ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.08. Risk::05.08.01. Environmental risk  (3)
  • Acoustic signals
  • Public Library of Science  (2)
  • BE-MA  (1)
  • Copernicus Publications  (1)
  • American Institute of Physics (AIP)
  • MDPI Publishing
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Sono state eseguite misure di concentrazione di 222Rn nell’acqua potabile della rete idrica di Roma con prelievi dalle principali adduttrici (acquedotti del Peschiera, Marcio, ..) e da pozzi. Il metodo impiegato si basa sull’adsorbimento in carboni attivi del radon estratto per degassamento dal campione dell’acqua in esame. I risultati mostrano concentrazioni dell’ordine del Bq/L nell’acqua dei principali acquedotti e nella rete di distribuzione. Concentrazioni maggiori (inferiori comunque a 100 Bq/L) sono state riscontrate nelle acque dei pozzi esaminati.
    Description: Università di Roma "La Sapienza" Istituto Nazionale di Geofisica e Vulcanologia Azienda USL Roma C
    Description: Published
    Description: 32-36
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: N/A or not JCR
    Description: reserved
    Keywords: radon ; drinking water ; concentration ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Arrays of GPS Ionospheric Scintillation and TEC Monitors (GISTMs) are used in a comparative scintillation study focusing on quasi-conjugate pairs of GPS receivers in the Arctic and Antarctic. Intense GPS phase scintillation and rapid variations in ionospheric total electron content (TEC) that can result in cycle slips were observed at high latitudes with dual-frequency GPS receivers during the first significant geomagnetic storm of solar cycle 24 on 5–7 April 2010. The impact of a bipolar magnetic cloud of north-south (NS) type embedded in high speed solar wind from a coronal hole caused a geomagnetic storm with maximum 3-hourly Kp = 8- and hourly ring current Dst =−73 nT. The interhemispheric comparison of phase scintillation reveals similarities but also asymmetries of the ionospheric response in the northern and southern auroral zones, cusps and polar caps. In the nightside auroral oval and in the cusp/cleft sectors the phase scintillation was observed in both hemispheres at about the same times and was correlated with geomagnetic activity. The scintillation level was very similar in approximately conjugate locations in Qiqiktarjuaq (75.4° N; 23.4° E CGM lat. and lon.) and South Pole (74.1° S; 18.9° E), in Longyearbyen (75.3° N; 111.2° E) and Zhongshan (74.7° S; 96.7° E), while it was significantly higher in Cambridge Bay (77.0° N; 310.1° E) than at Mario Zucchelli (80.0° S; 307.7° E). In the polar cap, when the interplanetary magnetic field (IMF) was strongly northward, the ionization due to energetic particle precipitation was a likely cause of scintillation that was stronger at Concordia (88.8° S; 54.4° E) in the dark ionosphere than in the sunlit ionosphere over Eureka (88.1° N; 333.4° E), due to a difference in ionospheric conductivity. When the IMF tilted southward, weak or no significant scintillation was detected in the northern polar cap, while in the southern polar cap rapidly varying TEC and strong phase scintillation persisted for many hours. This interhemispheric asymmetry is explained by the difference in the location of solar terminator relative to the cusps in the Northern and Southern Hemisphere. Solar terminator was in the immediate proximity of the cusp in the Southern Hemisphere where sunlit ionospheric plasma was readily convected into the central polar cap and a long series of patches was observed. In contrast, solar terminator was far poleward of the northern cusp thus reducing the entry of sunlit plasma and formation of dense patches. This is consistent with the observed and modeled seasonal variation in occurrence of polar cap patches. The GPS scintillation and TEC data analysis is supported by data from ground-based networks of magnetometers, riometers, ionosondes, HF radars and all-sky imagers, as well as particle flux measurements by DMSP satellites.
    Description: Published
    Description: 2287-2304
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Ionosphere (Ionospheric irregularities) ; Magnetospheric physics (Storms and substorms) ; Radio science (Space and satellite communication) ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Background: Trace elements have been hypothesised to be involved in the pathogenesis of Multiple Sclerosis and volcanic degassing is the major natural sources of trace elements. Both incidence of Multiple Sclerosis in Catania and volcanic activity of Mount Etna have been significantly increased during the last 30 years. Due to prevailing trade winds direction, volcanic gases from Etna summit craters are mostly blown towards the eastern and southern sectors of the volcano. Objective: To evaluate the possible association between Multiple Sclerosis and exposure to volcanogenic trace elements. Methods: We evaluated prevalence and incidence of Multiple Sclerosis in four communities (47,234 inhabitants) located in the eastern flank and in two communities (52,210 inhabitants) located in the western flank of Mount Etna, respectively the most and least exposed area to crater gas emissions. Results: A higher prevalence was found in the population of the eastern flank compared to the population of the western one (137.6/100,000 versus 94.3/100,000; p-value 0.04). We found a borderline significantly higher incidence risk during the incidence study period (1980–2009) in the population of the eastern flank 4.6/100,000 (95% CI 3.1–5.9), compared with the western population 3.2/100,000 (95% CI 2.4–4.2) with a RR of 1.41 (95% CI 0.97–2.05; p-value 0.06). Incidence risks have increased over the time in both populations reaching a peak of 6.4/100,000 in the eastern flank and of 4.4/100.000 in the western flank during 2000–2009. Conclusion: We found a higher prevalence and incidence of Multiple Sclerosis among populations living in the eastern flank of Mount Etna. According to our data a possible role of TE cannot be ruled out as possible co-factor in the MS pathogenesis. However larger epidemiological study are needed to confirm this hypothesis.
    Description: Published
    Description: e74259
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna volcano ; Multiple Sclerosis ; trace elements ; volcanic activity ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise.
    Description: Published
    Description: e0141838
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Whales ; Bioacoustics ; Background noise (acoustics) ; Acoustic signals ; Sperm whales ; Vocalization ; Acoustics ; Data acquisition ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...