the planning and management of soil and water resources. This study aimed to assess the current and future climate change impact on soil loss rate for the near future (2011-2040), middle future (2041-2070), and far future (2071-2100) periods relative to the reference period (1989-2018) in the Agewmariam watershed, Northern Ethiopia. The 20 models of Coupled Model Intercomparison Project phase 5 global climate models (GCMs) under Representative Concentration Pathway (RCP) 4.5 (intermediate scenario) and 8.5 (high emissions scenario) scenarios were used for climate projection. The statistical bias correction method was used to downscale GCMs. Universal Soil Loss Equation integrated with geographic information system was used to estimate soil loss. The results showed that the current average annual soil loss rate and the annual total soil loss on the study area were found to be 25 t ha−1 year−1 and 51 403.13 tons, respectively. The soil loss has increased by 3.0%, 4.7%, and 5.2% under RCP 4.5 scenarios and 6.0%, 9.52%, and 14.32% under RCP 8.5 scenarios in the 2020s, 2050s, and 2080s, respectively, from the current soil loss rate. Thus, the soil loss rate is expected to increase on all future periods (the 2020s, 2050s, and 2080s) under both scenarios (RCP 4.5 and RCP 8.5) due to the higher erosive power of the future intense rainfall. Thus, climate change will exacerbate the existing soil erosion problem and would need for vigorous new conservation policies and investments to mitigate the negative impacts of climate change on soil loss.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-20
    Description: This review assessed the effects of environmental labels on consumers’ demand for more sustainable food products. Six electronic databases were searched for experimental studies of ecolabels and food choices. We followed standard Cochrane methods and results were synthesized using vote counting. Fifty-six studies ( N = 42,768 participants, 76 interventions) were included. Outcomes comprised selection ( n = 14), purchase ( n = 40) and consumption ( n = 2). The ecolabel was presented as text ( n = 36), logo ( n = 13) or combination ( n = 27). Message types included: organic ( n = 25), environmentally sustainable ( n = 27), greenhouse gas emissions ( n = 17), and assorted “other” message types ( n = 7). Ecolabels were tested in actual ( n = 15) and hypothetical ( n = 41) environments. Thirty-nine studies received an unclear or high RoB rating. Sixty comparisons favored the intervention and 16 favored control. Ecolabeling with a variety of messages and formats was associated with the selection and purchase of more sustainable food products.
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-01-01
    Description: Climate change will ultimately result in higher surface temperature and more variable precipitation, negatively affecting agricultural productivity. To sustain the agricultural production in the face of climate change, adaptive agricultural management or best management practices (BMPs) are needed. The currently practiced BMPs include crop rotation, early planting, conservation tillage, cover crops, effective fertilizer use, and so on. This research investigated the agricultural production of BMPs in response to climate change for a Hydrologic Unit Code12 sub-watershed of Choctawhatchee Watershed in Alabama, USA. The dominating soil type of this region was sandy loam and loamy sand soil. Agricultural Production Systems sIMulator and Cropping Systems Simulation Model were used to estimate the agricultural production. Representative Concentration Pathway (RCP) 4.5 and RCP8.5 that projected a temperature increase of 2.3℃ and 4.7℃ were used as climate scenarios. The research demonstrated that crop rotation had positive response to climate change. With peanuts in the rotation, a production increase of 105% was observed for cotton. There was no consistent impact on crop yields by early planting. With selected peanut-cotton rotations, 50% reduced nitrogen fertilizer use was observed to achieve comparable crop yields. In response to climate change, crop rotation with legume incorporation is thus suggested, which increased crop production and reduced fertilizer use.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-01-01
    Description: Basin-scale simulation is fundamental to understand the hydrological cycle, and in identifying information essential for water management. Accordingly, the Soil and Water Assessment Tool (SWAT) model is applied to simulate runoff in the semi-arid Tambo River Basin in southern Peru, where economic activities are driven by the availability of water. The SWAT model was calibrated using the Sequential Uncertainty Fitting Ver-2 (SUFI-2) algorithm and two objective functions namely the Nash-Sutcliffe simulation efficiency (NSE), and coefficient of determination ( R2) for the period 1994 to 2001 which includes an initial warm-up period of 3 years; it was then validated for 2002 to 2016 using daily river discharge values. The best results were obtained using the objective function R2; a comparison of results of the daily and monthly performance evaluation between the calibration period and validation period showed close correspondence in the values for NSE and R2, and those for percent bias (PBIAS) and ratio of standard deviation of the observation to the root mean square error (RSR). The results thus show that the SWAT model can effectively predict runoff within the Tambo River basin. The model can also serve as a guideline for hydrology modellers, acting as a reliable tool.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-01-01
    Description: Many studies in air, soil, and water research involve observations and sampling of a specific location. Knowing where studies have been previously undertaken can be a valuable addition to future research, including understanding the geographical context of previously published literature and selecting future study sites. Here, we introduce Literature Mapper, a Python QGIS plugin that provides a method for creating a spatial bibliography manager as well as a specification for storing spatial data in a bibliography manager. Literature Mapper uses QGIS’ spatial capabilities to allow users to digitize and add location information to a Zotero library, a free and open-source bibliography manager on basemaps or other geographic data of the user’s choice. Literature Mapper enhances the citations in a user’s online Zotero database with geo-locations by storing spatial coordinates as part of traditional citation entries. Literature Mapper receives data from and sends data to the user’s online database via Zotero’s web API. Using Zotero as the backend data storage, Literature Mapper benefits from all of its features including shared citation Collections, public sharing, and an open web API usable by additional applications, such as web mapping libraries. To evaluate Literature Mapper’s ability to provide insights into the spatial distribution of published literature, we provide a case study using the tool to map the study sites described in academic publications related to the biogeomorphology of California’s coastal strand vegetation, a line of research in which air movement, soil, and water are all driving factors. The results of this exercise are presented in static and web map form. The source code for Literature Mapper is available in the corresponding author’s GitHub repository: https://github.com/MicheleTobias/LiteratureMapper
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-04-14
    Description: This paper examines a broad spectrum of challenges plaguing electric power supply in Africa. The challenges have lingered very long that policymakers, energy companies, and government agencies have shown docility in tackling the problem headlong. The increasing human population and technological innovations are evidence that the more the problem lingers, the more it becomes insurmountable. In this paper, it was proposed the lingering challenges can be solved using the standalone system of power generation. The renewable energy option and its adaptability were highlighted to guide standalone users on the way forward. The growing population in Africa can be advantageous in generating biogas from human feaces. It was discovered that renewable energy devices are quite expensive; hence, the biogas option for cooking and powering gas generators seem to be sustainable as its technology can be modified to suit the users' financial base. Therefore, it is projected that if the human excretal biogas can be adopted, Africa will soon overcome its energy crisis through the doggedness of its standalone users.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-04-15
    Description: To better evaluate the spatial steering effect of directional perforation hydraulic fractures, evaluation indexes for the spatial steering effect are first proposed in this paper. Then, these indexes are used to quantitatively evaluate existing physical experimental results. Finally, with the help of RFPA2D-Flow software, the influence of perforation length and azimuth on the spatial steering process of hydraulic fracture are quantitatively analysed using four evaluation indexes. It is shown by the results that the spatial deflection trajectory, deflection distance, deflection angle and initiation pressure of hydraulic fractures can be used as quantitative evaluation indexes for the spatial steering effect of hydraulic fractures. The deflection paths of directional perforation hydraulic fractures are basically the same. They all gradually deflect to the maximum horizontal principal stress direction from the perforation hole and finally represent a double-wing bending fracture. The deflection distance, deflection angle and initiation pressure of hydraulic fractures increase gradually with increasing perforation azimuth, and the sensitivity of the deflection angle to the perforation azimuth of hydraulic fractures also increases. With increasing perforation length, the deflection distance of hydraulic fractures increases gradually. However, the deflection angle and initiation pressure decrease gradually, as does the sensitivity.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-04-14
    Description: In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-01-01
    Description: Long-term watershed management in Ethiopia was evaluated in various agro-ecologies starting in the 1980s. Our research was carried out to investigate the effects of long-term watershed management on soil macronutrient status and crop production in the Maybar subwatershed terrace positioning system, which has a long-term data set on various aspects, such as hydroclimatology, agriculture, and social studies. Crop yield data were collected from 40 fixed plots of that data set, and soil samples were collected by topo-sequencing of the catchment from the cultivation field based on different terrace position plot arrangements. The results showed higher crop yield and production of biomass in the upper section or deposition zone of soil and water conservation structure than below the structure or loss zone, but did not vary significantly from the annual production potential. The annual production of cereals was marginally decreased, but not pulse crops, reducing the wheat harvest production from the middle to the loss zone (23.8%) rather than the deposition zone to middle portion of the terrace (8.0%). In comparison, to increase the slope position of the terrace, the redaction percentage of pulse crops (field pea and lentil) is greater, because in the first terrace location (upper to middle) and in the second terrace, the output capacity of field pea was reduced by 22.4%. The condition of soil fertility between the 2 consecutive systems for soil and water protection differed from the upper to the lower land positions. Improvement in soil chemical and physical properties relatively increased toward the upper land position. Soil organic matter, available phosphorus, bulk density, and soil moisture content were significantly affected by soil and water conservation structures ( P ⩽ .05). Long-term terrace growth typically has a positive effect on improvements in onsite soil resources and the capacity for crop production. It therefore has a beneficial impact on onsite natural resources, such as enhancing soil macronutrients and increasing productivity in crop yields.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-03-15
    Description: When gob side entry retaining is carried out in backfill mining, the roof will show different subsidence morphology due to the difference of compactness and supporting force of the backfill body at different positions. This paper analyzed the immediate roof subsidence structure under two extreme conditions, constructed the roof segmented subsidence structure and the mechanical model of roadside backfill body, and used FLAC3D software to investigate the roof migration and the force law of the roadside backfill body under the conditions of different goaf backfilled rates, different width and strength of roadside backfill body. Finally, the backfill practice of a mine in Shandong Province of China is taken as an example for analysis. The results show that the segmented subsidence structure of the immediate roof is related to the mechanical properties of the roadside backfill body and the goaf backfill body. When the backfilled rate of goaf decreases from 95% to 70%, the width of roadside backfill body decreases from 5 m to 1 m, and the elastic modulus decreases from 10 GPa to 0.5 GPa, the greater difference in the subsidence and inclination of the immediate roof on both sides of the roadside backfill body is, the more obvious the segmented subsidence structure characteristics of the immediate roof are, and the greater force on the roadside backfill body will be, the more unfavorable it is to maintain the stability of the roadway surrounding rock and the roadway backfill body. Therefore, when gob side entry retaining is carried out in backfill mining, the surrounding rock structure and the force on roadside backfill body should be considered comprehensively.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-03-09
    Description: The availability of cost-effective and environmentally friendly electricity to the entire population is a prime concern of the South African government. It has brought attention to microgrid projects, especially when rural population is considered properly. To address the energy needs of any country, the focus line should be the cost and availability of local resources. Due to the abundance of coal reserves and lack of alternative resources, coal dependence cannot be overlooked in the near future. This paper focuses not only on microgrid needs in South Africa but also on the possible use of hydrogen extracted from coal as a fuel in Proton Exchange Membrane Fuel Cell (PEMFC) in microgrids. The complete assembly of PEMFC and its use in the microgrid are discussed. To make the H2 extraction process eco-friendly and hence worth considering, Carbon capture and sequestration process is discoursed. Furthermore, cost benefit analysis and the long term benefit of the use of PEMFC in microgrids with coal-based hydrogen production are presented in this research.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-03-05
    Description: Understanding the microheterogeneity of tight sandstone is the basis of reservoir science, and quantitative characterization of the reservoir’s microheterogeneity is key to reservoir evaluation. In this study, an image-processing analysis method to study the heterogeneity of tight reservoirs is established. A modified Image J plugin is used to accurately identify the surface porosity of a thin casting sheet; the heterogeneity of the microscopic pores in a reservoir is then abstracted into discrete values of the surface porosity. A new parameter for quantitative characterization of the microscopic heterogeneity of tight sandstone, that is, the heterogeneity index Q, is proposed. The fractal dimension calculated via a liquid nitrogen adsorption experiment is used to test the new parameter, and the geological significance of Q is discussed. The results show that Q has a good positive correlation with the fractal dimension, which is beneficial in determining the heterogeneity of the reservoir, pore throat distribution, and roughness of the pore surface. Q has a good correlation with physical parameters such as the specific surface area, average pore diameter, and total pore volume of the sample, indicating that this index can effectively characterize and quantitatively evaluate the reservoir. Therefore, this parameter provides a new basis for reservoir evaluation and classification and provides a new direction for delineating advantageous horizons as well as guiding development and mining.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-04-14
    Description: Low-permeability to ultralow-permeability reservoirs of the China National Petroleum Corporation are crucial to increase the reserve volumes and the production of crude oil in the present and future times. This study aimed to address the two major technical bottlenecks faced by the low-permeability to ultralow-permeability reservoirs by a comprehensive use of technologies and methods such as rate-controlled mercury injection, nuclear magnetic resonance, conventional logging, physical simulation, numerical simulation, and field practices. The reservoir characteristics of low-permeability to ultralow-permeability reservoirs were first analyzed. The water flooding development adjustment mode in the middle and high water-cut stages for the low-permeability to ultralow-permeability reservoirs, where water is injected along the fracture zone and lateral displacement were established. The formation mechanism and distribution principles of dynamic fractures, residual oil description, and expanding sweep volume were studied. The development mode for Type II ultralow-permeability reservoirs with a combination of horizontal well and volume fracturing was determined; this led to a significant improvement in the initial stages of single-well production. The volume fracturing core theory and optimization design, horizontal well trajectory optimization adjustment, horizontal well injection-production well pattern optimization, and horizontal well staged fracturing suitable for reservoirs with different characteristics were developed. This understanding of the reservoir characteristics and the breakthrough of key technologies for effective development will substantially support the oil-gas valent weight of the Changqing Oilfield to exceed 50 million tons per year, the stable production of the Daqing Oilfield with 40 million tons per year (oil-gas valent weight), and the realization of 20 million tons per year (oil-gas valent weight) in the Xinjiang Oilfield.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-04-04
    Description: The impact of neglected well bore pressure losses due to fluid accumulation and kinetic energy in the fundamental energy equation used for derivation of flowing bottom-hole pressure in horizontal well have been conceived to be a considerable reason for the discrepancy between computed rates from the existing models and actual rates got from production tests. In the study, a new model that investigate all possible well bore pressure losses effect on the production rate of a horizontal oil well have been established. The newly developed model has been validated using the field data obtained from the literature and outcome got from the new model yields more satisfactory results. A more realistic results that evident all flow phenomena in petroleum production well include the initial unsteady, pseudo-steady and steady state flow condition hence flow rate at any given production time has been established for flow of oil along horizontal production well. The concept is useful to estimate flowing bottom-hole pressure and analyze its effect on production rate value of a horizontal oil well without ignoring any pressure resisting terms in the governing thermodynamic equation. The unsteadiness fluid flow period that generally observed after shut in a well have also been demonstrated. Closer agreement between the results obtained using the newly developed model and real life field measurement was observed when compared with the previous model in the literature. The study gives reservoir engineer an exact and helpful device for estimating and assessing horizontal oil well production rate.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-02-20
    Description: Hydrodesulfurization reaction, as the last step of hydrothermal cracking reaction, is of great significance for the reduction of viscosity and desulfurization of heavy oil. Based on Density Functional Theory and using Dmol3 module of Materials Studio, this research simulated the adsorption and hydrodesulfurization of thiophene on Ni2P (001) surface, and discussed the hydrodesulfurization reaction mechanism of thiophene on Ni2P (001) surface. It was found that the direct hydrodesulfurization of thiophene had more advantages than the indirect hydrodesulfurization of thiophene. Finally, the optimal reaction path was determined: C4H4S+H2→C4H6.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-02-20
    Description: Carbon dioxide (CO2) flooding is an effective method to enhance oil recovery in low-permeability reservoirs. Studying key geological factors controlling oil displacement efficiency is of great significance to the CO2 injection scheme design in low-permeability reservoirs. Focusing on low-permeable H reservoir in Songliao Basin, China, this paper describes the contact and connection of sand bodies, natural fractures and high-permeability zones with core samples, log data and experiment firstly. After that, the impact of interaction of sand body connection, natural fracture and high-permeability zone on oil displacement efficiency is determined by using geological and dynamic data in CO2 injection area. Results indicate that the connection of single sand bodies between injectors and producters wells primarily controls CO2 flooding in low-permeability reservoirs. Furthermore, coupling of sand body connection, natural fractures and high-permeability zones is the key geological factor governing oil displacement efficiency of CO2 injection in low-permeability reservoirs, where well or generally-connected sand bodies can improve the efficiency significantly. Meanwhile, the dominant seepage channels in other directions have no influence on producers, which is beneficial to improve CO2 flooding efficiency.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-02-22
    Description: In this study, we analyse the impact of oil price uncertainty (as measured by an observable measure of oil price volatility, i.e. realised volatility) on United States state-level real consumption by accounting for oil dependency. We account for both the long- and short-run dynamics of the state-level consumption function using the panel Pooled Mean Group estimator. The analysis makes use of a novel dataset including housing and stock market wealth at the state level covering the quarterly period 1975:Q1 to 2012:Q2, supplemented with an annual dataset up to 2018. We simultaneously estimate the long-run relationship and short-run impact of oil price volatility at the state-level conditional upon their oil dependency. We find that the negative impact of volatility is most severe for the states of Wyoming, Alaska and New Mexico, while the negative impact is least for Illinois, New York and Nebraska. States with lower per capita income and consumption expenditure, notably in the Southeast and Southwest region of the country are exposed to be more vulnerable to the negative impact of adverse developments and uncertainty in the oil market, as they may have less access to a stock of wealth and other means as recourse. Heterogenous responses, therefore, necessitate additional state-level response besides the national response to oil uncertainty.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-02-20
    Description: Generating electricity through renewable energies is growing increasingly to reduce the huge demand on electricity and the impact of fossil energies on the environment, the most common sources forms used are: the wind, the sun, the photovoltaic and the thermal, without forgetting hydropower by the bays of dams. Fortunately, 70% of our planet is covered by the seas and oceans, this area constitutes a huge potential for electricity production to be exploited. The scientific advances of recent years allow a better exploitation of these resources especially the marine current due to its reliability and predictability. The marine current energy is extracted using a hydrokinetic turbine (HKT) which transform the kinetic energy of water into an electrical energy. The exploitation of this resource needs in the first step the assessment of marine currents in the study area for implementing the HKT, and the second step is designing an adequate technology. The main goal of this study is the assessment of the marine current resource on the Moroccan Mediterranean coast to evaluate the suitable area to implement the HKT, and to determine the marine current speed intensities at different depths. As well as, to estimate an average potential existing in the site. Moreover, we will conduct a study based on the results of the assessment that was made to design a horizontal axis marine current turbine (HAMCT). Two hydrofoil profile were considered to design a HAMCT using the Blade Element Theory (BEM) and calculating their performances adapted to the site conditions Naca4415 and s8052. In addition, a comparison was made between this two HAMCT hydrofoil profile for deciding the best one for implementing in the studied area.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-02-27
    Description: With resource crisis and environmental crisis increasingly grim, many countries turn the focus to pollution-free and renewable wind energy resources, which are mainly used for offshore wind power generation, seawater desalination and heating, etc., on the premise that the characteristics of resources are fully grasped. In this study, the evaluation of offshore wind energy in offshore waters in China, as well as the advantages and disadvantages of existing studies were overviewed from four aspects: the spatial-temporal characteristics of wind energy, wind energy classification, the short-term forecast of wind energy and the long-term projection of wind energy, according to the research content and the future considerations about wind energy evaluation (evaluation of wind energy on islands and reefs, the impact of wind energy development on human health) were envisaged, in the hope of providing a scientific basis for the site selection and business operation ‘or military applications’ here (after business operation), etc. of wind energy development, ‘aritime navigation against environmental construction,’ here and also contributing to the sustainable development and health of human beings.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-01-01
    Description: The Sky Island Restoration Collaborative (SIRC) is a growing partnership between government agencies, nonprofit organizations, and private landowners in southeast Arizona, the United States, and northern Sonora, Mexico. Starting in 2014 as an experiment to cultivate restoration efforts by connecting people across vocations and nations, SIRC has evolved over 5 years into a flourishing landscape-restoration initiative. The group is founded on the concept of developing a restoration economy, where ecological and socioeconomic benefits are interconnected and complimentary. The variety of ideas, people, field sites, administration, and organizations promote learning and increase project success through iterative adaptive management, transparency, and sharing. The collaborative seeks to make restoration self-sustaining and improve quality of life for citizens living along the US-Mexico border. Research and experiments are developed between scientists and practitioners to test hypotheses, qualify procedures, and quantify impacts on shared projects. Simultaneously, partners encourage and facilitate connecting more people to the landscape—via volunteerism, internships, training, and mentoring. Through this history, SIRC’s evolution is pioneering the integration of community and ecological restoration to protect biodiversity in the Madrean Archipelago Ecoregion. This editorial introduces SIRC as a unique opportunity for scientists and practitioners looking to engage in binational partnerships and segues into this special journal issue we have assembled that relates new findings in the field of restoration ecology.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-04-29
    Description: In order to solve the problem of difficult gas extraction in coal mine, a method of gas extraction from coal seam by interval hydraulic flushing is put forward. Based on the coal seam gas occurrence conditions of 7609 working face in Wuyang Coal Mine, the numerical simulation research on gas drainage by ordinary drilling and hydraulic flushing drilling was carried out by using COMSOL numerical simulation software. The results show that with the increase of hydraulic flushing coal quantity, the effective gas drainage radius also increases. The effective extraction radius of ordinary drilling is 0.5 m, and the effective extraction radius is 1.0 m, 1.2 m and 1.3 m respectively when the coal flushing quantity is 0.5t/m, 1.0t/m and 1.5t/m. As multiple boreholes are drained at the same time, the boreholes will affect each other, which will reduce the gas pressure and increase the effective drainage radius, the spacing between boreholes can be greater than twice the effective drainage radius of a single borehole when arranging boreholes. And the smaller the flushing interval, the more uniform the gas pressure reduction area. According to the numerical simulation results, the ordinary drilling and 1.0t/m interval hydraulic flushing test were carried out in the field. Through observation and analysis, the gas concentration of the interval hydraulic flushing drilling module was increased by 31.2% and the drainage purity was increased by 5.77 times compared with the ordinary drilling module. It shows that the interval hydraulic flushing drilling can effectively improve the gas drainage effect.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-04-28
    Description: To clarify the influence of pore pressure gradient on hydraulic fracture propagation, the stress distribution in and around the borehole is explained by theoretical analysis method in this paper. A mechanical model of hydraulic fracture initiation under the action of pore pressure gradient is established. Then coupled seepage-stress-damage software is used to simulate the initiation and propagation of hydraulic fractures in rock samples under the action of pore pressure gradient. Finally, the influence of the number and spatial position of the induction holes on the initiation and propagation of hydraulic fractures is analyzed. It is shown that: (1) Pore pressure gradient can effectively reduce the initiation pressure of hydraulic fractures. (2) The greater the pore pressure gradient is, the easier the hydraulic fracture is to spread to the region with high pore pressure. (3) With the action of pore pressure gradient, the hydraulic fracture is shaped as ‘丨’, ‘丿’ and ‘S’ types and can be represented by the four abstract conceptual models.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-04-28
    Description: To study the influence of vibration on gas desorption and diffusion in particle coal, gas desorption experiments on soft coal with outburst risk under different frequency vibrations were carried out by using a self-designed gas adsorption and desorption platform under vibration conditions, and the influence of different frequency vibrations on the diffusion kinetic parameters was quantitatively analyzed by using a dynamic diffusion coefficient model. The influence mechanism of vibration on gas desorption and diffusion in coal was further analyzed from the three aspects of gas molecules, energy conversion and pore structure through theoretical analysis and mercury injection experiments. The results showed that with increasing vibration frequency, the gas desorption of the coal samples first increases and then decreases. The initial diffusion coefficient of gas in the coal samples increases linearly with increasing vibration frequency, but the attenuation coefficient of the diffusion coefficient decreases first and then increases with increasing vibration frequency. The "throwing effect" and thermal effect of vibration on the gas molecules are both conducive to the desorption of gas molecules. In addition, vibration causes changes in the pore structure in coal, increasing gas diffusion paths and reducing diffusion resistance.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-04-10
    Description: In recent years an increasing number of organizations have started to rethink their physical work environments and recognized the value of having activity-based workspaces (ABWs). This allows employees to choose freely between several work environments based on their specific task. There is growing debate amongst researchers about the effects of ABWs on employee behavior, but companies are still not aware of the options available or the consequences of moving to an ABW layout. This single-case, exploratory study uses 36 interviews and multiple data sources in a German organization leading in use of ABWs to generate insight into this topic. We develop a taxonomy of ABWs and analyze how various design parameters affect how people perform in ABWs regarding communication, leadership, working style, and work performance. We relate these findings to previous research and develop a cause-effects framework of ABWs. Against these findings, we generate recommendations for future research and practice.
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-04-07
    Description: Petrological analysis, thin-section observation and laboratory analysis data were selected to systematically study the physical and diagenetic features of the first member of the Paleogene Shahejie Formation (Es1) in the No. 3 structural belt of the Nanpu Sag, Bohai Bay Basin. The intensities of different diagenetic processes were determined, the diagenetic evolution sequence was reconstructed, the typical diagenetic facies were identified and the effects of different diageneses on the reservoir were quantitatively analyzed. The results show that the main intergranular fillings include authigenic-quartz, quartz secondary enlargement, clay minerals, carbonate cement and matrix. The pore types include intergranular porosity, dissolution porosity and microfractures. The reservoir has experienced compaction, early cementation, dissolution and late cementation, among which compaction is the most important porosity reducer. Compaction was the main diagenetic process involved in porosity reduction, accounting for about 24.4% of the loss of thin-section porosity. The dissolution process clearly improved the porosity, increasing thin-section porosity by 2.7%. Five diagenetic facies were identified on the basis of petrographic analyses, namely, (a) strongly compacted-weakly cemented-weakly dissolved facies; (b) weakly compacted-strongly cemented-weakly dissolved facies; (c) moderately compacted-moderately cemented-weakly dissolved facies; (d) strongly compacted-weakly cemented-moderately dissolved facies; and (e) strongly compacted-weakly cemented-strongly dissolved facies. According to the analysis of diagenesis intensity, the porosity evolution model of various diagenetic facies was reconstructed, and the reservoir quality of various diagenetic facies was quantitatively predicted. The reservoir quality of different diagenetic facies clearly changed with depth. The best reservoir quality was in strongly compacted–weakly cemented–strongly dissolution facies, which have good sorting, contain a large amount of feldspar and soluble debris, and are mainly developed in the main part of the river channel. Our study can provide a reference for the subsequent exploration and development of deep petroleum systems.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-04-07
    Description: One optimization method of hourly heat load calculation model for heat storage air-conditioning heating system in different climate zones was proposed. A building model is initially built in six different climate zones. Subsequently, the hourly heat load and steady-state design heat load in different climate zones were analyzed. Simultaneously, the hourly heat load additional coefficient of the air-conditioning system with different heating modes on a typical day was compared. It can be found that steady-state design heat load on a typical day is mostly between the peak load and average load of the air-conditioning heating system. Simultaneously, results indicate that the hourly heat load additional coefficient in each climate zone can be fitted to different exponential functions. When the heat storage capacity of building components was changed, the maximum increase of the hourly heat load additional coefficient of the air-conditioning system with intermittent heating was 5%. Thus, the research of the optimal design of hourly heat load calculation method provides a relative reference for performance improvement of the heat storage air-conditioning heating system.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-04-12
    Description: The low-frequency pulse wave makes the velocity of the fluid in the reservoir fluctuate dramatically, which results in a remarkable inertia force. The Darcy’s law was inapplicable to the pulse flow with strong effect of inertial force. In this paper, the non-Darcy flow equation and the calculation method of capillary number of pressure pulse displacement are established. The pressure pulse experiments of single-phase and two- phase flow are carried out. The results show that the periodic change of velocity can decrease the seepage resistance and enhance apparent permeability by generating the inertial force. The higher the pulse frequency improves the apparent permeability by enhancing influence of inertial force. The increase of apparent permeability of high permeability core is larger than that of low permeability core, which indicates that inertial force is more prominent in high permeability reservoir. For the water-oil two-phase flow, inertia force makes the relative permeability curve move towards right, and the equal permeability point becomes higher. In other words, with the increase of capillary number, part of residual oil is activated, and the displacement efficiency is improved.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-01-01
    Description: Climate change is one of the greatest threats that our civilization is facing because increases in extreme temperatures severely affect humans, the economy, and ecosystems. General circulation models, which adequately predict climate change around the world, are less accurate at regional levels. Therefore, trends must be locally assessed, particularly in regions such as the Baja California Peninsula, which is a thin mass of land surrounded by the Pacific Ocean and the Gulf of California. Herein, we discuss extreme temperature trends in the Baja California Peninsula and whether they are statistically significant based on the Spearman’s nonparametric statistical test. For these purposes, 18 weather stations covering the entire region were analyzed, revealing that maximum temperatures for the hottest months are rising at a rate that is consistent with the RCP 8.5 scenario. Changes in minimum temperatures were also analyzed.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-03-31
    Description: During horizontal well staged fracturing, there is stress interference between multiple transverse fractures in the same perforation cluster. Theoretical analysis and numerical calculation methods are applied in this study. We analysed the mechanism of induced stress interference in a single fracture under different fracture spacings and principal stress ratios. We also investigated the hydraulic fracture morphology and synchronous expansion process under different fracture spacings and principal stress ratios. The results show that the essence of induced stress is the stress increment in the area around the hydraulic fracture. Induced stress had a dual role in the fracturing process. It created favourable ground stress conditions for the diversion of hydraulic fractures and the formation of complex fracture network systems, inhibited fracture expansion in local areas, stopped hydraulic fractures, and prevented the formation of effective fractures. The curves of the maximum principal stress, minimum principal stress, and induced principal stress difference with distance under different fracture lengths, different fracture spacings, and different principal stress ratios were consistent overall. With a small fracture spacing and a small principal stress ratio, intermediate hydraulic fractures were difficult to initiate or arrest soon after initiation, fractures did not expand easily, and the expansion speed of lateral hydraulic fractures was fast. Moreover, with a smaller fracture spacing and a smaller principal stress ratio, hydraulic fractures were more prone to steering, and even new fractures were produced in the minimum principal stress direction, which was beneficial to the fracture network communication in the reservoir. When the local stress and fracture spacing were appropriate, the intermediate fracture could expand normally, which could effectively increase the reservoir permeability.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-04-08
    Description: Flue gas assisted steam assisted gravity drainage (SAGD) is a frontier technology to enhance oil recovery for heavy oil reservoirs. The carbon dioxide generated from the thermal recovery of heavy oil can be utilized and consumed to mitigate climate warming for the world. However, most studies are limited to merely use numerical simulation or small physical simulation device and hardly focus on large scale three-dimensions experiment, which cannot fully investigate the enhanced oil recovery (EOR) mechanism of flue gas assisted SAGD, thus the effect of flue gas on SAGD production performance is still not very clear. In this paper, large-scaled and high temperature and pressure resistant 3D physical simulation experiment was conducted, where simulated the real reservoir to a maximum extent, and systematically explored the EOR mechanisms of the flue gas assisted SAGD. Furthermore, the differences between the steam huff and puff, SAGD and flue gas assisted SAGD are discussed. The experimental result showed that the production effect of SAGD was improved by injecting flue gas, with the oil recovery was increased by 5.7%. With the help of thermocouple temperature measuring sensors, changes of temperature field display that flue gas can promote lateral re-development of the steam chamber, and the degree of reservoir exploitation around the horizontal wells has been increased particularly. What’s more, the addition of flue gas further increased the content of light components and decreased the content of heavy by comparing the content of heavy oil components produced in different production times.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-04-08
    Description: Although new energy has been widely used in our lives, oil is still one of the main energy sources in the world. After the application of traditional oil recovery methods, there are still a large number of oil layers that have not been exploited, and there is still a need to further increase oil recovery to meet the urgent need for oil in the world economic development. Chemically enhanced oil recovery (CEOR) is considered to be a kind of effective enhanced oil recovery technology, which has achieved good results in the field, but these technologies cannot simultaneously effectively improve oil sweep efficiency, oil washing efficiency, good injectability, and reservoir environment adaptability. Viscoelastic surfactants (VES) have unique micelle structure and aggregation behavior, high efficiency in reducing the interfacial tension of oil and water, and the most important and unique viscoelasticity, etc., which has attracted the attention of academics and field experts and introduced into the technical research of enhanced oil recovery. In this paper, the mechanism and research status of viscoelastic surfactant flooding are discussed in detail and focused, and the results of viscoelastic surfactant flooding experiments under different conditions are summarized. Finally, the problems to be solved by viscoelastic surfactant flooding are introduced, and the countermeasures to solve the problems are put forward. This overview presents extensive information about viscoelastic surfactant flooding used for EOR, and is intended to help researchers and professionals in this field understand the current situation.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-01-01
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-08-12
    Description: The COVID-19 pandemic has hit humanity globally. Besides its obvious threats to our physical health and economic stability, one can only speculate about the pandemic’s and its countermeasures’ psychosocial impacts. Here, we took advantage of a sample of healthy male participants who had completed psychosocial measures on mental health, environmental concern, and prejudice against asylum-seekers just before and during the nationwide lockdown in Germany in spring 2020. A follow-up assessment of 140 participants during the lockdown provided a unique opportunity to track psychosocial changes in a prospective longitudinal study design. In comparison to before the lockdown (1) mental health worsened, (2) environmental concern increased, and (3) prejudice against asylum-seekers decreased. Our study demonstrates psychosocial “side effects” of the pandemic that bring both challenges and opportunities for our society with regard to the handling of psychological reactions to this pandemic and further global crises, including climate change and mass migration.
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-08-27
    Description: Research in the physical sciences is critical to the development of new materials technologies for clean energy. Aims in the present work are to synthesise and characterise three-dimensional architectures composed of two-dimensional atomic layer molybdenum disulphide for solar cells and self-powered photodetectors with improved performance. Nanostructured molybdenum disulphide was prepared by using a spin coating method with controlled process times. Prior to each deposition, the layer was dried with hot air for 5 min. A rough, irregular and clustered surface type was generated when the number of spin coating runs was increased. This type of surface was consistent with the morphologies expected for two-dimensional atomic layer molybdenum disulphide in three-dimensional architectures. The nanoscale morphologies, composites, and electronic properties of molybdenum disulphide were examined using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro-Raman scattering spectroscopy, respectively. Moreover, three-dimensional architecture-based prototypes for solar cells and self-powered photodetectors were designed, fabricated and tested. In photovoltaic mode, the obtained responsivity and response speed were almost 10 times larger and 20 times faster, respectively, than those recently reported for a single monolayer molybdenum disulphide-based self-powered prototype. In addition, the effects of bias, heat, humidity and a static field on the generated photocurrent and the response time were evaluated. It is expected that the newly designed prototype will exhibit exceptional properties: a broadband spectral response, a high signal-to-noise ratio and excellent stability.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-09-14
    Description: Authigenic albites occur widely in clastic reservoirs with important implications for diagenesis and reservoir formation. The middle Permian Lucaogou Formation in the Jimusaer Sag (Junggar Basin, NW China), where major exploration breakthroughs in shale oil have been achieved, reveals a new phenomenon that authigenic albites are abundant in unique mixed carbonate–volcanic–clastic sequences. This has not been reported in the literatures. To fill the knowledge gap, the origin of these authigenic albites and their relationship with dissolution pores (i.e. diagenesis implications) were investigated. Results show that two types (I and II) of authigenic albite were identified within the shale oil reservoirs. Euhedral Type I authigenic albites with 3–10 μm only occur in dolarenite intraclasts and are symbiotic with amorphous dolomite minerals with a pure chemical composition of 〉99% albite-end-member content. Larger Type II authigenic albites with 10–50 μm are widely distributed in reservoirs, primarily in dissolution pores, and coexist with authigenic dolomite minerals or dolomite overgrowths. Their chemical composition is less pure with anorthite-end-member contents that range from undetectable to 9.77%, with an average of 1.34%. A symbiotic relationship, pure chemical composition, size, and euhedral morphology indicate that Type I authigenic albites precipitated during syngenetic hydrothermal action. However, the morphology of dissolution pores, residual symbiotic “orthoclase”, impure chemical composition and carbon–oxygen isotope indicate that Type II were the products of the dissolution and reprecipitation of “perthite” crystal pyroclasts influenced by acid organic fluids in latter diagenesis. The differential dissolution of “orthoclase” and “albite” components in “perthite” crystal pyroclasts formed enormous intergranular secondary pores in the presence of dolomite minerals in the shale oil reservoirs.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-09-18
    Description: Residents in US cities are exposed to high levels of stress and violent crime. At the same time, a number of cities have put forward “greening” efforts which may promote nature’s calming effects and reduce stressful stimuli. Previous research has shown that greening may lower aggressive behaviors and violent crime. In this study we examined, for the first time, the longitudinal effects over a 30-year period of average city greenness on homicide rates across 290 major cities in the US, using multilevel linear growth curve modeling. Overall, homicide rates in US cities decreased over this time-period (52.1–33.5 per 100,000 population) while the average greenness increased slightly (0.41–0.43 NDVI). Change in average city greenness was negatively associated with homicide, controlling for a range of variables (β = −.30, p-value = .02). The results of this study suggest that efforts to increase urban greenness may have small but significant violence-reduction benefits.
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-09-22
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-09-21
    Description: Dezhou City is located in northwestern Shandong Province, China, and is rich in geothermal resources. Approximately 30% of the geothermal wells and geothermal heating areas of Shandong Province are located in Dezhou. A doublet-well layout geothermal system was completed by the Lubei Geo-engineering Exploration Institute for local winter heating, which has been in operation for 4 years. The wellbores penetrated the Guantao Formation with a well spacing of 180 m. This study aims to assess the heat extraction performance of the current well layout and predict the temperature evolution and lifespan. Furthermore, larger well spacing schemes were used in a simulation to test the heat supply potential and sustainability. In this study, the thermal conductivity and permeability were calibrated using in situ measured data from a field production test. A relatively high permeability layer was found between the depths of 1468 and 1536 m. The temperature remained stable in the first 6 years and then started to decrease. The recharging (injection) water tended to concentrate along the bottom highly permeable layer and accounted for over 64% of the outflow in the 100th year of the simulation test. The outflow temperature decreased from 53.9°C to 50°C in the 32nd year, making it less viable for subsequent sustainable exploitation. Hence, a larger well spacing is required for long-term operation based on the same geothermal reservoir. It was found that a spacing of 400 m could guarantee an outflow temperature above 50°C over a 100-year lifespan with an 80 m3/h pumping (production) rate. Moreover, the sustainability of the 600-m spacing was almost 2.5 times that of the 400 m case. The modeling and analysis method can be useful for the development and optimization of a doublet-well geothermal system under similar conditions.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-09-22
    Description: The sandstone reservoirs in the Upper Paleozoic He 8 Member in the northern Tianhuan depression of the Ordos Basin are vastly different and feature particularly complex gas–water distributions. Scanning electron microscopy, fluorescence, Raman spectroscopy inclusions, relative permeability analysis, and nuclear magnetic resonance were utilized in this study based on core data, identification statistics, and various thin-section microscope measurements. Samples from the Upper Paleozoic He 8 Member in the northern Tianhuan depression were collected to study the characteristics of reservoir heterogeneity and gas–water distribution, which were controlled by differential diagenesis. The results indicate that compaction and dissolution are the two most important factors controlling reservoir heterogeneity. Large differences in diagenesis–accumulation sequences and pore structure characteristics affect reservoir wettability, irreducible water saturation, and gas displacement efficiency, thereby controlling the gas–water distribution. The He 8 Member is a gas reservoir that is densified because of accumulation. Reservoirs can be divided into three types based on the relationship between diagenetic facies and gas–water distribution. Type I is characterized by weak compaction, precipitate or altered kaolinite cementation, strong dissolution of diagenetic facies, and high porosity and permeability. This type is dominated by grain-mold pores and intergranular dissolution pores and produces gas reservoirs with high gas yield. Type II is characterized by medium-strength compaction, altered kaolinite or chlorite cementation, weak dissolution of diagenetic facies, and medium porosity and permeability. This type is dominated by residual intergranular pores, a few residual intergranular pores, and dispersed dissolution pores, producing gas reservoirs with low gas yield. Type III is characterized by medium-strength compaction, altered kaolinite cementation, and medium-strength dissolution of diagenetic facies. This type is dominated by kaolinite intercrystal pores and dispersed dissolution pores, producing gas reservoirs with high water yield.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-09-20
    Description: Complex fracture networks are easily developed along the horizontal wellbore during hydraulic fracturing. The water phase increases the seepage resistance of oil in natural fractured reservoir. The flow regimes become more intricate due to the complex fractures and the occurrence of two-phase flow. Therefore, a semi-analytical two-phase flow model is developed based on the assumption of orthogonal fracture networks to describe the complicate flow regimes. The natural micro-fractures are treated as a dual-porosity system and the hydraulic fracture with complex fracture networks are characterized explicitly by discretizing the fracture networks into multiple fracture segments. The model is solved according to Laplace transformation and Duhamel superposition principle. Results show that seven possible flow regimes are described according to the typical curves. The major difference between the vertical fractures and the fracture networks along the horizontal wellbore is the fluid “feed flow” behavior from the secondary fracture to the main fracture. A natural fracture pseudo-radial flow stage is added in the proposed model comparing with the conventional dual-porosity model. The water content has a major effect on the fluid total mobility and flow capacity in dual-porosity system and complex fracture networks. With the increase of the main fracture number, the interference of the fractures increases and the linear flow characteristics in the fracture become more obvious. The secondary fracture number has major influence on the fluid feed capacity from the secondary fracture to the main fracture. The elastic storativity ratio mainly influences the fracture flow period and inter-porosity flow period in the dual-porosity system. The inter-porosity flow coefficient corresponds to the inter-porosity flow period of the pressure curves. This work is significantly important for the hydraulic fracture characterization and performance prediction of the fractured horizontal well with complex fracture networks in natural fractured reservoirs.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-10-06
    Description: It is crucial to obtain the representative relative permeability curves for related numerical simulation and oilfield development. The influence of temperature on the relative permeability curve remains unclear. An unsteady method was adopted to investigate the influence of temperature (range from 25–130 °C) on the oil–water relative permeability curve of sandstone reservoirs in different blocks. Then, the experimental data was analyzed by using an improved Johnson–Bossler–Naumann method. Results reveal that with the increase in temperature within a certain temperature range: (1) the relative permeability of the oil and water phases increases; (2) the irreducible water saturation increases linearly, whereas the residual oil saturation decreases nonlinearly, and the oil recovery factor increases; and (3) the saturation of two equal permeability points moves to the right, and hydrophilicity becomes stronger. The findings will aid future numerical simulation studies, thus leading to the improvement of oil displacement efficiency.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-10-06
    Description: The traditional stress arch hypothesis during longwall mining fails to elucidate the formation mechanism of stress arch, and the morphological characteristics and evolution of stress arch are indefinite. To solve these problems, a mechanical model was established for elucidating the formation mechanism of stress arch in overlaying strata. The influencing of key strata on the morphological characteristics of the stress arch was studied. Finally, the evolution of the stress arch during longwall mining was studied through numerical simulation. The results show that the bearing structure of the overlying strata served as the key strata, and the stress arch was formed when the key strata were subjected to deflection after playing a bearing structure role. This was the result of coordination and redistribution of major principal stress in the key strata. The morphological characteristics of the stress arch changed accordingly with the change in key strata. When the thickness of key strata and the distance between key strata and coal seam were gradually increased, the height and width of the stress arch increased accordingly; however, its height was always terminated at the top interface of key strata. At this time, the peak value of the abutment pressure of the working face gradually decreased while the influencing range gradually increased. During longwall mining, the stress arch developed upward by leaps and bounds with the bearing and fracture of key strata. When the overlying key strata were completely fractured, the stress arch disappeared. The results were verified using the field measurement data on the abutment pressure of the Y485 longwall face in Tangshan Mine.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-10-18
    Description: Automatic mining technology is the ideal path and the inevitable way to improve production efficiency, reduce labour intensity and ensure safety for thin coal seam. Recently, while automatic mining technology is increasingly applied in China for thin seams, the corresponding automatic cutting technology has made new advances. Among them, mnemonic cutting technology has been fruitful industrial tested with suitable conditions. Simultaneously, another one called cutting trace pre-set technology of the shearer has been put forward. Using this method, the cutting trace in the area with coal thickness changed and geological structures can be preset. What's more, self-adaptive regulation strategy of cutting trace based on coal-rock recognition by monitoring current of cutting motor was discussed. Then, the main problems and development trends of automatic mining in China was also proposed.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-01-01
    Description: In this study, Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) platforms were successfully applied to quantify the annual soil loss for the protection of soil erosion in Fincha catchment, Ethiopia. The key physical factors such as rainfall erosivity ( R-factor), soil erodibility ( K-factor), topographic condition (LS-factor), cover management ( C-factor), and support practice ( P-factor) were prepared in GIS environment from rainfall, soil, Digital Elevation Model (DEM), Land use/Land cover (LULC) respectively. The RUSLE equation was used in raster calculator of ArcGIS spatial tool analyst. The individual map of the derived factors was multiplied in the raster calculator and an average annual soil loss ranges from 0.0 to 76.5 t ha−1 yr−1 was estimated. The estimated annual soil loss was categorized based on the qualitative and quantitative classifications as Very Low (0–15 t ha−1 yr−1), Low (15–45 t ha−1 yr−1), Moderate (45–75 t ha−1 yr−1), and High (〉75 t ha−1 yr−1). It was found from the generated soil erosion severity map that about 45% of the catchment area was vulnerable to the erosion with an annual soil loss of (〉75 t ha−1 yr−1), and this demonstrates that the erosion reduction actions are immediately required to ensure the sustainable soil resources in the study area. The soil erosion severity map generated based on RUSLE model and GIS platforms have a paramount role to alert all stakeholders in controlling the effects of the erosion. The results of the RUSLE model can also be further considered along with the catchment for practical soil loss protection practices.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-08-26
    Description: Transient pressure analysis is a crucial tool to forecast the production performance during the exploration and production process in gas reservoirs. Usually, a regular shaped outer boundary is assumed in previous studies for well-testing analysis, which is just a simplification of practical cases and cannot reflect the actual boundaries of reservoirs. In this paper, a mathematical model is established to analyze the transient pressure behaviors of a horizontal well in an arbitrarily shaped gas reservoir. Dimensionless treatment, Laplace transformation, and boundary element method are applied in solving the model, which is verified by comparing with the results from the source function method. Based on the Stehfest numerical inversion method, the models of single-porosity media and dual-porosity media are solved respectively. Then, the time-domain curves of pseudo pressure and its derivative are obtained, and the flow regimes are identified. Finally, the impacts of some critical parameters on pressure transient behaviors are analyzed, including storativity ratio, interporosity coefficient, well length, and well orientation. This paper presents an effective way to handle complex external boundary problems in gas reservoirs.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-08-26
    Description: Previous research suggests that meditation, a mindfulness exercise, could result in increased connectedness to nature and pro-environmental behavior. Exposure to nature also is associated with these outcomes. It was hypothesized that meditation alongside stimuli reminiscent of the natural environment would produce enhanced effects. Participants ( N = 97) were randomly assigned to complete a 4-week online meditation program consisting of a guided meditation paired with either nature sounds (“nature group”) or spa-like sounds (“control group”). Mindfulness, connectedness to nature, and pro-environmental behavior were assessed before and after the program. Meditation, in general, produced increases in mindfulness, connectedness to nature, and pro-environmental behavior. Additionally, the nature group had a greater rate of change in connectedness to nature when compared to the control group. The results extend previous cross-sectional research by demonstrating the beneficial effects of meditation on pro-environmental behavior and its theorized mechanisms, which may be informative for future research and interventions.
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-08-29
    Description: William Whyte originally hypothesized that the presence of people in a public space would attract more people. Contemporary planners now refer to “sticky streets” as places where pedestrians are compelled to linger and enjoy vibrant public life. We test the hypothesis that adding users to a public space will attract more people using an experimental design with confederates to add pedestrian movement and staying activity in a residential street for 45 randomly selected hours. We observed staying behavior by gender with and without our intervention. We find that the addition of public users reduced the total number of people staying in our study area, especially among women. We find that women’s right to the city may be constrained by the mere presence of other individuals, even in safe spaces and during daylight hours. Our findings suggest that Whyte’s claim is not universal, but depends on the conditions of a particular site.
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-08-27
    Description: This study analyzes the feasibility of satisfying the demand of three Football Stadiums for the 2022 FIFA World Cup in Qatar, using the wind’s kinetic energy. For all three selected locations (Lusail, Al Rayyan, and Al Wakrah), the wind potentiality is calculated through an environmental parameters study, from which the wind power density is obtained. Furthermore, a commercial wind turbine with proper characteristics is selected, and the same case study for each location is presented, to quantify the capacity that wind energy offers for satisfying the maximum energy demand of each associated stadium. In addition, the environmental benefits and the time required by each wind farm to satisfy the energy demand are computed. The results reveal that the conditions enable the use of wind energy for this purpose, based on a 5.06 m/s, 4.63 m/s, and 5.18 m/s velocity mean for Lusail, Al Rayyan, and Al Wakrah, respectively; from which values of 187.49 W/m2, 150.96 W/m2, and 187.29 W/m2 of wind power density are obtained. Also, the proposed wind farms could produce 69,952.56 MWh/year, 59,550.19 MWh/year, and 75,333.70 MWh/year, respectively. Moreover, the wind farms should produce energy for a period of 5.64 h, 4.41 h, and 5.23 h, to satisfy the maximum demand by a football match in its associated location. Additionally, to avoid the implementation of a storage system, the electricity obtained from the wind is connected to the power grid, decreasing the quota of fossil fuel power plants. In consequence, Qatar will eliminate the emissions of approximately 23.376 tons of CO2 in total per trio of matches held in these stadiums. Finally, a post 2022 FIFA World Cup scenario is analyzed, obtaining a positive outcome from both environmental and economic perspectives, in which an average of 14,675 tons of CO2 and 6.03 Million US$ can be saved annually.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-08-27
    Description: The mining area is the main place for the development and utilization of Coalbed Methane (CBM), and there are a series of systems for the development and utilization of CBM. However, owing to lack of a clear understanding of demand-side gas consumption rules and a reasonable resource allocation system, a large amount of CBM resources in the mining area are wasted. In order to predict the demand for CBM dynamically, the Seasonal Auto Regressive Integrated Moving Average (SARIMA) model, Additive Holt-Winters (AHW) model and Multiplicative Holt-Winters (MHW) model based on time series are used to predict the monthly demand for CBM in Yangquan Mine Area in 2020, respectively. Then the predicted results are evaluated by using the prediction model parameters combined with the characteristics of actual demand for CBM. Finally, a resource allocation system under different supply and demand conditions is built to reduce the waste of resources. In this paper, it is found that the information of the actual data is not sufficiently extracted in the MHW model while the SARIMA model can reflect the cyclical trend of monthly demand for CBM under ideal conditions. Furthermore, the AHW model can reasonably predict the demand for CBM under the influence of COVID-19, with a mean relative error of 0.099. The supply and demand distribution system built based on the proposed models can solve the problem of seasonal unevenness of CBM demand in mining areas and ensure the economic benefits of mining areas.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-08-27
    Description: The reservoir architecture analysis of braided rivers, especially falling-silt seam forms, has played a key role in predicting remaining oil distributions. However, no studies have used architecture analyses that document braided river outcrops and researched the tapping of the few remaining oil distributions based on outcrops in the Songliao basin, northeast China. In this paper, the architecture characteristics and remaining oil distribution of braided river reservoirs are studied using a combination of an outcrop, modern deposition and subsurface well data. The new 8–13 m thick Lower Cretaceous Quantou Formation outcrop of the Songliao basin is a braided fluvial succession arranged in one large fining-upward cycle. Eight facies (Gt, St, Sm, Sh, Sp, Sw, Fl and Fm), four architecture elements (CH, DA, LV, and FF), and three orders of bounding surfaces (third-, fourth-, and fifth-order) are recognized. A new distribution pattern of falling-silt seams and a braided river architecture model are presented according to the analysis of the outcrop. In the mid-channel bar, the falling-silt seams thin from the mid-bar to the bar tail following the flow direction. Each falling-silt seam is oriented tangentially to the basal surface of the mid-channel bar, and the upper falling-silt seam extends farther than the lower one. In a Daqing Oilfield exploitation block in the Songliao basin, while channels and bars are the main reservoir units, they have different remaining oil distribution patterns. For bars, water injection wells located at the mid-bar, zonal injection technology, the drilling of horizontal wells, and proper well patterns are proposed. Fourth-order bounding surfaces, single braided channels, stacking patterns, and the lateral blocking of levees and floodplains are the key factors affecting the remaining oil distribution in channels.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-01-01
    Description: Channel bars are common, striking fluvio-geomorphic depositional features of alluvial rivers. The study of this article has aimed to investigate the formation, migration, and morphodynamic alteration of channel bars (n = 50) in gravel braided alluvial rivers in Darjeeling Himalayan Piedmont zone. Dynamics of micro to meso bar deposition is mainly accomplished by the channel gradient, huge upstream landslide, and variation of discharge. Multi-criteria analysis method has been used to explain the variation of principal component analysis (PCA1, PCA2, and PCA3), both monsoon to post-monsoon. Bridge scouring, empirical aggradation, and degradation values are 0.1 to 1.05 m and [Formula: see text]. Migration, re-generation, and degradation of the micro bars with their optimum morphology show changes during the rainy season. In the upper ([Formula: see text]), middle ([Formula: see text]), and lower ([Formula: see text]) piedmont region, the bar dynamic area are 0.12 to 0.71, 0.12 to 2.83, and 0.10 to 5.43 km2, respectively. In total, 58% to 72% stability of the channel bars is observed in the upper piedmont region. The coefficient of determination ( R²) of channel bar area and width shows positive (0.63) relation.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-01-01
    Description: Restoring and enhancing riparian vegetation on private and communal lands in Mexico is important for biodiversity conservation given the ecological significance of these areas and the scarcity of public protected areas. To enhance riparian vegetation and wildlife habitats and train local people in restoration techniques, we implemented restoration and outreach efforts on private and communal lands in the Sky Islands region of northwest Mexico. We fenced 475 ha of riparian zones from livestock, erected erosion-control structures, planted trees, and developed management agreements for cool-season grazing with landowners on 10 ranches across 3 sites in 2012-2013, then repaired fences and renegotiated agreements in 2017-2019. To foster evaluation, we used a before-after/control-impact design to measure attributes of vegetation structure and bird communities and compared baselines from 2012 with post-treatment estimates from 2019. As predicted, understory vegetation volume generally increased in treatments relative to controls ( P = .09), especially when one treatment area with the lowest pre-treatment grazing impacts was censored ( P = .01). Although canopy cover also increased, there was little differential change in treatments relative to controls ( P ⩾ .23) due likely to longer time periods needed to realize responses. Densities of most focal bird populations varied across time periods in directions that typically matched observed changes in vegetation structure, but fewer species showed signs of differential positive change linked to treatments relative to controls. Densities of Yellow-breasted Chat, a key understory obligate and important focal species, increased in treatments relative to controls across sites, as did densities of Sinaloa Wren, which also use dense underbrush ( P ⩽ .05). Positive changes by other understory obligates (eg, Common Yellowthroat, Song Sparrow) were more local but sometimes of high magnitude (〉8-fold) also suggesting positive impacts of treatments. Despite mixed results over a limited time period, these patterns suggest restoration efforts drove localized recovery of understory vegetation and associated bird populations, but benefits varied widely with environmental and social factors linked to management. Greater ecological benefits to riparian areas on private and communal lands in this region can be fostered by further incentivizing construction, maintenance, and proper use of restoration infrastructure, through education, and by building relationships based on trust and credibility with landowners.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-01-01
    Description: Water scarcity has increased in the last century due to the effects of climate change and the over-exploitation of anthropic activities that deteriorate strategic ecosystems in watersheds. This study quantified the water consumption of anthropic activities according to the water footprint (WF) and the water supply available (WSA) using the GR2M hydrological simulation model in the Quenane-Quenanito basin in Colombia. The objective of this study was to analyze the dynamic supply–demand of water and identify potential conflicts associated with the use of water. The results of this study show that the WF of the basin was 17.01 million m3/year, 79.97% of which was the green WF and 20.03% of which was the blue WF, and that the WSA of the basin was 272.1 million m3/year. In addition, potential conflicts over the use of water were identified due to water scarcity in 11 sub-basins during the months of January to March. In conclusion, analyzing the demand and supply of water in basins and taking into account their spatiotemporal distribution allows us to measure the impacts of anthropic activities on water resources, which can prevent potential conflicts associated with the use of water between sectors or the involvement of ecological dynamics.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-01-01
    Description: Investment in conservation and ecological restoration depends on various socioeconomic factors and the social license for these activities. Our study demonstrates a method for targeting management of ecosystem services based on social values, identified by respondents through a collection of social survey data. We applied the Social Values for Ecosystem Services (SolVES) geographic information systems (GIS)-based tool in the Sonoita Creek watershed, Arizona, to map social values across the watershed. The survey focused on how respondents engage with the landscape, including through their ranking of 12 social values (eg, recreational, economic, or aesthetic value) and their placement of points on a map to identify their associations with the landscape. Additional information was elicited regarding how respondents engaged with water and various land uses, as well as their familiarity with restoration terminology. Results show how respondents perceive benefits from the natural environment. Specifically, maps of social values on the landscape show high social value along streamlines. Life-sustaining services, biological diversity, and aesthetics were the respondents’ highest rated social values. Land surrounding National Forest and private lands had lower values than conservation-based and state-owned areas, which we associate with landscape features. Results can inform watershed management by allowing managers to consider social values when prioritizing restoration or conservation investments.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-01-01
    Description: The slaughtering of animals and processing of meats for human consumption generates enormous wastes which are not properly managed in most developing nations including Nigeria. Majority of people in Akwa Ibom state in southern Nigeria depend on meat as their major source of protein, and abattoir wastes are applied in farms as organic manure by some farmers. This study examined the role of abattoir-related waste products in the physicochemical properties, total metal, and metal speciation of the soil. The data obtained were also subjected to some treatments using some environmental models to establish the degree of contamination by the parameters determined, studied locations, and the associated human health problems. Samples were collected from 5 designated abattoirs in Akwa Ibom state. Thirty composite samples were used for the research. Results obtained showed higher levels of pH, electrical conductivity, organic matter, and cation exchange capacity in the abattoir waste–impacted soils than in the control plot. Levels of pseudo total heavy metals were also higher in the studied soils than in the control plot. The mean values of the metals are below 400, 85, 140, 36, 100, and 35 mg/kg of recommended limits for Fe, Pb, Zn, Cu, Cr, and Ni, respectively by the Federal Environmental Protection Agency (FEPA) in Nigerian soil. The results also revealed that Fe and Cr existed mainly in residual fraction. However, Zn, Cu, and Ni existed principally in the form bound to organic matter/sulfide. In addition, we detected that Pb existed mainly in the reducible fraction. Disparities were also observed in the speciation results of the metals between the studied soils and the control plot. Principal component analysis (PCA) indentified that both the geogenic and anthropogenic factors contributed to the accumulation of metals determined in the studied soils. Variable relationships were also observed for the heavy metals determined in the studied soils. Fe showed a high-risk potential, and children were more vulnerable due to its toxicity. We conclude this study was able to expose the consequences of indiscriminate dumping of abattoir wastes on the quality of soil and the associated human health problems.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-01-01
    Description: Pollution caused by fungal contamination on building materials contributes to poor indoor air quality. Fungi are known to cause several health-related problems, such as acute toxicity, hypersensitivity, invasive mycoses, and respiratory problems. Thus, this study aimed to determine the load and diversity of airborne culturable fungi in the dormitory rooms. An institution-based cross-sectional study was conducted from March to June 2019 at the University of Gondar students’ dormitory rooms. Statistical analyses were carried out using Stata/SE 14.0. Spearman ranks correlation was used to assess the correlation of fungal load with indoor physical parameters. The median fungal loads were 250 CFU/m3 and 157 CFU/m3 in the morning and afternoon, respectively. Most commonly identified fungal genera/species were Aspergillus, Penicillium, Alternaria, Fusarium, Candida, Trichophyton, Piedraia, Microsporum, Geotrichum, Saccharomyces, Rhodotorula, Rhizopus, Exophiala, Arthroderma, Cladosporium, Gliocladium, and Botrytis. Formaldehyde ( r = −0.2859, P = .0031), temperature ( r = −0.2153, P = .0274), and CO2 ( r = −0.3785, P = .0001) were negatively correlated with airborne indoor fungal load in the morning and CO2 ( r = 0.3183, P = .0009) and temperature ( r = 0.2046, P = .0363) positively correlated with airborne indoor fungal load in the afternoon. As a conclusion, the airborne fungal load in the dormitory room was intermediate according to the European standard of nonindustrial premises. Substantial action should be taken to reduce the fungal contamination of indoor environments.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-01-01
    Description: In this work, we have reported a low-cost and environmentally friendly Fe3O4-modified activated kaolin (AK-Fe3O4) composite for efficient Fenton-like degradation of 4-nitrophenol (4-NP) and optimization of the degradation variables. The AK-Fe3O4 composites were characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction, scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). X-ray diffraction confirms the syntheses of pure phases of Fe3O4 and AK-Fe3O4. The SEM image of the AK-Fe3O4 composite reveals the formation of a highly porous surface. The room temperature VSM analysis describes the superparamagnetic nature of AK-Fe3O4 composites with 25 emu/g magnetization values. Response surface methodology coupled with Box-Behnken design was used to optimize the 4-NP degradation (%) variables such as contact time (10-90 minutes), 4-NP concentration (10-30 mg/L), and pH (3-8). The high regression value ( R² = 0.9964 and adjusted R² = 0.9917) and analysis of variance ( P 
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-01-01
    Description: Heavy metals are among the most critical environmental pollutants close to industrial areas. One example is the cultivated fields in the south of Alborz industrial city in Iran, which is irrigated by treated industrial wastewater. It is contaminated by heavy metals and irrigation with wastewater treatment plants effluent, which made it salty. In this study, the application of 2 amendments, biosolids and cow manure, in improving the heavy metal accumulation in the ornamental sunflower from these types of soils was investigated. A greenhouse experiment using a completely randomized design with 4 replications and applying cow manure and biosolids in 3 weight ratios (6%, 12%, 25%) was conducted to evaluate the efficiency of sunflower in removing Pb, Ni, and Zn from the soil. Adding the amendments increased the rate of germination by 50% to 176%. Although the simultaneous utilization of cow manure in high ratios with biosolids and cow manure with low biosolids decreased the sunflower survival, nonetheless, the simultaneous addition of these organic amendments could increase the survival rate in other treatments. Moreover, the plants’ biomass was increased by adding modifiers such as cow manure and biosolids. The results showed that in treatments with 2 modifiers, the remediation factor of Pb, Zn, and Ni has increased 83.7 to 95.5, 78.4 to 87.5, and 74.9 to 94.9, respectively, in comparison to the control one. Therefore, we conclude that adding biosolids and cow manure simultaneously could improve the ornamental sunflower ability to accumulate heavy metals.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-01-01
    Description: Soil and water loss in agricultural fields is a global problem. Although studies about soil erosion in croplands and vineyards exist, the direct comparison between these land uses is missing, especially under continental climates in Europe. Therefore, it is needed to find control measures to the impacts of these land-use management strategies on soil properties and hydrological response. The objective of this work is to estimate and compare the impacts of croplands and vineyards under conventional management croplands and vineyards on soil properties (water holding capacity—WHC; bulk density—BD; soil water content—SWC; water stable aggregates—WSA; mean weight diameter—MWD; soil organic matter—SOM; available phosphorus—AP; total nitrogen—TN) and hydrological response (runoff—Run; sediment content—SC; sediment loss—SL; carbon loss—C loss; phosphorus loss—P loss; nitrogen loss—N loss) in Eastern Croatia. To achieve these goals, a study was set up using rainfall simulation tests at 58 mm h−1 over 30 minutes on 2 locations (Zmajevac: 45°48′N; 18°46′E; Erdut: 45°30′N; 19°01′E). In total, 32 rainfall simulations were carried out, 8 repetitions in vineyards and 8 in cropland plots of 0.876 m2, per location. Bulk density was significantly higher in cropland plots compared with the vineyard. Soil water content was significantly higher in Zmajevac cropland compared with Erdut plots. Also, SWC was significantly lower in Zmajevac vineyard than in the cropland located in the same area. Water stable aggregates and MWD were significantly higher in vineyard plots than in the cropland. Also, SOM and TN were significantly lower in Zmajevac cropland compared with the vineyard located in the same area. Available phosphorus was significantly high in Zmajevac plots than in Erdut. The rainfall simulations showed that Run was significantly higher in Erdut vineyard (8.2 L m−2) compared with Zmajevac (3.8 L m−2). Also, the Run in Erdut Cropland was significantly lower than in the vineyard. Sediment content did not show significant differences among locations. In Erdut, vineyard plots had a significantly lower SL (28.0 g m−2) than the cropland ones (39.1 g m−2). C loss was significantly higher in Zmajevac cropland than in Erdut. Also, C loss was significantly lower in Zmajevac vineyard compared with the cropland. We did not observe significant differences in P loss, and N loss also did not show significant differences. The principal component analysis showed that SOM was associated with WSA, AP, and TN. These variables were negatively related to slope, SWC, and C loss (factor 1). Also, MWD was inversely related to SL, P, and N loss (factor 2). Bulk density and SC were negatively related to Run. Overall, we conclude that noninvertive tillage practices in vineyards preserve soil structure, enhance soil quality, and reduce the extent of soil degradation.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-01-01
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-01-01
    Description: Microplastics are a global ubiquitous problem, which is becoming a major issue of concern at scientific and political levels around the world. This study presents physical and chemical characterizations of microplastic debris and a comparison between the spatial distribution and anthropogenic activities in 4 Panamanian beaches located in both sides of the Isthmus. Two of them (Juan Diaz and San Carlos beaches) are located toward the Pacific Ocean, Panamá Province, whereas the others (Palenque and Punta Galeta beaches) are located at the Caribbean Sea, Colón Province. They were chosen to show different landscape management and environmental impacts: touristic and protected areas; coastal areas that receive pollutants and marine litter from urban rivers or are used for local fishing activities. Plastic debris samples were collected and visually analyzed following the protocol proposed by the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). The physical characterization of the samples consisted in the determination of variables associated with the number of plastic particles, shape, color, and size. The characterization of the polymers was performed by the attenuated total reflectance-Fourier transform infrared spectroscopy technique. A high concentration of microplastics (353 items/m2) were found at the studied sites at the Caribbean coast, whereas a lesser concentration with a greater diversity of shapes and polymer categories were found at the Pacific Coast (187 items/m2). The results indicate that, in addition to anthropogenic activities, the proximity to Panama Canal installations, as well as seasonality, natural phenomena, winds, and ocean currents may be influencing the increase in microplastic contents and the types of polymers observed.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-21
    Description: Wind resource assessments are carried out for two sites in Tuvalu: Funafuti and Nukufetau. The wind speeds at 34 and 20 m above ground level were recorded for approximately 12 months and analyzed. The averages of each site are computed as the overall, daily, monthly, annual, and seasonal averages. The overall average wind speeds for Funafuti and Nukufetau at 34 m above ground level were estimated to be 6.19 and 5.36 m/s, respectively. The turbulence intensities at the two sites were also analyzed. The turbulence intensity is also computed for windy and low-wind days. Wind shear analysis was carried out and correlated with temperature variation. Ten different methods: median and quartiles method, the empirical method of Lysen, the empirical method of Justus, the moments method, the least squares method, the maximum likelihood method, the modified maximum likelihood method, the energy pattern factor method, method of multi-objective moments, and the wind atlas analysis and application program method were used to find the Weibull parameters. From these methods, the best method is used to determine the wind power density for the site. The wind power density for Funafuti is 228.18 W/m2 and for Nukufetau is 145.1 W/m2. The site maps were digitized and with the WAsP software, five potential locations were selected for each site from the wind resource map. The annual energy production for the sites was computed using wind atlas analysis and application program to be 2921.34 and 1848.49 MWh. The payback periods of installing the turbines for each site are calculated by performing an economic analysis, which showed payback periods of between 3.13 and 4.21 years for Funafuti and between 4.83 to 6.72 years for Nukufetau.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-01-01
    Description: Daily, a big extent of colored, partially treated textile effluents drained into the sanitation systems causing serious environmental concerns. Therefore, the decolorization treatment process of wastewater is crucial to improve effluent quality. In the present study, 3 different sorbent materials, nano zerovalent iron (nZVI), activated carbon (AC), and green-synthesized nano zerovalent iron (GT-nZVI), have been prepared for raw textile wastewater decolourization. The prepared nanomaterials were characterized via X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, and UV-Vis absorption spectroscopy. In addition, the effect of different operating parameters such as pH, contact time, and stirring rate on the color removal efficiency was extensively studied to identify the optimum removal conditions. The reaction temperature, adsorbent dose, and initial color concentration were fixed during the experiments at room temperature, 0.7 g/L, and 350 and 50 mg/L Pt/Co color unit, respectively. Moreover, adsorption and reaction kinetics were analyzed using different isotherms and models. For simulating the adsorption process, artificial neural network (ANN) data were compatible with the result of regression analysis derived from response surface methodology (RSM) optimization. Our results showed the higher ability of nZVI, AC, and GT-nZVI in textile wastewater color removal. At pH 5, contact time 50 minutes, and stirring rate 150 rpm, nZVI showed good color removal efficiency of about 71% and 99% for initial color concentrations of 350 and 50 mg/L Pt/Co color unit, respectively. While slightly higher color removal ability of about 72% and 100% was achieved by using AC at pH 8, contact time 70 minutes, and stirring rate 250 rpm. Finally, the largest ability of color removal about 85% and 100% was recorded for GT-nZVI at pH 7, contact time 40 minutes, and stirring rate 150 rpm. This work shows the enhanced color removal ability of GT-nZVI as a potential textile wastewater decolourization material, opening the way for many industrial and environmental applications.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-01-01
    Description: Although significant progress has been achieved in the field of environmental impact assessment in many engineering disciplines, the impact of wastewater treatment plants has not yet been well integrated. In light of this remarkable scientific progress, the outputs of the plants as treated water and clean sludge have become potential sources of irrigation and energy, not a waste. The aim of this study is to assess the environmental impacts of upgrading the wastewater treatment plants from primary to secondary treatment. The Lifecycle Assessment Framework (ISO 14040 and 14044) was applied using GaBi Software. Abu Rawash wastewater treatment plant (WWTP) has been taken as a case study. Two scenarios were studied, Scenario 1 is the current situation of the WWTP using the primary treatment units and Scenario 2 is upgrading the WWTP by adding secondary treatment units. The study highlighted the influence and cumulative impact of upgrading all the primary WWTPs in Egypt to secondary treatment. With the high amount of energy consumed in the aeration process, energy recovery methods were proposed to boost the circular economy concept in Abu Rawash WWTP in order to achieve optimal results from environmental and economic perspectives.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-01-01
    Description: The findings and recommendations of this article will redound to the benefit of society considering that climate change regulation plays an important role in the promotion of a sustainable environment. The greater demand for a clean and healthy environment justifies the need for more effective regulation of climate change, and this can be achieved through climate change impact assessments. In the High Court case of EarthLife Africa Johannesburg v Minister of Environmental Affairs and Others, the court considered what the impact of the Thabametsi Power Project on the global climate and the changing climate will be if it is operated to the expected year of 2060. This judgement highlights the significance, place, and principles of climate change impact assessments in South Africa’s environmental law that has its founding principles in the Constitution of the Republic of South Africa, 1996. The Thabametsi-case contributed to environmental litigation in the manner as to how equality and the rule of law have been addressed in the court. This paper will examine the advances for climate change regulation in a jurisdiction where the Environmental Impact Assessment (EIA) Regulations currently refer to climate change explicitly.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-01-01
    Description: Water sources are currently facing great challenges from rapid population growth and industrial developments. Investigations into how to remove algal organic matter (AOM) are thus of great importance from an environmental point of view because most lakes and reservoirs in South Korea suffer from algae problems, especially in the summer. Many efforts have been made to remove AOM from the aquatic environment in South Korea. In this study, we focus on development of a new AOM removal system, utilizing waste oyster shells and ferrihydrite as the media of the filtration system. Using this system, the removal rate of AOM was investigated regarding the concentrations of chlorophyll a, total phosphorus, and alginate. It was found that about 92% of the total phosphorus was removed through this system when raw oyster shell powders were heated at 900°C to convert them into calcium oxide powders. The use of a continuous system also led to a reduction of 94.2% in total phosphorus, 78.8% in chlorophyll a, and 43.6% in alginate.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-01-01
    Description: Soil influences human health in a variety of ways, with human health being linked to the health of the soil. Historically, emphasis has been placed on the negative impacts that soils have on human health, including exposures to toxins and pathogenic organisms or the problems created by growing crops in nutrient-deficient soils. However, there are a number of positive ways that soils enhance human health, from food production and nutrient supply to the supply of medications and enhancement of the immune system. It is increasingly recognized that the soil is an ecosystem with a myriad of interconnected parts, each influencing the other, and when all necessary parts are present and functioning (ie, the soil is healthy), human health also benefits. Despite the advances that have been made, there are still many areas that need additional investigation. We do not have a good understanding of how chemical mixtures in the environment influence human health, and chemical mixtures in soil are the rule, not the exception. We also have sparse information on how most chemicals react within the chemically and biologically active soil ecosystem, and what those reactions mean for human health. There is a need to better integrate soil ecology and agronomic crop production with human health, food/nutrition science, and genetics to enhance bacterial and fungal sequencing capabilities, metagenomics, and the subsequent analysis and interpretation. While considerable work has focused on soil microbiology, the macroorganisms have received much less attention regarding links to human health and need considerable attention. Finally, there is a pressing need to effectively communicate soil and human health connections to our broader society, as people cannot act on information they do not have. Multidisciplinary teams of researchers, including scientists, social scientists, and others, will be essential to move all these issues forward.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-01-01
    Description: The PM10 contributed in the e-waste dismantling community at Banmaichaiyaphot District, Buriram Province, was investigated due to the e-waste dismantling houses randomly located neighboring non-e-waste dismantling houses. The sampling was performed at non- and e-wastes dismantling houses and compared with the reference house in Daengyai subdistrict. The 24-hour average outdoor PM10 concentrations (81.957 ± 18.724 μg/m3) at e-waste dismantling sites were higher than those of the non-e-waste dismantling houses (80.943 ± 32.740 μg/m3) and control house (36.717 ± 19.516 μg/m3). The 24-hour average indoors PM10 concentrations of the e-waste dismantling houses (116.171 ± 64.635 μg/m3) showed higher concentrations than those of the non-e-waste dismantling (113.637 ± 64.641 μg/m3) and reference house (70.907 ± 22.464 μg/m3), but there were no statistically significant differences ( P 〉 .05). Both indoor and outdoor PM10 concentrations between non- and e-waste dismantling houses did not have significant differences, whereas those of non- and e-waste dismantling houses were significantly higher than that of the reference house locating approximately 5 km away. The positive correlation between indoor and outdoor concentrations of non- and e-waste dismantling houses was satisfactory significant with the r of .613 and .825, respectively. The results indicate that the existing indoor PM10 of either non- or e-waste dismantling houses could result from neighborhood e-waste dismantling.
    Electronic ISSN: 1178-6221
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-07-01
    Description: The development of coalbed methane not only ensures the supply of natural gas but also reduces the risks of coal mine accidents. The micropore structure of coalbed methane reservoir affects the seepage of coalbed methane; improvement of pore structure is one of the effective methods to enhance the efficiency of coalbed methane exploitation. In this study, low-pressure nitrogen gas adsorption, specific surface area analysis, nuclear magnetic resonance spectroscopy, and centrifugation experiment were used to evaluate the effect of ethanol on coal microscopic pore structure and fluid distribution during hydraulic fracturing. Seven coal samples were collected from the No. 3 coal seam in Zhaozhuang Mine, Qinshui Basin. The samples are mainly composed of micropores, transition pores, and mesopores. The experimental results show that ethanol can significantly change the pore structure by increasing the pore diameter. The average specific surface area, pore volume, and pore diameter of rock samples before ethanol immersion are 1.1270 m2/g, 0.0104 cm3/g, and 14.20 nm, respectively. The three parameters of rock samples after ethanol immersion are 0.5865 m2/g, 0.0025 cm3/g, and 29.37 nm. Ethanol improves the connectivity between micropores and mesopores. The average irreducible fluid saturation of samples saturated with formation water after centrifugation is 86%, and the average irreducible fluid saturation of samples soaked in three concentrations of ethanol solution decreases. It is considered that an ethanol solution of 0.4% concentration has the best effect on improving the pore structure and fluid distribution.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-08-30
    Description: The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy, reduce the adverse impact on the power grid system, and has the characteristics of green, low carbon, sustainable, etc., which is currently a global research hotspot. Based on the basic principles of hydrogen production technology, this paper introduces the current hydrogen energy system topology, and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized, and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis, the key technologies of multi-energy complementation of hydrogen energy system are elaborated, especially in-depth research and discussion on coordinated control strategies, energy storage and capacity allocation, energy management, and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented, which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-07-16
    Description: Shale gas production after drill-in, completion, and hydraulic fracturing is strongly affected by formation damage. In order to determine the damage mechanisms for nonmarine shale reservoir, a series of assessments of sensitivity damage, water block damage, water-based drill-in fluids damage, and water damage to gas diffusion on 20 shale samples obtained from Chang 7 Formation were conducted and analyzed. Results indicate that, in the Chang 7 Formation shale, there is extremely strong stress sensitivity and moderately weak water sensitivity damage. Although the liquid phase invasion depth is shallow and the water block damage is limited, the liquid phase and solid particles would enter the microfractures in the reservoir.The P-1 water-based drill-in fluid is compatible with the Chang 7 Formation shale reservoir which can meet the requirement of Chang 7 Formation shale damage controlling, the effect of water-based drill-in fluid on wellbore stability should be paid more attention. The diffusion coefficient of the shale decreases with the presence of water.A systematic damage evaluation method of working fluid considering the multi-mechanism and multi-scale mass transfer process of shale gas is needed to establish.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-07-07
    Description: This study examines the impact of financial development on carbon dioxide emissions in Nigeria over the period 1971–2014. Income per capita, energy consumption, exchange rate and urbanization are incorporated in the analysis. The empirical analysis based on linear and nonlinear autoregressive distributed lag techniques provides evidence of long-run relationship among the variables in Nigeria. The results in general show that financial development has significant asymmetric effects on carbon dioxide emissions in Nigeria. Both short-run and long-run analyses show that the impact of positive changes in financial development on carbon dioxide emissions is significantly different from that of negative changes. The results suggest that in Nigeria positive shocks in financial development have significant reducing effect on carbon dioxide emissions, while negative shocks in financial development have significant increasing effect on carbon dioxide emissions. The empirical results also show that the response of carbon dioxide emissions to negative shocks in financial development is stronger. Based on these findings, this study concludes that mitigation policies would need to incorporate strategies to strengthen the depth of financial intermediation in the Nigerian economy.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-07-07
    Description: Application of Weibull distribution in a generalized way to estimate wind potential cannot always be advisable. The novelty of this work is to estimate wind potential using Normal probability density function. A comparison of five probability distributions namely Normal, Gamma, Chi-Squared, Weibull, and Rayleigh was done using three performance evaluation criteria. Four years (2015–2018) hourly wind data at 50 m height at five stations near the coastline of Pakistan was used. It was found that normal distribution gives the best fit at each of these stations and against each evaluation criterion followed by Weibull distribution while Rayleigh distribution gives the poorest fit. Further energy generation by fifteen turbine models was calculated and GE 45.7 was found the best in terms of amount of energy generation and capacity factors while Vestas V42 shows the worst. However, GE/1.5 SL is the most economical while Vestas V63 is the least. Among five locations, Shahbandar is the best potential site while Manora is the least.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-06-29
    Description: Human beings face unprecedented Covid-19 pandemic outbreak since the beginning of 2020. This disease started to change economic, social, and individual conventional behaviors. Several economic activities have sharply declined, and demand for commodities is decreasing, such as oil. This commodity has also suffered from disagreement among Organization of Petroleum Exporting Countries (OPEC)+ members to deal with the amount of cutting oil production. This situation adds a supply-side problem into declining demand due to Covid-19. Turkey, as an emerging economy, highly depends on imported oil and suffers from this pandemic disease. This study aims to analyze the compensating role of falling oil prices for impacts of Covid-19 on non-recoverable sectors in Turkey, e.g. tourism, travel, and transportation. The main argument in the study, that is falling prices in oil can contribute to compensation for losing revenue from tourism, travel, and transport. Throughout the study, ORANI-G as a multisectoral computable general equilibrium model is employed. Three scenarios, namely Scenario-1, 2A, and 2B, are set to analyze the effects of falling oil prices as compensation for Covid-19 in the selected sectors. Results show that Covid-19 decreases gross domestic product by 1.16 but falling oil prices as 25 and 50% compensate for this decrease by 0.72 and 1.56% gross domestic product increases, respectively. It is concluded that through the falling oil prices, Turkey’s dependence on crude oil imports might provide a new reparation to overcome non-recoverable impacts. This study is scoped with selected sectors and falling oil prices. Other economic and social sectors need to be investigated in terms of challenges of Covid-19 and opportunities for declining crude oil prices. Besides, competitiveness based on the scale of firms and the ability to access business finance should be analyzed within the changing business model in the post-coronavirus period.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-07-03
    Description: Research in environmental psychology has found a positive relationship between place bonds and behaviors related to care and maintenance of place. Although this relationship has been analyzed in natural environments, it has been less frequently studied in urban environments and has yielded contradictory results. The aim of this study is to analyze behavior related to care and conservation of neighborhood and its possible relationship to place bonds, as well as to other variables that we think may be important in explaining this behavior. The participants were 407 residents from eight different neighborhoods with different sociodemographic characteristics in one Spanish city. The results indicate that the relationship between attachment and behavior is significant only in residents with higher socioeconomic levels. These findings may help to explain the contradictory results found in the literature. Other variables which are significant in explaining neighborhood care are social norms, residential satisfaction, and support for protection policies. Place identity was not found to be significantly correlated with neighborhood care.
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-07-02
    Description: Coalbed methane as one type of clean energy has become an important gas resource recently. High-pressure water injection in coal seams is an effective approach for improving gas extraction efficiency, which is determined by the gas displacement characteristic and pore structure of coal. To investigate the gas displacement characteristics in coal and its pore response and influential factors, gas adsorption and water injection experiments were conducted under different conditions. The results show that the gas displacement caused by the water injection undergoes three stages: rapid increase, slow increase, and almost constant. The wetting process in water injection includes three processes: wetting, soaking, and spreading, and the wettability of coking coal is best, followed by lean coal and anthracite. The amount of gas driven by the water increases with increasing water injection pressure, and it is more favorable to increase the injection pressure to improve the gas displacement effect under the relatively low injection pressure. The lower the coal rank, the better the gas displacement effect due to the higher porosity of the coal, and the longer the early gas displacement stage. The high adsorption equilibrium pressure can improve the gas displacement effect; for the relatively high adsorption equilibrium pressure, the gas displacement effect is better. After water injection in coal, the large fractures and pores dramatically increase in size, especially for the low metamorphic coals coking coal, contributing to the majority of the increase in porosity. The results of this study can provide a theoretical foundation for the wide application of water injection technology for efficient gas drainage in coal mines.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-07-02
    Description: This study employed the bottom-up life cycle assessment method, examining the life cycle carbon emissions of three dwellings constructed at different times with different techniques in Yinchuan City, China, i.e. traditional earth brick dwelling (Case 1), brick–straw bale dwelling (Case 2), wood–straw solar energy dwelling (Case 3). The study aimed to find the methods of reducing carbon emissions, so as to slow down the global warming. The results showed that (1) with excellent thermal insulation properties, straw bale was remarkably effective in reducing carbon emissions from heating at the use stage; (2) 15 kWp solar photovoltaic panels contributed to offsetting the carbon emission of the dwelling; (3) straw bales and logs could store the carbon in building envelope, which partly offset the carbon emissions. The findings of this study have proved that ecological building materials and solar photovoltaic system have great potential in reducing carbon emissions of buildings, and can provide a basis for the design and material selection of future dwellings in order to promote the development of green dwellings.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-08-24
    Description: This paper analyzes the strain stability during mining, which often causes a water inrush. Mining couses costant stress on the fault zone, which is a loading process on the system composed of fault material and surrounding medium. A cusp catastrophe model is presented and the necessary and sufficient conditions leading to fault systems are discussed. The fault zone is assumed to be planar and is a combination of two media: medium-1 is elastic-brittle or strain-hardening and medium-2 is strain-softening. The shear stress-strain constitutive model for the strain-softening medium is described by the Weibull’s distribution law. It was found that the instability of a fault system mainly relies on the ratio between the stiffness of medium1 to the post-peak stiffness of the strain-softening medium, and the homogeneity index of strain-softening medium and the bifurcation point, k ≤ 1, which is the turning point of the fault system from stability to potential instability. One can judge the occurrence of fault instability from this feature and regard the index D as a parameter, which reflects the precursory abnormality of a fault.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-08-24
    Description: The electricity production via these sources of energy, offers a bigger safety of supply to the consumers while respecting the environment. For that reason, the principal objective of this paper is to study and control the photovoltaic lighting energy storage system. We presented the study of the whole PV system such as solar panels, DC chopper, batteries with account of all conditions of the sites of installation (period of sunshine and temperature). This study analyzed the integration of a photovoltaic power plant, super capacitor energy storage system, and lightning system. Our approach of sizing is based on the modeling of various components describing the functioning of every part of the installation among others. We can mention the production, the consumption and the storage of energy through solar battery.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-08-24
    Description: Typical dolomite reservoirs exist in the upper assemblage of the Ordovician Majiagou Formation in the southeastern Sulige gas field, Ordos Basin, however, the current understanding of dolomite genesis needs to be clarified. This study confirms the dolomitization characteristics, diagenetic environment, and genesis of dolomite through the use of core observations, thin section identification, and geochemical data (carbon and oxygen stable isotopes, strontium isotopes, and major and trace element contents). The results showed that dolomite samples from the study area includes micritic dolomite, powder crystal dolomite, and micrite to powder crystal dolomite, in which the main reservoir space consisted of intergranular pores, intercrystalline pores and various dissolved pores. The δ13C value of the dolomite samples ranged from −7.26‰ to1.28‰ with an average of −0.45‰, which is equivalent to that of seawater during the Ordovician. The δ18O value ranged from −9.94‰ to −6.32‰ with an average of −7.86‰, which is clearly more negative than that of the Ordovician seawater. The 87Sr/86Sr ratio varied from 0.70867 to 0.71033 with an average of 0.70946, which is significantly more positive than that of Ordovician seawater. The Mg/Ca ratio was lower than that of the seawater and close to 1:1. Overall, all of the samples were characterized by high Fe and Mn contents, while low Sr and Na contents. These results clearly indicate that the dolomitized fluid was closely related to seawater or a sea-source fluid. Furthermore, the restored paleosalinity, paleotemperature, and paleodepth also indicate that the dolomite was formed in a marine reducing environment. Combined with the petrological characteristics and geochemical indicators, two dolomitization models (mixed water dolomitization and burial dolomitization) were established for the upper assemblage of the Ordovician Majiagou Formation in southeastern Sulige gas field. We infer that mixed water dolomitization was dominant before the Carboniferous, whereas burial dolomitization was dominant after the Early Permian.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-08-24
    Description: The physical properties of thick coal seams show strong vertical heterogeneity; thus, an accurate characterization of their pore structure is essential for coalbed methane (CBM) exploration and production. A total of 18 coal samples, collected from a thick coal seam in the Yili Basin of NW China, were tested by a series of laboratory experiments to investigate the peat mire evolution and pore structure characteristics. The results show that the No. 4 coal seam has undergone multiple stages of evolution in the peatification stage, and was divided into four water-transgression/water-regression cycles according to the regular cyclic changes of the vitrinite/inertinite ratio, structure preservation index, gelification index, vegetation index, trace element ratios, and stable carbon isotopes of organic matter. The changes of pore structure characteristics with the changes of coal deposition cycles are also analyzed. It is concluded that pore structure characteristics of the four cycles are quite different. In each water-transgression cycle, the vitrinite gradually increased and the inertinite gradually decreased, resulting in a decrease of the porosity, pore volume, specific surface area, and fractal dimension. While in each water-regression cycle, the vitrinite gradually decreased and the inertinite gradually increased, leading to an increase of the porosity, pore volume, specific surface area, and fractal dimension. A strong relationship exists between the porosity, pore volume, specific surface area, fractal dimension, and submacerals, with fusinite and semifusinite which contained more pores having a positive correlation, desmocollinite and corpovitrinite which contained few pores having a negative correlation.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-08-24
    Description: The study of benzothiophene hydrodesulfurization reaction path contribute to clarifying the mechanism of hydrodesulfurization (HDS) of heavy oil. In this work, experiments and simulations were combined to study the reaction pathway of benzothiophene hydrodesulfurization catalyzed by Ni2P. In experimental part, Ni2P catalyst was prepared and characterized. Then, the catalytic property of the catalyst for benzothiophene hydrodesulfurization was evaluated. The substance types and contents in the liquid phase products were detected to verify the accuracy of the simulation results. Dmol3 module of the Materials Studio (MS) simulation software was used to simulate the adsorption and hydrodesulfurization of benzothiophene on the surface of Ni2P catalyst and explore the most probable reaction path. The results showed that the most stable adsorption configuration of benzothiophene on the surface of Ni2P was Ni-hcp. In addition, indirect desulfurization of benzothiophene was more advantageous than direct desulfurization. The most possible path for indirect desulfurization was Benzothiophene (BT) – Dihydrobenzothiophene (DHBT) – C8H9S2 – 2-phenylethyl mercaptan (PET) – Ethylbenzene (EB), while that of direct desulfurization was Benzothiophene (BT) – C8H7S2 – Styrene thiol (CMT) – Styrene (ST) – Ethylbenzene (EB).
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-04-22
    Description: Intelligent surveillance is an important management method for the construction and operation of power stations such as wind power and solar power. The identification and detection of equipment, facilities, personnel, and behaviors of personnel are the key technology for the ubiquitous electricity The Internet of Things. This paper proposes a video solution based on support vector machine and histogram of oriented gradient (HOG) methods for pedestrian safety problems that are common in night driving. First, a series of image preprocessing methods are used to optimize night images and detect lane lines. Second, an image is divided into intelligent regions to be adapted to different road environments. Finally, the HOG and support vector machine methods are used to optimize the pedestrian image on a Linux system, which reduces the number of false alarms in pedestrian detection and the workload of the pedestrian detection algorithm. The test results show that the system can successfully detect pedestrians at night. With image preprocessing optimization, the correct rate of nighttime pedestrian detection can be significantly improved, and the correct rate of detection can reach 92.4%. After the division area is optimized, the number of false alarms decreases significantly, and the average frame rate of the optimized video reaches 28 frames per second.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-04-22
    Description: Staged fracturing horizontal well technology is an important means of improving tight reservoir development efficiency. Taking a typical tight oil block in the Oilfield A as the studied area, the vertical well–horizontal well joint arrangement pattern is adopted in this study. The energy supplementary development effects of multiple permeability scales, different arrangement spacing, and different media (H2O, CO2) are discussed through the numerical simulation method. Combined with the principles of petroleum technology economics, the economic evaluation model for staged fracturing horizontal wells in tight oil reservoir development is proposed, thereby determining the technical boundary and economic boundary of supplementary energy development with different media. Studies indicate that the technical boundary and economic boundary of water-flooding development in the Oilfield A are 0.4 and 0.8 mD, respectively, and the technical boundary and economic boundary of CO2-flooding development are 0.1 and 0.4 mD, respectively. This study provides theoretical support for field operation of Oilfield A and guidance for selection of development mode for tight oil reservoirs.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-04-26
    Description: This paper discusses the volcanic influence on the mineralogical and elemental geochemistry of No. 6 coal from Nanyangpo Mine in the Datong coalfield, north China. Sixteen samples (14 coal and 2 partings) were analyzed by different geochemical methods. The results revealed that the No. 6 coal is a medium–high volatility, highly calorific, bituminous coal with a low-ash and medium-sulfur content. The minerals mainly consisted of kaolinite, calcite, dolomite, and pyrite. In addition, traces of apatite, sphalerite, and anatase were also found. Calcite, dolomite, and pyrite in the coal samples were mainly derived from epigenetic hydrothermal solutions, whereas kaolinite and apatite originated from volcanic ash. Harmful trace elements including Pb, Cu, Mo, Tl, and Hg in the No. 6 coal samples were higher than those of common global coals. These harmful elements mainly occurred in sulfide minerals, which were probably influenced by hydrothermal inputs.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-04-08
    Description: To study the influence of coal mining on the porosity of shallow sandy loam under conditions of shallow seam mining in thick, loose layers in north-west China, a typical surface sandy loam stratum in Shaanxi Province was taken as the study area, and experiments were performed to test the variation of soil porosity at different depths of 0–10 m in strata before, during and after mining therein. The experimental results demonstrate that the overall average porosities in the disc-shaped edge area, the disc-shaped edge area to the disc-shaped basin bottom area and the disc-shaped subsidence centre area of shallow sandy loam in mining increased by (23.51, 18.07 and 22.61%) respectively compared with that before mining. Mining meant that the soil porosity in the period of stable subsidence after mining changed significantly in the disc-shaped edge area and the disc-shaped edge to the disc-shaped basin bottom area. The disc-shaped edge area shows a trend of slowly rising porosity with the increase of depth, and the disc-shaped edge area to the disc-shaped basin bottom area shows a trend of gradually increasing first and then gradually becoming stable. Although the porosity in the central area of disc-shaped subsidence increased before mining, its trend was similar to that before mining. Although the change in soil porosity in the period of post-mining settlement stability is greater than that before mining, it is best fitted by a quintic polynomial. In general, the rate of change of soil porosity in the study area shows similar trends with depth. It showed a U-shaped variation that first decreased, stabilised for a distance and then gradually increased. This study provides theoretical support for surface soil remediation and ecological environment restoration in coal mining areas.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-05-06
    Description: The stability of underground water-sealed oil storage caverns is of great importance for safe excavation and operation. To analyze the scope of the failure zone and underground cavern stability accurately, a new method was developed that integrates the rock tunneling quality index Q-system and stability graph method with 3D laser scanning and numerical simulation. The point cloud data were obtained by 3D laser scanning, and the cavern model was built by using DIMINE software, which directly shows the 3D shape of the cavern. The rock mass physical and mechanical parameters and the corresponding stability coefficients were obtained based on Q-system and stability graph method. The plastic zone distribution and deformation characteristics of surrounding rock were analyzed through numerical simulation. Then, the corresponding relationship between caving zone and plastic zone was determined by comparing the numerical simulation results with the 3D laser scanning contour. The new method provides a reliable way to analyze the stability of the underground water-sealed oil storage cavern and also will helpful to design or optimize the subsequent support.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-05-07
    Description: With the continuous production of oil wells, the reservoir properties, such as permeability and porosity, are changing accordingly, and the reservoir heterogeneity is also enhanced. This development is vulnerable to the problem of the one-way advance of injected water and low efficiency of water flooding. The interwell connectivity between injection and production wells controls the flow capacity of the subsurface fluid. Therefore, the analysis of interwell connectivity helps to identify the flow direction of injected water, which is of great significance for guiding the profile control and water plugging in the later stage of the oilfield. In this study, based on the principle of mass conservation, a capacitance model considering the bottom-hole flowing pressure was established and solved by using the production dynamic data of injection–production wells. Then, the validity of the capacitance model was verified by numerical simulation, and the influences of well spacing, compression coefficient, frequent switching wells, injection speed, and bottom-hole flowing pressure on interwell connectivity were eliminated. Finally, a practical mine technique for inversion of connectivity between wells using dynamic data was developed. The advantage of this model is that the production dynamic data used in the modeling process are easy to obtain. It overcomes the shortcomings of previous models and has a wider range of applications. It can provide a theoretical basis for the formulation of profile control and water-plugging schemes in the high-water-cut period.
    Print ISSN: 0144-5987
    Electronic ISSN: 2048-4054
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...